Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.
В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.
Траектория движения материальной точки через радиус-вектор
Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.
Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):
Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:
Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:
В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.
Вектор скорости материальной точки
Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.
Пример нахождения вектора скорости
Имеем закон перемещения материальной точки:
Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:
Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.
Как найти вектор ускорения материальной точки
Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:
Модуль вектора скорости точки
Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:
Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.
Модуль вектора ускорения
Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:
Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.
Еще примеры решений задачи нахождения вектора скорости и ускорения
А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.
Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.
Сложное движение точки. Пример решения задачи
Теория, применяемая для решения приведенной ниже задачи, излагается на странице “Сложное движение точки, теорема Кориолиса”.
Условие задачи
Прямоугольная пластина вращается вокруг неподвижной оси по закону φ = 6 t 2 – 3 t 3 . Положительное направление отсчета угла φ показано на рисунках дуговой стрелкой. Ось вращения OO 1 лежит в плоскости пластины (пластина вращается в пространстве).
По пластине вдоль прямой BD движется точка M . Задан закон ее относительного движения, т. е. зависимость s = AM = 40( t – 2 t 3 ) – 40 ( s – в сантиметрах, t – в секундах). Расстояние b = 20 см . На рисунке точка M показана в положении, при котором s = AM > 0 (при s 0 точка M находится по другую сторону от точки A ).
Найти абсолютную скорость и абсолютное ускорение точки M в момент времени t 1 = 1 с .
Указания. Эта задача – на сложное движение точки. Для ее решения необходимо воспользоваться теоремами о сложении скоростей и о сложении ускорений (теорема Кориолиса). Прежде чем производить все расчеты, следует по условиям задачи определить, где находится точка M на пластине в момент времени t 1 = 1 с , и изобразить точку именно в этом положении (а не в произвольном, показанном на рисунке к задаче).
Решение задачи
Дано: b = 20 см , φ = 6 t 2 – 3 t 3 , s = |AM| = 40( t – 2 t 3 ) – 40 , t 1 = 1 c .
Определение положения точки
Определяем положение точки в момент времени t = t 1 = 1 c .
s = 40( t 1 – 2 t 1 3 ) – 40 = 40(1 – 2·1 3 ) – 40 = –80 см.
Поскольку s 0 , то точка M ближе к точке B, чем к D.
|AM| = |–80| = 80 см.
Делаем рисунок.
Определение абсолютной скорости точки
Согласно теореме о сложении скоростей, абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Определение относительной скорости точки
Определяем относительную скорость . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дифференцируя s по времени t , находим проекцию скорости на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с.
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительной скорости
vот = 200 см/с .
Изображаем вектор на рисунке.
Определение переносной скорости точки
Определяем переносную скорость . Для этого считаем, что точка M жестко связана с пластиной, а пластина совершает заданное движение. То есть пластина вращается вокруг оси OO1. Дифференцируя φ по времени t , находим угловую скорость вращения пластины:
.
В момент времени t = t 1 = 1 с ,
.
Поскольку 0″ style=”width:48px;height:18px;vertical-align:-10px;background-position:-583px -267px”> , то вектор угловой скорости направлен в сторону положительного угла поворота φ , то есть от точки O к точке O1. Модуль угловой скорости:
ω = 3 с -1 .
Изображаем вектор угловой скорости пластины на рисунке.
Из точки M опустим перпендикуляр HM на ось OO1.
При переносном движении точка M движется по окружности радиуса |HM| с центром в точке H .
|HM| = |HK| + |KM| = 3 b + |AM| sin 30° = 60 + 80·0,5 = 100 см ;
Переносная скорость:
vпер = ω|HM| = 3·100 = 300 см/с .
Вектор направлен по касательной к окружности в сторону вращения.
Определение абсолютной скорости точки
Определяем абсолютную скорость . Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей:
.
Проводим оси неподвижной системы координат Oxyz . Ось z направим вдоль оси вращения пластины. Пусть в рассматриваемый момент времени ось x перпендикулярна пластине, ось y лежит в плоскости пластины. Тогда вектор относительной скорости лежит в плоскости yz . Вектор переносной скорости направлен противоположно оси x . Поскольку вектор перпендикулярен вектору , то по теореме Пифагора, модуль абсолютной скорости:
.
Определение абсолютного ускорения точки
Согласно теореме о сложении ускорений (теорема Кориолиса), абсолютное ускорение точки равно векторной сумме относительного, переносного и кориолисова ускорений:
,
где
– кориолисово ускорение.
Определение относительного ускорения
Определяем относительное ускорение . Для этого считаем, что пластина неподвижна, а точка M совершает заданное движение. То есть точка M движется по прямой BD . Дважды дифференцируя s по времени t , находим проекцию ускорения на направление BD :
.
В момент времени t = t 1 = 1 с ,
см/с 2 .
Поскольку , то вектор направлен в направлении, противоположном BD . То есть от точки M к точке B . Модуль относительного ускорения
aот = 480 см/с 2 .
Изображаем вектор на рисунке.
Определение переносного ускорения
Определяем переносное ускорение . При переносном движении точка M жестко связана с пластиной, то есть движется по окружности радиуса |HM| с центром в точке H . Разложим переносное ускорение на касательное к окружности и нормальное ускорения:
.
Дважды дифференцируя φ по времени t , находим проекцию углового ускорения пластины на ось OO 1 :
.
В момент времени t = t 1 = 1 с ,
с –2 .
Поскольку , то вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то есть от точки O1 к точке O. Модуль углового ускорения:
ε = 6 с -2 .
Изображаем вектор углового ускорения пластины на рисунке.
Переносное касательное ускорение:
a τ пер = ε |HM| = 6·100 = 600 см/с 2 .
Вектор направлен по касательной к окружности. Поскольку вектор углового ускорения направлен в сторону, противоположную положительного угла поворота φ , то направлен в сторону, противоположную положительному направлению поворота φ . То есть направлен в сторону оси x .
Переносное нормальное ускорение:
a n пер = ω 2 |HM| = 3 2 ·100 = 900 см/с 2 .
Вектор направлен к центру окружности. То есть в сторону, противоположную оси y .
Определение кориолисова ускорения
Кориолисово (поворотное) ускорение:
.
Вектор угловой скорости направлен вдоль оси z . Вектор относительной скорости направлен вдоль прямой |DB| . Угол между этими векторами равен 150° . По свойству векторного произведения,
.
Направление вектора определяется по правилу буравчика. Если ручку буравчика повернуть из положения в положение , то винт буравчика переместится в направлении, противоположном оси x .
Определение абсолютного ускорения
Абсолютное ускорение:
.
Спроектируем это векторное уравнение на оси xyz системы координат.
;
;
.
Модуль абсолютного ускорения:
.
Абсолютная скорость ;
абсолютное ускорение .
Автор: Олег Одинцов . Опубликовано: 10-01-2016
Основные понятия кинематики. Скорость. Средняя скорость. Относительная скорость. Сложение перемещений и скоростей
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
Этот урок посвящён разделу физики, который называется кинематика. Мы узнаем, что изучает кинематика, основные понятия этого раздела. Также на этом уроке будут подробно показаны решения трёх типовых задач различной сложности, которые взяты из сборника задач для подготовки к единому государственному экзамену. Задачи на нахождение средней и относительной скорости.
[spoiler title=”источники:”]
http://1cov-edu.ru/mehanika/kinematika/slozhnoe-dvizhenie-tochki-reshenie-zadachi/
http://interneturok.ru/lesson/physics/11-klass/podgotovka-k-ege/osnovnye-ponyatiya-kinematiki-skorost-srednyaya-skorost-otnositelnaya-skorost-slozhenie-peremescheniy-i-skorostey
[/spoiler]
Чтобы получить точное представление о движении двух объектов относительно друг друга относительная скорость является важным. Поэтому в этой статье мы подробно поговорим об относительной скорости между двумя объектами.
Относительная скорость — это, по сути, скорость одного объекта по отношению к другому. Рассмотрим следующие два объекта, А и В, которые движутся с разными скоростями. Скорость объекта А по отношению к объекту В или наоборот называется относительной скоростью. Он также известен как скорость изменения относительного положения одного объекта по отношению к другому с течением времени.
Как найти относительную скорость двух тел?
🠊 Техника определения скорости объекта требует определения скорости изменения положения объекта по отношению к неподвижному окружающему объекту.
Когда объекты A и B находятся в относительном движении, их соответствующие скорости также будут в относительном движении. Чтобы получить относительную скорость объекта A по отношению к B, нужно математически придать равную и противоположную скорость B как объекту A, так и объекту B, чтобы привести объект B в состояние покоя.
В результате равнодействующая обеих скоростей (скорости объекта А и Б) дает нам относительную скорость объекта А относительно объекта Б.
Уравнения относительной скорости следующие:
Скорость объекта А относительно объекта В можно рассчитать следующим образом:
Vab V =a – Vb
Скорость объекта B относительно объекта A можно рассчитать следующим образом:
Vba V =b – Va
Из двух выражений мы можем вывести следующее:
Vab = – Vba
Однако обе величины равны математически и могут быть представлены как:
|Vab |= |Вba|
Какова относительная скорость между двумя телами, когда они движутся с одинаковой скоростью в одном направлении?
🠊 Когда два тела А и В движутся в одном направлении с одинаковой скоростью, угол между ними равен 0°.
Предположим, что два транспортных средства A и B движутся в одном направлении, т. е. параллельно друг другу, с одинаковой скоростью или скоростью (поскольку они движутся в одном направлении), т. е. Va V =b.
В результате скорость автомобиля А относительно автомобиля В равна:
Vab V =a – Vb = 0
Аналогичным образом, скорость транспортного средства B относительная к транспортному средству А:
Vba V =b – Va = 0
Это означает, что если два объекта двигаться в одном направлении с одинаковой скоростью или скорость, их относительная скорость становится равной нулю. Это демонстрирует, что другой может казаться покоящимся для одного объекта.
Построение графика положение-время для двух объектов, движущихся в одном направлении с одинаковой скоростью, приводит к прямым параллельным линиям, как показано на графике ниже.
Какова относительная скорость между двумя телами, когда они движутся с разными скоростями в одном направлении?
🠊 Если два транспортных средства, A и B, движутся в одном направлении с разными скоростями, в первую очередь следует рассмотреть два сценария:
(1) Начальные точки одинаковы (Va > Vb):
Если два транспортных средства движутся с разными скоростями в одном направлении с одной и той же начальной точкой и Va > Vb, человек в транспортном средстве B воспринимает транспортное средство A как удаляющееся от него со скоростью:
Vab V =a – Vb
Транспортное средство B движется назад к пассажиру в транспортном средстве A со скоростью:
Vba V =b – Va = -( Вa – Vb) = -Vab
В результате обе скорости имеют одинаковую величину, но противоположные знаки.
(2) Различные отправные точки:
Мы можем думать о двух сценариях здесь:
(i) Предположим, что транспортное средство A имеет более высокую скорость, чем транспортное средство B, т. е. Va > Vb, и следует за автомобилем B.
В этой ситуации транспортное средство A в конечном итоге догонит транспортное средство B, как показано на их графике положение-время.
Vab V =a – Vb ≠ 0
(ii) Рассмотрим ситуацию, когда Va > Vb и автомобиль А движется впереди автомобиля В.
В этом случае транспортное средство B никогда не сможет обогнать транспортное средство A.. Графики положения и времени обоих транспортных средств не будут пересекаться по мере их удаления друг от друга.
Vab V =a – Vb ≠ 0
Какова будет относительная скорость двух тел, когда они движутся в противоположных направлениях?
🠊 Угол, образованный двумя телами, движущимися в противоположных направлениях по прямой, называется 180°.
Рассмотрим два автомобиля А и В, движущихся в противоположных направлениях по прямой.
В результате скорость автомобиля А относительно автомобиля В равна:
Vab V =a -(- Вb) = Вa +Vb
Скорость транспортного средства B по отношению к A аналогична:
Vba V =b-(- Вa) = Вa +Vb
В результате можем написать:
Vab V =ba
Это указывает на то, что если два объекта движутся в противоположных направлениях по прямой линии, кажется, что каждый объект движется очень быстро по сравнению с другим.
Какова относительная скорость, когда два тела движутся под углом?
🠊 Рассмотрим пример относительной скорости, который возникает, когда два объекта, A и B, движутся под углом со скоростями Va и Vb.
&
Диагональ даст нам относительную скорость, если мы построим параллелограмм, как показано на рисунке. В результате величина диагонального вектора параллелограмма или относительная скорость с использованием закона косинусов составляет:
Но Cos(180°-𝛳) = -Cos𝛳
Когда два объекта движутся под углом, приведенное выше уравнение дает нам их относительную скорость. Мы также можем вывести случай того же направления и случай противоположного направления из этого уравнения, изменив значение угла на 0° и 180° соответственно.
Однако, как показано на изображении, если вектор относительной скорости Vab образует угол ꞵ со скоростью объекта A, то
Но Sin(180°-𝛳) = Sin𝛳
Или,
Важность относительной скорости:
Важность относительной скорости резюмируется ниже:
- Рассчитать скорость звезд и астероидов относительно Земли.
- Для измерения расстояния между любыми двумя объектами в пространстве.
- Чтобы запустить ракету.
- Для определения скорости любого объекта.
- Это помогает нам, когда объект движется через жидкость.
Проблемы, связанные с относительной скоростью:
1. Автомобиль, едущий по шоссе со скоростью 110 км/ч, проезжает мимо автобуса, идущего со скоростью 85 км/ч. Какова скорость автомобиля с точки зрения пассажира автобуса?
Данный:
Скорость автомобиля Vc = 110 км/ч
Скорость автобуса Vb = 85 км/ч
Найти:
Относительная скорость автомобиля относительно автобуса Vcb знак равно
Решение:
Поскольку автомобиль и автобус едут в одном направлении, относительная скорость автомобиля с точки зрения пассажира автобуса равна:
Vcb V =c – Vb = (110 -85)км/ч = 25 км/ч
Таким образом, скорость автомобиля с точки зрения пассажира автобуса составляет 25 км/ч.
2. Две машины, находящиеся на некотором расстоянии друг от друга, начинают двигаться навстречу друг другу со скоростями 150 м/с и 200 м/с по прямой дороге. С какой скоростью они приближаются друг к другу?
Данный:
Скорость автомобиля 1 В1 = 150 м / с
Скорость автомобиля 2 В2 = 200 м / с
Найти:
Относительная скорость вагона 1 относительно вагона 2 V12 знак равно
Относительная скорость вагона 2 относительно вагона 1 V21 знак равно
Решение:
Так как оба автомобиля едут в противоположном направлении, относительная скорость:
V12 V =1 + V2 = (150 + 200) м/с = 350 м/с
Кроме того,
V21 V =1 + V2 = (150 + 200) м/с = 350 м/с
В результате два автомобиля движутся навстречу друг другу с относительной скоростью 350 м/с.
Резюме:
- Скорость одного объекта по отношению к другому объекту просто называется относительной скоростью этих двух объектов.
- Рассмотрим два объекта, которые движутся в одном направлении. В этой ситуации величина относительной скорости одного объекта по отношению к другому будет равна разнице в величине их скоростей.
- Если два объекта движутся в одном направлении и с одинаковыми скоростями, их относительная скорость будет ноль.
- Предположим, что любые два объекта движутся в противоположном направлении. В этом случае величина относительной скорости одного объекта по отношению к другому окажется суммой величины их скоростей.
Содержание:
- Сложное движение точки
- Абсолютный, относительный и переносной движения точки
- Теорема о сложении скоростей в сложном движении точки
- Теорема о сложении ускоренного в сложном движении точки (Теорема Кориолиса *)
- Кориолисово ускорения
- Правило Жуковского
- Примеры решения задач на сложное движение точки
- Сложное движение точки и решение задач
- Порядок решения задач на сложное движение точки
- Примеры решения задач
- Задание темы К4 (сложное движение точки)
- Пример решения задания темы К4
- Сложное движение точки образцы и примеры
- Относительное, переносное и абсолютное движение точки
- Относительные, переносные и абсолютные скорости и ускорение
- Сложение скоростей и ускорений при сложном движении точки
- Примеры решения задач
- Абсолютное, относительное и переносное движение точки
- Центральная операция кинематики и динамики. Абсолютная и относительная производные по времени от вектора функции
- Теорема о сложении скоростей
- Теорема о сложении ускорений
- Вращательное и осевое ускорение в случае вращения тела вокруг неподвижной оси
- Ускорение Кориолиса
- Случаи превращения в ноль ускорения Кориолиса
- Физические причины возникновения ускорения Кориолиса
- Сложное движение материальной точки. Относительное, переносное и абсолютное движение материальной точки
- Теорема о сложении скоростей в сложном движении материальной точки
- Теорема Кориолиса
- Модуль, направление и физические причины возникновения ускорения Кориолиса
- Методика решения задач на сложное движение материальной точки
Сложное движение точки – это такое движение, при котором точка (тело) одновременно участвует в двух или нескольких движениях. Примером сложного движения могут служить: движение пассажира. перемещающегося в вагоне движущегося поезда; движение человека, перемещающегося по лестнице движущегося эскалатора.
На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.
Сложное движение точки
Сложное движение точки – это такое движение, при котором точка участвует одновременно в двух или нескольких движениях. Примеры сложного движения точки (тела): лодка, переплывающая реку; человек, идущий по движущемуся эскалатору; камень подвижной кулисы, поршень качающегося цилиндра; шары центробежного регулятора Уатта. Для описания сложного движения точки или для представления движения в виде сложного используются неподвижная система отсчета, связанная с каким-либо условно неподвижным телом, например, с Землей, и подвижная система отсчета, связанная с каким-либо движущимся телом.
Абсолютный, относительный и переносной движения точки
В разделе 2 изучалось движение точки по отношению к системе координат (системы отсчета), которую считали условно неподвижной. В то же время, рассматривая многие задачи механики, целесообразнее, а в некоторых случаях просто необходимо, проводить исследования движения точки одновременно по отношению в двух (или более) систем отсчета, из которых одна считается неподвижной, а другая (другие) движется определенным образом по отношению к ней.
Движение точки по отношению к нескольким системам отсчета называется сложным.
Например, в сложном движении находятся поршень двигателя движущегося автомобиля; груз, который поднимается краном, одновременно перемещается вдоль направляющих и поворачивается вокруг своей вертикальной оси; движение человека по вагону подвижного состава.
В этом разделе будем рассматривать движение точки относительно двух систем отсчета.
Рассмотрим движущееся тело А, которое в отдельных случаях будем называть переносной средой, в отношении которого движется точка М, которая не принадлежит телу (рис. 7.1). С телом А неизменно свяжем систему координат которая движется относительно другой системы которую условно считаем неподвижной.
Система координат называется подвижной системой отсчета, а система – неподвижной системе отсчета. Заметим, что неподвижную систему отсчета очень часто связывают с поверхностью Земли или неподвижными объектами на ней.
Поскольку точка М движется относительно двух систем отсчета, то ее движение, по определению, будет сложным. Введем основные понятия и обозначения в случае сложного движения точки.
Движение точки М по отношению к неподвижной системе отсчета называется абсолютным движением. Уравнения абсолютного движения точки можно записать в виде:
Траектория, скорость и ускорение точки в абсолютном движении называются абсолютной траекторией, скоростью и ускорением точки. Абсолютные скорость и ускорение будем обозначать и
Движение точки М относительно подвижной системы отсчета называется
относительным движением точки, а траектория, скорость и ускорение – относительной траекторией, скоростью и ускорением. Относительные скорость и ускорение обозначают и (от латинского relativus – относительный). Уравнения относительного движения точки имеют вид:
Движение подвижной системы отсчета (а значит и тела А) относительно неподвижной
является для точки М переносным движением. Скорость и ускорение той точки тела А, с которой в данный момент времени совпадает движущаяся точка М, называется соответственно переносной скоростью и переносным ускорением точки в этот момент. Переносная скорость и ускорение обозначаются и (от латинского emporter – переносить).
В приведенном выше примере о человеке, что перемещается в вагоне подвижного состава, с вагоном можно связать подвижную систему координат, а с поверхностью Земли – неподвижную. Тогда движение вагона будет переносным, движение человека относительно вагона – относительным, а движение человека относительно поверхности
Земли – абсолютным. Переносной скоростью и переносным ускорением человека будет скорость и ускорение той точки вагона, в которой в заданный момент находится человек.
Основная задача кинематики сложного движения точки заключается в том, чтобы, зная кинематические характеристики относительного и переносного движений, найти соответствующие им характеристики абсолютного движения.
Теорема о сложении скоростей в сложном движении точки
Теорема. В сложном движении точки ее абсолютная скорость равна векторной сумме относительной и переносной скоростей.
Доказательство. Для доказательства рассмотрим движение точки М (рис. 7.1) относительно подвижной системы отсчета связанной с телом А. Для общего случая, движение тела А рассмотрим как движение свободного твердого тела. Следовательно, точка М находится одновременно в двух движениях: относительном – относительно тела А и переносном – вместе с телом. Абсолютным движением точки М будет ее движение относительно неподвижной системы отсчета Напомним, что поскольку переносным движением является свободное движение твердого тела, то его можно рассматривать, согласно § 6.1 раздела 6, как совокупность поступательного движения вместе с полюсом (Точка ) и сферического вокруг полюса. Сферическую составляющую в каждый момент времени можно заменить (§ 5.1) вращением тела, а значит и подвижной системы координат вокруг мгновенной оси проходящей через
точку с угловой скоростью переносного движения
Положение точки М в подвижной системе координат определяется радиусом-вектором в неподвижной – радиусом-вектором а положение начала подвижной системы координат (точка ) относительно начала О неподвижной – радиусом-вектором Во время движения точки М между радиусами-векторами и согласно рис. 7.1 справедлива зависимость
Если координаты точки М в подвижной системе отсчета обозначить через а орты осей этой системы – то
и тогда
Абсолютная скорость точки М равна производной по времени от радиусавекторачто определяет ее положение в абсолютном движении. дифференцируя зависимость (7.5) и учитывая, что ортыменяют свое направление в пространстве, получим
Изменение направлений ортов происходит от вращения осей подвижной системы отсчета вокруг мгновенной оси с угловой скоростью Поэтому производные по времени от единичных ортов можно рассматривать как скорости концов этих ортов от этого вращения. Согласно формуле (3.17) раздела 3 запишем
После подстановки (7,7) в (7.6) и преобразований с учетом зависимости (7.7), получим
гдескорость точки начала подвижной системы координат.
Зависимость (7.8) определяет вектор абсолютной скорости точки М. Проведем ее анализ.
Поскольку в последних трех слагаемых зависимости (7.8) являются производные по времени от соответствующих уравнений относительного движения точки М (7.2), то согласно с (2.18) они являются проекциями вектора относительной скорости точки на оси
подвижной системы координат
а сумма трех слагаемых выражает вектор относительной скорости точки М
Покажем, что первые две слагаемых зависимости (7.8) определяют вектор переносной скорости точки М. Действительно, переносная скорость точки, по определению, это скорость точки, неизменно связанной с подвижной системой отсчета, с которой в данный момент времени совпадает движущаяся точка М. Такой точкой в нашем случае является точка М тела А, находящегося в свободном движении. А по формуле (6.3) скорость этой точки равна сумме скорости полюса и вращательной скорости вокруг мгновенной
оси то есть
Учитывая (7.9) и (7.10), зависимость (7.8) перепишем в виде
то есть абсолютная скорость точки равна векторной сумме переносной и относительной скоростей. Теорема доказана.
Следует заметить, что в случае, когда переносным движением является движение свободного твердого тела, то переносная скорость сама определяется диагональю
параллелограмма, построенного на векторах скорости полюса и скорости точки от вращения вокруг него Если же переносное движение поступательное, то зависимость (7.10) принимает вид
В случае вращательного переносного движения где – вектор, проведенный из любой точки на оси вращения к точке М.
Исходя из того, что в общем случае абсолютная скорость точки М определяется диагональю параллелограмма, построенного на векторах и модуль абсолютной скорости точки можно получить по формуле
Замечания. Если точка М находится в n движениях, то абсолютная скорость точки М равна векторной сумме векторов скоростей составляющих движений
Теорема о сложении ускоренного в сложном движении точки (Теорема Кориолиса *)
Теорема. В сложном движении точки ее абсолютное ускорение равно векторной сумме переносного, относительного и кориолисового ускоренний.
Доказательство. Вектор абсолютного ускорения точки М равна
и для его определения продифференцируем зависимость (7.6) по времени.
После возведения соответствующих членов, получим
Учитывая формулы (7.7),
Превратим зависимость (7.14), используя зависимости (7.5), (7.7), (7.9) и (7.15). Получим формулу, выражающую вектор абсолютного ускорения точки М
где ускорения начала подвижной системы координат.
Проведем анализ зависимости (7.16).
Учитывая, что переносным движением в нашем случае является движение свободного твердого тела, то соответственно формуле (6.10) первые три слагаемых формулы (7.16) является вектором переносного ускорения точки
Поскольку в выраженииесть вторые производные по времени от соответствующих уравнений относительного движения (7.2), то согласно (2.34) это выражение является вектором относительного ускорения точки
Итак, мы установили механический смысл первых шести слагаемых зависимостях (7.16). Но, как видим, в формулу для вектора абсолютного ускорения точки М входит еще одно слагаемое.
Выражение
называется вектором кориолисового или поворотного ускорения точки М.
Подставляя формулы (7.17), (7.18) и (7.19) в (7.16), получим
Теорема доказана.
В случае поступательного переносного движения а потому переносное ускорение точки М равна ускорению начала подвижной системы отсчета, то есть
И одинаковое для всех точек переносного среды. Кроме этого, кориолисово ускорения в этом
случае также равна нулю и зависимость (7.20) принимает вид
Замечания. Относительные скорость и ускорение определяются в относительной системе отсчета по правилам кинематики точки: по координатного способа – через проекции на оси декартовой системы координат, как вторые производные от уравнений относительного движения точки (7.2) при натуральном способа – через проекции на оси натурального трехгранника относительной траектории.
Переносная скорость и ускорение определяются методами кинематики твердого тела. Если система движется поступательно или вращается вокруг неподвижной оси, то используются методы раздела 3. В случае плоского движения переносного среды следует применить правила раздела 4, а для более сложных движений (сферический движение, движение свободного твердого тела) необходимо использовать методы, изложенные в
разделах 5 и 6. Методы определения кориолисового ускорения рассмотрены ниже.
Кориолисово ускорения
Кориолисовым ускорением называется составляющая абсолютного ускорения точки в ее сложном движении, равна удвоенному векторном произведения вектора переносной угловой скорости на вектор относительной скорости этой точки.
В начале выясним физические причины появления кориолисового ускорения. Как известно, вектор ускорения характеризует изменение вектора скорости как по величине, так и по направлению. Так, переносное ускорение характеризует изменение переносной скорости, а относительное -относительной скорости в соответствующих движениях точки М. Какие же изменения и которых кинематических характеристик движения точки, при ее сложном движении, характеризует кориолисово ускорения? Для ответа на этот вопрос рассмотрим движение точки М, равномерно перемещается вдоль радиуса платформы, которая равномерно вращается вокруг оси, перпендикулярной к плоскости платформы (рис. 7.2).
В этом случае переносным движением будет вращения платформы с
относительным движением – прямолинейное движение точки вдоль радиуса
с
Пусть в момент времени точка занимала положение М, для которого векторы
переносной и относительной скоростей и За промежуток времени платформа вернулась на некоторый угол а точка переместилась из положенияи в
момент времени векторы переносной и относительной скоростей будут соответственно
Поскольку относительное движение равномерное прямолинейный, то относительное ускорение то есть за промежуток времени вектор должен не измениться, а быть постоянным. Однако, как видно из рисунка, за время вектор относительной
скорости изменил свое направление от Это изменение вектора относительной
скорости состоялась за счет переносного движения.
Учитывая, что переносное движение – равномерное вращениеи то за промежуток времени не должна состояться изменение величины переносной скорости (это изменение характеризует вращательное ускорение, которое в нашем случае равна нулю 0). Но, как видно из рис. 7.2, величина переносной скорости меняется от Очевидно, что изменение вызвано перемещением точки с положения которое произошло за счет относительного движения точки.
Итак, появление кориолисового ускорения обусловлена взаимным влиянием переносного и относительных движений.
Ускорение Кориолиса характеризует изменение направления относительной скорости, обусловленной переносным движением, и величины переносной скорости за счет относительного движения.
Модуль кориолисового ускорения, исходя из (7.19), равна
Рассмотрим случаи отсутствия кориолисового ускорения точки.
Из формулы (7.22) следует, что если:
1) то есть, когда переносное движение поступательное или угловая скорость переносного вращения равна нулю (в моменты, когда направление вращательного движения меняется на противоположный)
2) то есть в те моменты времени, когда относительная скорость равна нулю (например, в моменты времени, когда вектор меняет свое направление на противоположный).
3)есть, когда векторы и коллинеарны (параллельные).
Направление вектора кориолисового ускорения определяется согласно правилу векторного произведения двух векторов Во время практического решения задач целесообразно применять правило Жуковского.
Правило Жуковского
Чтобы найти направление кориолисового ускорения, необходимо спроектировать вектор относительной скорости на плоскость П, перпендикулярную оси переносного вращения, и вернуть эту проекцию на угол в сторону переносного вращения (рис. 7.3).
Наличием кориолисового ускорения объясняются различные явления, которые происходят на поверхности Земли вследствие ее вращения. так замечено, что для рек, текущих в
северном полушарии, даже на прямолинейных участках, подмываются больше правы, чем левые берега; при аналогичных условиях на железнодорожных дорогах происходит интенсивнее износ правых рельсов колеи по сравнению с левыми. Все эти явления объясняются появлением кориолисова силы инерции, направленной в сторону, противоположную кориолисового ускорению, о чем пойдет речь в части «Динамика».
Примеры решения задач на сложное движение точки
Задача 1. Тележка А мостового крана, перемещает груз С в горизонтальной плоскости, движется по закону в метрах, -в секундах). Груз С при этом колеблется на подвесе длиной по закону – в радианах, – в секундах). Найти абсолютные скорость и ускорение груза С в момент времени
Решение. Рассмотрим движение груза С, как материальной точки, находится в сложном движении. выберем неподвижную и подвижную системы координат, причем последнюю свяжем с подвижным тележкой (рис. 7.5). Тогда абсолютным движением груза С будет его движение относительно системы переносным – движение подвижной системы относительно неподвижной или, что одно и тоже, поступательное движение тележки, а относительным движением – колебания груза на подвесе (криволинейное движение
точки С по кругу).
Для определения абсолютной скорости груза используем зависимость (7.11)
Чтобы определить переносную скорость, условно остановим относительное движение груза.
Тогда движение системы тележка-груз на подвесе рассматриваем как поступательное движение одного тела, происходит по закону
Переносная скорость определится
Если Векторнаправленный параллельно оси
Чтобы найти относительную скорость груза, условно остановим переносное движение и тогда относительную скорость подсчитаем как скорость точки С при вращении вокруг точки (криволинейное движение точки по окружности).
где – относительная угловая скорость, в нашем случае
При
Знак минус показывает, что вращение в данный момент времени происходит против положительного направления отсчета угла φ, то есть по часовой стрелки.
Итак,
Вектор напрямлений перпендикулярно до в сторону напрямку кутової швидкості.
Модуль абсолютной скорости груза С определим по зависимости (7.12)
где α – угол между векторами и
При
Тогда
Для определения абсолютного ускорения груза С используем зависимость (7.20)
Определим составляющие абсолютного ускорения груза. Методика определение переносного и относительного ускоренного аналогична определения переносной и относительной скоростей. переносное ускорение
Знаки и одинаковые, поэтому вектор совпадает по направлению с
Относительное ускорение точки, при ее движении по кругу, равна
Касательное ускорение
где относительное угловое ускорение.
При
Поскольку знаки и одинаковые, то вращение ускоренное, и
совпадает по направлению с
Тогда
Вектор совпадает по направлению с вектором
Нормальное ускорение точки в относительном движении определится зависимостью
и при
Вектор направленный по от точки С до точки
В этой задаче переносное движение является поступательным, так кориолисово ускорения равна нулю Величину абсолютного ускорения груза найдем по его проекциями на оси неподвижной системы координат, учитывая, что при
Проекции абсолютного ускорения груза будут такими
Тогда модуль абсолютного ускорения груза С будет равняться
Задача 2. Прямоугольный треугольник АВС вращается вокруг своего катета АС ривносповильнено с угловым ускорением при начальной угловой скорости По гипотенузе АВ движется точка М по закону в сантиметрах, t – в секундах). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени (рис. 7.6).
Решение. Поскольку точка М одновременно находится в двух движениях, то
ее движение рассматриваем как сложный.
Выберем неподвижную и подвижнуюсистемы координат (рис. 7.7).
Подвижная система связана с треугольником, вращающийся (на рис. 7.7 показана только ось тогда переносним рухом буде обертання трикутника навколо катета АС, відносним — прямолінійний рух точки вздовж катета АВ за законом
Абсолютная скорость точки М определится согласно (7.11)
Переносную скорость точки М определим как скорость той точки гипотенузы АВ треугольника, вращающийся с которой в данный момент времени совпадает подвижная точка М. Определим положение точки М на гипотенузе АВ при
Переносная скорость равна
где DM – короткая расстояние от точки М до оси вращения АС; угловая скорость вращения треугольника АВС.
Тогда
Поскольку траектории переносного движения точки М в данный момент времени
является окружность радиуса DM, то вектор будет направлен по касательной к
круга в сторону вращения. Если плоскость треугольника АВС при совместить с плоскостью то вектор Относительная скорость точки М определится методами кинематики точки и будет равняться
и при
Вектор направлен по гипотенузе АВ в сторону увеличения S.
Поскольку угол между векторами и равна То модуль абсолютной
скорости будет равняться
В случае непоступального переносного движения абсолютное ускорение точки М в сложном движении по формуле (7.20) будет равняться
Переносное движение является вращательным, так переносное ускорение точки М в соответствии с (3.15) определится по формуле
Вектор направлен к оси вращения треугольника вдоль радиуса MD, а вектор – перпендикулярно к в сторону дуговой стрелки углового ускорения которое противоположное поскольку вращение замедлено.
При прямолинейном относительном движении относительно ускорения точки М имеет только касательную составляющую, равную
векторы и присовпадают по направлению.
Модуль кориолисового ускорения определится по зависимости (7.23)
Согласно принятому направлением вращения вектор будет направлен по оси вращения в сторону положительного направления оси Поэтому угол между и равна и при кориолисово ускорения будет равняться
Вектор согласно правилу Жуковского, совпадает по направлению с вектором
Для нахождения модуля абсолютного ускорения точки М воспользуемся методом проекций. Для этого введем вспомогательную систему координат оси которой направлены соответственно по касательной к переносной траектории, по радиусу MD и параллельно оси вращения (Рис. 7.7).
тогда:
Модуль абсолютного ускорения точки М
Сложное движение точки и решение задач
Краткие сведения по теории:
Характер движения существенно зависит от того, в какой системе отсчета (подвижной или неподвижной) рассматривается это движение.
Движение точки относительно неподвижной системы отсчета называется абсолютным.
Движение точки по отношению к подвижной системе отсчета называется относительным.
Движение, которое имеет подвижная система отсчета со всеми неизменно связанными с ней точками пространства по отношению к условно неподвижной системы отсчета,
называется переносным.
Каждое из этих движений характеризуется своими скоростями и ускорениями.
В соответствии с законами сложения скоростей:
и ускорений:
где абсолютные скорость и ускорение подвижной точки;
переносные скорость и ускорение подвижной точки;
относительные скорость и ускорение подвижной точки;
Кориолисовое ускорение.
Величина Корриолисового ускорения определяется по формуле:
где угловая скорость переносного движения;
угол между векторами и
Вектор Корриолисового ускорения направлен перпендикулярно к плоскости, в которой лежат векторы угловой скорости и относительной скорости в ту сторону, откуда наблюдатель видит наименьший поворот вектора к вектору против движения часовой стрелки.
Поскольку в случае плоского движения тела угол между векторами и равняется то:
При плоском движении направление можно определить по правилу Жуковского Н.Е.: на направление Кориолисового ускорения укажет вектор относительной скорости если его повернуть в плоскости расположения на в сторону переносной угловой скорости
В случае, если переносное движение является поступательным
Если переносные и относительные движения являются криволинейными, переносными и относительными ускорениями можно изобразить в виде геометрических сумм соответствующих нормальных и касательных ускорений:
Порядок решения задач на сложное движение точки
При решении задач на сложное движение точки рекомендуется придерживаться такой последовательности:
1. Разложить движение точки на составляющие, определить абсолютное, относительное и переносное движения.
2. Выбрать две системы координат: абсолютную (неподвижную) и относительную (подвижную).
3. Мысленно остановить переносное движение, определить скорость и ускорение точки в относительном движении.
4. Мысленно остановить относительное движение, определить угловую скорость переносного движения, скорость и ускорение точки в переносном движении.
5. По известным угловым скоростям переносного движения и скоростью точки в относительном движении найти величину и направление кориолисового ускорения точки.
6. Используя метод проекций, определить проекции абсолютного ускорения и абсолютной скорости на оси неподвижной системы координат.
7. По определенным проекциям, найти модули и направления абсолютной скорости и абсолютного ускорения.
Примеры решения задач
Задача 1
Диск вращается вокруг оси, перпендикулярной к его плоскости, против хода часовой стрелки с угловой скоростью в/c. По хорде диска от точки K к L движется точка M.
Определить модуль и направление корриолисового ускорения точки M в изображенном на рис. 1 положении, если относительная скорость
Решение. Точка M движется в плоскости диска которая перпендикулярна к оси вращения, то есть угол между векторами и составляет
Учитывая модуль ускорения Кориолиса равняется:
Поскольку вектор относительной скорости находится в плоскости перпендикулярной к оси вращения, то для определения направления ускорения Кориолиса согласно правилу
Жуковского надо повернуть вектор по направлению угловой скорости переносного движения на угол (Рисс.1).
Задача 2
Определить модуль и направление корриолисового ускорения точки M, которая движется по производной ВN кругового конуса от вершины В к точке N. Конус вращается вокруг своей оси с угловой скоростью в/с. в направлении. показанном на рисунке, угол наклона производной к оси конуса относительная скорость точки
Решение. Отложим вектор угловой скорости переносного вращательного движения по оси вращения в сторону, с которой вращение видно против хода часовой стрелки. Относительную скорость направим от точки M до точки N. Тогда угол между
векторами и (Рис.1) составит:
Модуль ускорения Кориолиса точки M равен:
Чтобы найти направление ускорения Кориолиса (рис.1), спроектируем вектор относительной скорости на плоскость S, перпендикулярную оси вращения конуса.
Проекция относительной скорости направленная по прямой МК, которая является продолжением радиуса СМ.
Повернув проекцию в направлении вращения конуса на угол устанавливаем, что вектор кориолисового ускорения направлен по касательной к кругу радиусом СМ в сторону вращения конуса.
Задача 3
По хорде АВ диска, что вращается от точки А до точки В (рис.1) движется точка М, согласно уравнению угол поворота диска изменяется по закону
Определить абсолютные скорости и ускорение точки М в момент времени, когда она находится на расстоянии от оси вращения диска (рис.1).
Решение. В данной задачи переносным движением будет вращение диска по закону
и относительным – движение точки по хорде АВ по закону
Запишем уравнение для определения абсолютной скорости точки М:
Для определения относительной скорости остановим переносное вращение диска и будем рассматривать движение точки по отношению к неподвижному диску.
Поскольку закон относительного движения величина относительной скорости определяется как первая производная от пути по времени:
Вектор относительной скорости направлен по хорде АВ (рис. 1) от точки А до точки В.
Переносной скоростью точки М будет скорость той точки диска, с которой в данный момент совпадает точка М.
Из условия задачи следует, что точка М в данный момент времени находится посередине хорды АВ на расстоянии от оси вращения диска.
Переносная скорость вращающегося движения определяется по формуле:
где – угловая скорость переносного вращательного движения.
Угловую скорость переносного вращательного движения найдем как первую производную от угла поворота по времени:
в/с.
Таким образом, переносная скорость вращательного движения равна:
Вектор переносной скорости направлен перпендикулярно радиусу OM в сторону вращения диска.
Поскольку векторы и направленны вдоль одной прямой в разные стороны (рис. 1), то для определения абсолютной скорости от операции векторного сложения скоростей можно перейти к их алгебраическому сложению.
Тогда:
В зависимости от абсолютных значений скоростей и вектор будет направлен или в сторону или в сторона
Определить абсолютное ускорение точки M. Поскольку переносное движение является вращательным, то абсолютное ускорение точки равно:
Модуль относительного ускорения определим как производную от относительной скорости по времени:
Направленный вектор вдоль хорды AB от точки A до точки B (рис.2).
Переносное ускорение точки диска, которая совпадает с точкой M, учитывая, что она движется по кругу радиусом h, состоит из переносного тангенциального (касательного) ускорения и переносного нормального ускорения
Вычислим модули нормального и тангенциального ускорений:
где угловое ускорение переносного вращательного движения.
Переносное нормальное ускорение направлено вдоль радиуса к центру вращения O (рис.2).
Поскольку движение точки M происходит в плоскости, перпендикулярной оси вращения, то ускорение Кориолиса определяется из формулы:
Для определения направления ускорения Кориолиса (рис.2) необходимо вектор относительной скорости повернуть на в сторону угловой скорости
переносного вращательного движения, то есть против хода часовой стрелки.
Для определения величины и направления абсолютного ускорения сначала добавим векторы и которые направлены вдоль одной прямой в противоположные стороны.
Найдена векторная сумма направлена перпендикулярно к вектору и по модулю равняется
Таким образом, абсолютное ускорение точки M равняется сумме векторов:
Поскольку вектор перпендикулярный к вектору вектор будет изображаться диагональю прямоугольника со сторонами и (рис.2).
Модуль абсолютного ускорения равняется:
Ответ:
Задание темы К4 (сложное движение точки)
Вдоль стороны AB (см. задачу К3 и рис. К4.1) движется ползун 2, шарнирно
соединённый со стержнем EK, который движется в неподвижных направляющих параллельно оси Точка E разделяет сторону AB в пропорции, которую указано в таблице К5 коэффициентом пропорциональности
Определить путем построения планов скоростей и ускорений по известным из задачи К3 кинематическим характеристикам движения фигуры АВС абсолютные скорости и
ускорение точек Е и К.
Пример решения задания темы К4
Изобразим на стороне AB тела 1 (рис.К4.2, а) ползун 2, который соединен шарниром Е со стержнем 3. Ползун 2 может двигаться поступательно по стороне AB, а стержень
3 – поступательно в вертикальных направляющих. Положение шарнира Е на стороне AB определяем по заданному коэффициенту пропорциональности
1. Анализ движения стержня ЕК
Рассмотрим точку принадлежащую одновременно ползуну 2 и стержню 3. Эта точка осуществляет сложное движение, двигаясь как по направляющей AB, так и вместе с фигурой ABC .
Очевидно, скорость и ускорение точки в ее поступательном движении вместе со стержнем ЕК относительно неподвижной опоры (которое видит неподвижный наблюдатель) следует считать абсолютным. Обозначим их соответственно и
Тогда движение точки ползуна 2 вдоль направляющей AB будет относительным. Скорость и ускорение точки в относительном движении направлены вдоль стороны AB, поскольку ползун движется относительно стержня поступательно.
Одновременно ползун 2 движется вместе с фигурой ABC . Это движение для точки
является переносным. Переносные скорость и ускорение следует определить как скорость и ускорение той точки фигуры ABC, с которой в данный момент времени совпадает точка ползуна 2.
2. Определение переносной, абсолютной и относительной скорости точки Е2
Приняв точку A тела 1, осуществляющую плоское движение, за полюс (рис. К4.2, б), определим скорость точки стороны AB используя свойство сходства фигур
ABС тела 1 и abc плана скоростей, в соответствии с какой:
Из этой пропорции определим отрезок
Отрезок откладываем на стороне ab фигуры abc плана скоростей (рис.К4.2, б) в направлении от точки “a” до точки “b”. Величине переносной скорости ползуна 2 на
плане будет соответствовать отрезок
Запишем уравнение для абсолютной скорости точки ползуна 2:
В этом уравнении нам известны:
- величина и направление переносной скорости (из плана скоростей);
- направление относительной скорости (вдоль AB), поскольку ползун 2 движется относительно стержня AB поступательно;
- направление абсолютной скорости (вдоль EК), поскольку ползун 3 движется поступательно в вертикальных направляющих.
Для решения уравнения (2) воспользуемся планом скоростей (рис.К4.2, б). Поскольку согласно уравнению до вектора необходимо добавить вектор то с точки
проведем прямую параллельную к AB, а с полюса проведем направление абсолютной скорости вертикальную прямую. Точка пересечения этих прямых “к” и будет решением уравнения (2), а отрезок будет изображать
в масштабе абсолютную скорость точек и К:
3. Определение переносного и абсолютного ускорения точки Е2
Определить переносное ускорение точки ползуна 2.
Из условия сходства фигур ABС тела 1 и abc плана ускорений (рис.К4.2,в) следует, что точка (конец вектора ускорения ) на плане ускорений будет лежать на отрезке ab. При этом расстояние может быть найдено из пропорции (1). Поскольку на плане
ускорений то:
Тогда отрезок будет изображать переносное ускорение точки
в масштабе плана ускорений
Запишем векторное уравнение для абсолютного ускорения для точки ползуна 2:
Определим сначала величину и направление Кориолисового ускорения.
Поскольку движение происходит в плоскости то есть угол между векторами относительной скорости и угол переносной скорости равняется то для определения величины воспользуемся формулой (4.4):
Угловая переносная скорость равняется угловой скорости тела 1, то есть
Величину относительной скорости определим из плана скоростей. (рис. К4.2, б). Измерение отрезка который на плане скоростей в масштабе
изображает находим:
Тогда:
Направление Кориолисового ускорения определим по правилу Жуковского Н.Е., для этого вектор относительной скорости что на плане скоростей (рис. К4.2, б) изображается вектором повернем в сторону угловой переносной скорости направление которой показано на рис. К4.2,а, на (рис. К4.2, г).
Таким образом, в уравнении (3) нам известны:
- величина и направление переносного ускорения
- величина и направление Корриолисового ускорения
- направление относительного ускорения (вдоль AB), поскольку ползун 2 движется относительно стержня AB поступательно;
- направление абсолютного ускорения (вдоль EК), поскольку ползун 3 движется поступательно в вертикальных направляющих.
Все это позволяет нам построить многоугольник ускорений в соответствии с уравнением (3) на плане ускорений, или отдельным чертежом. Учитывая, что величины отрезков, которые будут изображать некоторые ускорения, слишком большие и выходят за пределы чертежа, для нахождения абсолютного ускорения точки построим отдельный план ускорений с масштабным коэффициентом:
Сначала из произвольной точки (рис. К4.2, д) за направлением (рис. К4.2, в) отложим вектор который в масштабе будет изображать
До этого вектора в направлении Кориолисового ускорения (рис. К4.2, г) добавим вектор который в масштабе будет изображать
Через конец вектора параллельно AB проведем направление относительного ускорения (перпендикулярно или параллельно AB), а через полюс направление абсолютного ускорения (параллельно ЕК). Точка пересечения “к” этих двух направлений и будет решением уравнения (3), а вектор в масштабе
будет изображать абсолютное ускорение точек К и
Замерив отрезок получим:
Примечание. Поскольку все построения расчетные графических работ по кинематике К1, К3 и К4 рекомендуется выполнять на бумаге форматом А3, то после выполнения данной курсовой работы ее графическая часть будет иметь вид подобный изображенному на с. 188.
Сложное движение точки образцы и примеры
Сложное или составное движение точки – это движение в подвижной системе координат. То есть движение точки описывается в системе координат, которая сама совершает движение относительно неподвижной системы координат.
Относительное, переносное и абсолютное движение точки
При исследовании движения точки выбирают некоторую систему отсчета (темы 1 и 2), относительно которой рассматривают движение точки.
В некоторых случаях приходится рассматривать движение точки относительно двух различных систем отсчета. Например, движение пассажира в поезде можно рассматривать как по отношению к поезду, так и по отношению к Земле.
При этом движение одной и той же точки относительно двух различных систем отсчета будет разным. Например, точка обода колеса движущегося железнодорожного вагона относительно Земли пишет циклоиду, а относительно вагона – окружение.
При рассмотрении движения точки по отношению к двум системам отсчета и система, которая в данной задаче условно принята за неподвижную, называется основной системой отсчета (неподвижной), а система, которая движется относительно основной, называется подвижной системой отсчета.
Движение точки относительно основной системы отсчета называется абсолютным движением, а ее движение относительно подвижной системы отсчета – относительным движением.
Пусть есть две системы координат и и некоторая подвижная точка (рис.3.1).
Выберем систему координат за основную. Тогда движение системы относительно системы будет переносным. Движение точки относительно системы будет относительным, а движение точки относительно системы будет абсолютным.
Надо заметить, что переносным движением является движение не самой точки , а того тела, с которым связана подвижная система координат , тогда как относительное и абсолютное движение является движением самой точки , которое рассматривается соответственно относительно подвижной и основной систем отсчета. В переносном движении подвижная система координат может иметь любой вид движения.
Основная задача этого раздела состоит в том, чтобы по известным относительным и переносным движениям определить абсолютное движение точки (движение точки относительно системы отсчета ).
Выбор основной и подвижной систем отсчета, а соответственно, и разделение движения точки на абсолютное и относительное зависит от постановки конкретной задачи. В большинстве случаев за основную систему отсчета принимают систему, которую связано с Землей.
Относительные, переносные и абсолютные скорости и ускорение
Относительной скоростью точки называется ее скорость в относительном движении, то есть по отношению к подвижной системе отсчета.
Абсолютной скоростью точки называется ее скорость в абсолютном движении, то есть по отношению к основной системе отсчета.
Переносной скоростью называется скорость относительно основной системы отсчета той точки подвижной системы отсчета, с которой в данный момент времени совпадает движущаяся точка.
Аналогично введем понятие относительного, абсолютного и переносного ускорения точки.
Относительным ускорением точки называется ее ускорение в относительном движении, то есть по отношению к подвижной системе отсчета.
Абсолютным ускорением точки называется ее ускорение в абсолютном движении, то есть по отношению к основной системе отсчета.
Переносным ускорением называется ускорение относительно основной системы отсчета той точки подвижной системы отсчета, с которой в данный момент времени совпадает движущаяся точка.
Обратим внимание на то, что переносное движение – это движение всей подвижной системы отсчета, то есть некоторого тела, с которым связана подвижная система координат, а переносная скорость и переносное ускорение – это скорость и ускорение конкретной точки этого тела.
Сложение скоростей и ускорений при сложном движении точки
Зависимость между абсолютной, переносной и относительной скоростями точки определяется теоремой сложения скоростей, согласно которой абсолютная скорость точки равна векторной сумме переносной и относительной скоростей:
(3.1)
где – абсолютная скорость точки;
– относительная скорость точки;
– переносная скорость.
Для определения относительной скорости точки достаточно мысленно остановить переносное движение и найти по правилам кинематики скорость точки относительно системы отсчета, которая была подвижной.
Для определения переносной скорости – достаточно мысленно остановить относительное движение и найти переносную скорость как скорость той точки подвижной системы отсчета, с которой в данный момент времени совпадает движущаяся точка.
Зависимость между абсолютным, относительным и переносным ускорением точки при поступательном движении подвижной системы отсчета выражается векторным уравнением:
(3.2)
где – абсолютное ускорение точки;
– относительное ускорение точки;
– переносное ускорение точки.
Если переносным движением является вращательный, или сложный, то теорема о сложении ускорений приобретает вид:
, (3.3)
где – ускорение Кориолиса (поворотное ускорение точки).
3.4. Ускорение Кориолиса
.
Модуль ускорения Кориолиса равен:
где – угол между векторами и .
Ускорение Кориолиса характеризует:
- изменение модуля и направления переносной скорости точки вследствие ее относительного движения;
- изменение направления относительной скорости точки вследствие вращательного переносного движения.
Ускорение Кориолиса равно нулю в трех случаях:
Направление ускорения Кориолиса определяется как направление вектора векторного произведения .
Пусть точка (рис.3.2) движется со скоростью относительно тела, которое вращается вокруг оси с угловой скоростью . Если построить в точке кроме вектор , то вектор векторного произведения , то есть вектор ускорения Кориолиса , будет направлен перпендикулярно плоскости, в которой лежат векторы и в ту сторону, откуда поворот вектора к вектору относительной скорости на наименьший угол виден против хода часовой стрелки.
Для определения направления ускорения Кориолиса удобно пользоваться правилом Жуковского: чтобы найти направление ускорения Кориолиса надо спроектировать относительную скорость точки на плоскость, перпендикулярную оси переносного вращения, и вернуть в этой плоскости полученную проекцию на в сторону переносного вращения (рис.3.3).
Действительно, полученное направление (рис.3.3) перпендикулярное плоскости треугольника, который образован относительной скоростью и ее проекцией ‘отн, а эта плоскость совпадает с плоскостью векторов и , которой должен быть перпендикулярным вектор ускорения Кориолиса.
Если вектор перпендикулярен , то есть и соответственно
, то величина ускорения Кориолиса будет равна:
. (3.5)
Такой случай возможен, если относительное движение точки происходит в плоскости перпендикулярной оси переносного вращения. В этом случае векторы , и взаимно перпендикулярны (рис. 3.4).
Рассмотрим два примера определения модуля и направления ускорения Кориолиса .
Пример 1. Диск вращается вокруг оси, которая перпендикулярна его плоскости, против хода часовой стрелки с угловой скоростью . По хорде диска от точки к движется точка .
Определить модуль и направление ускорения Кориолиса точки в изображенном на рис. 3.5 положении, если относительная скорость .
Точка движется в плоскости диска которая перпендикулярна оси вращения, то есть угол между векторами и составляет . Учитывая, что , модуль ускорения Кориолиса равен:
Поскольку вектор относительной скорости лежит в плоскости перпендикулярной оси вращения, то для определения направления ускорение Кориолиса согласно правилу Жуковского надо повернуть вектор по направлению угловой скорости переносного движения на угол (рис.3.5).
Пример 2. Определить модуль и направление ускорение Кориолиса точки , которая движется по образующей кругового конуса от вершины к точке . Конус вращается вокруг своей оси с угловой скоростью в направлении, показанном на рис.3.6, угол наклона образующей к оси конуса , относительная скорость точки .
Отложим вектор угловой скорости переносного вращательного движения по оси вращения в сторону, из которой вращения видно против хода часовой стрелки. Относительную скорость направим от точки к точке . Тогда угол между векторами и (рис 3.6) составит:
Модуль ускорения Кориолиса точки равен:
Чтобы найти направление ускорения Кориолиса (рис.3.6), спроектируем вектор относительной скорости на плоскость , которая перпендикулярна оси вращения конуса.
Проекция относительной скорости направлена по прямой , которая является продолжением радиуса .
Если повернуть проекцию в направлении вращения конуса на угол , устанавливаем, что вектор ускорения Кориолиса направлен по касательной к окружности радиусом в сторону вращения конуса.
Примеры решения задач
Задача №1
Клин (рис.3.7) с углом наклона рабочей поверхности , который движется поступательно по горизонтальной поверхности со скоростью , поднимает стержень , который движется в вертикальном направлении.
Найти абсолютную скорость стержня .
Решение. Учитывая, что стержень в вертикальном направлении будет двигаться прямолинейно поступательно, то достаточно определить скорость любой его точки.
Рассмотрим движение точки стержня.
Поскольку точка стержня должна все время касаться клина , то рассмотрим ее движение как сложное – относительным будет движение точки по отношению к клину, а переносным – движение точки вместе с клином.
По отношению к клину точка стержня может двигаться только вдоль рабочей поверхности . Таким образом, относительная скорость будет направлена вдоль .
Клин движется поступательно горизонтальной поверхностью, то есть скорости всех его точек одинаковы. Таким образом, переносная скорость точки стержня, которая совпадает с точкой клина будет равна .
Абсолютную скорость точки стержня определим из векторного уравнения:
(1)
Для решения векторного уравнения (1) построим параллелограмм на векторах и (рис.3.7). При построении надо учесть, что , как диагональ параллелограмма, должна быть направлена вертикально.
Поскольку угол между векторами и прямой, то получим:
Ответ:
Задача № 2
Круг радиусом (рис.3.8) равномерно вращается в своей плоскости вокруг центра по ходу часовой стрелки и делает оборотов в минуту. По кругу равномерно в противоположном направлении движется точка и делает оборотов в минуту.
Найти абсолютное ускорение точки .
Решение. Движение точки рассмотрим как сложное. Переносным движением будет вращение круга вместе с точкой вокруг центра , а относительным – движение точки по кругу.
Абсолютное ускорение точки , учитывая, что переносным будет вращательное движение, равно:
Поскольку переносное движение вращательное, то переносное ускорение точки круга с которой совпадает точка , будет иметь нормальную и тангенциальную составляющую.
Учитывая, что при равномерном вращении угловое ускорение , тангенциальная составляющая переносного ускорения
Величина переносного нормального ускорения определим из формулы:
где – угловая скорость круга.
Направлено это ускорение вдоль радиуса от точки к точке (рис.3.8).
Учитывая то, что точка по кругу радиуса движется равномерно, модуль относительного ускорения будет иметь тоже только одну нормальную составляющую :
где – угловая скорость вращения точки по кругу.
Направлено это ускорение от точки к точке (рис.3.8).
Поскольку точка движется в плоскости, перпендикулярной оси вращения, то ускорение Кориолиса определяется по формуле:
.
Учитывая, что , достанем:
Для определения направления ускорения Кориолиса повернем вектор относительной скорости , который направлен по касательной к кругу, в направлении переносной угловой на (рис.3.8). Таким образом, это ускорение направлено вдоль радиуса от центра вращения .
Поскольку все ускорения направлены вдоль одной прямой, то их можно сложить алгебраически:
,
или с учетом выражений для , и :
Подставив зависимости для угловых скоростей и , получим:
Ответ:
Задача №3
По хорде вращающегося диска от точки к точке движется точка согласно уравнению , угол поворота диска изменяется по закону .
Определить абсолютные скорости и ускорения точки в момент времени, когда она находится на расстоянии от оси вращения диска (рис.3.9).
Решение. В данной задаче переносным движением будет вращение диска по закону , а относительным – движение точки по хорде по закону .
Запишем уравнение для определения абсолютной скорости точки :
Для определения относительной скорости остановим переносное вращение диска и будем рассматривать движение точки по отношению к неподвижному диску. Поскольку закон относительного движения , то величина относительной скорости определяется как первая производная от пути по времени:
Вектор относительной скорости направлен по хорде (рис. 3.9) от точки к точке .
Переносной скоростью точки будет скорость той точки диска, с которой в данный момент совпадает точка .
Из условия задачи вытекает, что точка в данный момент времени находится посередине хорды на расстоянии от оси вращения диска.
Переносная скорость вращательного движения определяется по формулой:
где – угловая скорость переносного вращательного движения.
Угловую скорость переносного вращательного движения найдем как первую производную от угла поворота по времени:
Таким образом, переносная скорость вращательного движения равна:
Вектор переносной скорости направлен перпендикулярно радиусу в сторону вращения диска.
Поскольку векторы и направлены вдоль одной прямой в разные стороны (рис. 3.9), то для определения абсолютной скорости от операции векторного сложения скоростей можно перейти к их алгебраическому сложению.
Тогда:
В зависимости от абсолютных значений скоростей и , вектор будет направлен либо в сторону , либо в сторону .
Определим абсолютное ускорение точки . Поскольку переносное движение является вращательным, то абсолютное ускорение точки равно:
Модуль относительного ускорения определим как производную от относительной скорости по времени:
Направлен вектор вдоль хорды от точки к точке (рис.3.10).
Переносное ускорение точки диска, которая совпадает с точкой , учитывая, что она движется по окружности радиусом , состоит из переносного тангенциального (касательного) ускорения и переносного нормального ускорения :
Вычислим модули нормального и тангенциального ускорений:
где – угловое ускорение переносного вращательного движения.
Переносное нормальное ускорение направлено вдоль радиуса к центру вращения (рис.3.10).
Поскольку движение точки происходит в плоскости, перпендикулярной оси вращения, то ускорение Кориолиса определяется из формулы:
Для определения направления ускорения Кориолиса (рис.3.10) необходимо вектор относительной скорости повернуть на в бок угловой скорости переносного вращательного движения, то есть против хода часовой стрелки.
Для определения величины и направления абсолютного ускорения сначала сложим векторы и , которые направлены вдоль одной прямой в противоположные стороны. Найденная векторная сумма направлена перпендикулярно вектору и по модулю равнa
Таким образом, абсолютное ускорение точки равно сумме векторов:
.
Поскольку вектор от перпендикулярен вектору , то вектор будет изображаться диагональю прямоугольника со сторонами и (рис.3.10).
Модуль абсолютного ускорения будет равен:
Ответ:
Задача №4
В состав механизма Витворта (рис.3.11) входит: кривошип 1, ползун 2 и кулиса 3. Кривошип механизма вращается с постоянной угловой скоростью
Определить скорость и ускорение точки и угловую скорость и угловое ускорение кулисы 3 механизма в положении,
когда:
Решение. Особенность этого механизма заключается в том, что в точке между собой соединяются кривошип 1, ползун 2 и кулиса 3 (рис.3.12).
Пересечение
Кривошип 1 и ползун 2 между собой соединены цилиндрическим шарниром, что позволяет ползуну относительно кривошипа возвращаться, а на кулисе 3 параллельно ее оси сделаны направляющие, по которым ползун 2 может двигаться поступательно.
При повороте кривошипа 1 ползун 2 скользит по кулисе 3 и заставляет ее поворачиваться вокруг точки . Расстояние от точки к точке на кулисе 3 с поворотом кривошипа 1 меняется.
Такой механизм позволяет преобразовать вращательное движение кривошипа в колебательное движение кулисы, если , или в вращательное, с другим законом изменения угловой скорости чем у кривошипа, движение кулисы, если .
Таким образом, в точке механизма (рис.3.12) будем рассматривать три разные точки: , принадлежащая кривошипу 1; – ползуну 2 и – кулисе 3. Все эти точки лежат одна под второй на рис.3.11.
Перед решением задачи в произвольном масштабе построим схему механизма (рис.3.13,а) для заданного положения кривошипа.
Первой определим скорость точки , принадлежащей кривошипу 1, который вращается вокруг точки с угловой скоростью :
Направлена скорость перпендикулярно в сторону вращения кривошипа 1 (рис.3.13, а).
Скорость точки , принадлежащей ползуну 2, который соединен с кривошипом 1 шарниром, равна скорости точки :
Для определения скорости точки кулисы 3, примем движение ползуна 2 за переносное. Тогда кулиса 3 относительно ползуна 2 может двигаться поступательно и скорость точки кулисы 3 относительно точки ползуна 2 будет направлена вдоль направляющих, то есть вдоль .
Запишем уравнение для скоростей при сложном движении точки относительно :
где – переносная скорость точки ползуна, которая в настоящий момент времени совпадает с точкой кулисы. Эта скорость уже определена;
– относительная скорость точки относительно . Направлена эта скорость вдоль ;
– абсолютная скорость точки кулисы 3. Учитывая, что кулиса 3 вращается вокруг неподвижной точки , то эта скорость будет направлена перпендикулярно .
Векторное уравнение (1) решим путем построения плана скоростей.
Поскольку направления скорости в правой и в левой части уравнения (1) известны, то из полюса плана скоростей сначала построим правую часть уравнения, а затем левую.
Согласно правой части уравнения (1) с полюса (рис.3.13,б) откладываем вектор по направлению (рис.3.13, а), который в масштабе будет изображать эту скорость. (Поскольку , то скорости этих точек на плане будут изображаться одним вектором, то есть на плане скоростей точки и совпадают). Через точку проведем линию параллельно , вдоль которой от точки будет направлен вектор, что будет изображать относительную скорость (величина и направление этой скорости неизвестны).
Теперь построим левую часть уравнения (1). Поскольку абсолютная скорость направлена перпендикулярно , то с полюса по этому направлению проводим линию к пересечению в точке с линией . Точка пересечения будет решением векторного уравнения (1).
Вектор на плане скоростей в масштабе изображает абсолютную скорость , а вектор – относительную скорость .
Поскольку на плане скоростей вектор перпендикулярен , а перпендикулярен , то угол между этими векторами равен углу между и на схеме механизма, то есть .
Угол при вершине плана скоростей будет прямым, поскольку линия перпендикулярна , а линия параллельна .
Таким образом треугольник на плане скоростей прямоугольный, с углами при вершинах: и .
Из плана скоростей определяем:
или
или
Учитывая, что кулиса 3 вращается вокруг точки , то для угловой скорости кулисы получим:
где – длина кулисы для этого положения механизма. С (рис.13.3,а):
Поскольку ползун 2 относительно кулисы 3 движется поступательно, то .
Для определения направления угловой скорости предварительно перенесем вектор в точку механизма (рис.3.13, а). Угловая скорость направлена против хода часовой стрелки.
Определим ускорение точек механизма.
Поскольку кривошип 1 вращается вокруг центра с постоянной угловой скоростью , то ускорение точки имеет только нормальную составляющую:
Направлено ускорение точки вдоль кривошипа к центру вращения (рис.3.14, а).
Ускорение точки ползуна 2, учитывая, что кривошип и ползун соединены шарниром, равно ускорению точки :
Для ускорения точки кулисы 3 запишем векторное уравнение для сложного движения точки, учтя при этом, что движение ползуна 2 принято за переносное
где – абсолютное ускорение точки ;
– переносное ускорение точки ползуна, которая в настоящий момент времени совпадает с точкой кулисы;
– ускорение точки относительно , направлено по оси кулисы ;
– ускорение Кориолиса точки .
Поскольку относительное движение происходит в плоскости, перпендикулярной оси вращения ползуна 2, то ускорения Кориолиса определим из формулы:
где – угловая скорость вращательного переносного движения ползуна 2,
– относительная скорость точки относительно ,
Для определения направления ускорения Кориолиса необходимо вектор относительной скорости вернуть на в сторону переносного вращательного движения, то есть в направлении угловой скорости . Направление повернутого вектора (рис.3.13,в), который будет перпендикулярен оси кулисы , соответствует направлению ускорения Кориолиса.
С другой стороны, точка принадлежит кулисе 3, которая вращается вокруг центра . Таким образом, ускорение будет иметь две составляющие:
где – нормальное ускорение точки при ее вращении вокруг точки направлено по оси кулисы от точки к точке (рис.3.14,а) и по модулю равно:
– тангенциальное ускорение точки при ее вращении вокруг точки , направлено перпендикулярно оси кулисы и по модулю равно: .
Решим систему векторных уравнений (2, 3) графически, путем построения плана ускорений.
Первым построим векторное уравнение (2). Из произвольного полюса (рис.3.14,б) отложим направленный отрезок , изображающий ускорение и направлен параллельно линии от точки к точке .
Длину отрезка выберем . Тогда масштабный коэффициент плана ускорений будет равен:
От точки отложим вектор , который изображает ускорение Кориолиса . Направлен этот вектор перпендикулярно оси кулисы по определенному ранее направлению (рис.3.13, в).
Длина вектора равна:
Через конец вектора проводим линию , вдоль которой будет направлен вектор , который будет изображать относительное ускорение . Направление и длина этого вектора неизвестны.
Следующим построим векторное уравнение (3). С полюса отложим вектор , изображающий нормальное ускорение . Направлен этот вектор параллельно оси кулисы от точки к точке и имеет длину:
Через конец вектора проводим линию , вдоль которой будет направлен вектор , который будет изображать тангенциальное ускорение .
Решением системы (2, 3) будет точка пересечения линий и , а вектор будет изображать ускорение .
Из плана ускорений определяем:
Угловое ускорение кулисы 3 и ползуна 2 определим через известное тангенциальное ускорение :
Для определения направления углового ускорения надо перенести в точку механизма тангенциальное ускорение (рис.3.14, а). Угловое ускорение направлено против хода часовой стрелки.
Ответ:
Абсолютное, относительное и переносное движение точки
В кинематике точки, рассматривается движение точки относительно неподвижной системы координат (прямоугольной декартовой или относительно осей натурального трехгранника). Однако часто приходится исследовать движение точки в отношении двух и более систем координат (тел отсчета), из которых одна система координат осуществляет движение относительно другой, условно берется за неподвижную. Например, при изучении роботов-манипуляторов следует вводить несколько систем координат. Итак, предположим, что система координат , неизменно связана с некоторым телом, движется относительно другой системы координат , которая условно взята за неподвижную (рис. 9.1).
Движение точки М относительно неподвижной системы координат называется абсолютным, а относительно подвижной системы координат – относительным. Скорости и ускорения точки, рассматриваемые в отношении данных систем, соответственно называются абсолютными и относительными.
Движение подвижной системы координат (или неизменно связанного с ней тела G) относительно неподвижной системы отсчета , является для подвижной точки переносным движением, то есть это движение той точки подвижной системы координат, с которой в данный момент времени совпадает подвижная точка М. Соответственно скорости и ускорения точки, неизменно связанной с подвижной системой координат, в которой в данный момент времени находится подвижная точка, называются переносными.
Основной задачей сложного движения точки является установление зависимости между кинематическими характеристиками абсолютного, переносного и относительного движений. Уравнениями абсолютного движения точки есть, например, зависимости координат точки М, заданных в неподвижной системе координат, как функции времени:
(9.1)
Аналогично для уравнения относительного движения:
(9.2)
Уравнения (9.1) и (9.2) определяют в параметрической форме в соответствии абсолютную и
относительную траектории. Если уравнение (9.1) и (9.2) известны, то проекции абсолютной и относительной скоростей определяются соответственно как первые производные по времени приведенных функций; тогда вторые производные по времени от этих функций
определяют проекции абсолютного и относительного ускорений. В дальнейшем введем такие обозначения: – абсолютная, относительная и переносная скорости, – абсолютное, относительное и переносное ускорение.
Пример 1. Пусть стержень ОА вращается вокруг неподвижной оси , (рис. 9.2). Вдоль
стержня движется гладкое кольцо, рассматриваемое как материальная точка М. Выясните характер относительного и переносного движений.
Решение. Выберем в точке О начало неподвижной системы координат . Движение точки М в этой системе координат называется абсолютным. Подвижная система координат Oxyz, связана со стержнем, приведена на рис. 9.2. Абсолютное движение точки М происходит в плоскости а относительное вдоль подвижной оси . Для установления характера переносного движения выясним, какое движение, подвижная система координат Oxyz осуществляет по отношению к неподвижной. Согласно условию задачи, ось вращается вокруг оси . Итак, переносным движением здесь является вращательное движение стержня вокруг оси .
Итак, сложное движение точки М (кольца) можно рассматривать как совокупность прямолинейного относительного (вдоль стержня ОА) и вращательного переносного вокруг неподвижной оси Oz вместе со стержнем. Установив характер абсолютного, относительного и переносного движений, можно решать, например, такие задачи:
а) по заданным относительным и переносным движениями определять сложное (абсолютное) движение точки;
б) по заданным сложным движениям точки определить составляющие простых движений.
Центральная операция кинематики и динамики. Абсолютная и относительная
производные по времени от вектора функции
Пусть – система координат, взятая
за неподвижную, a – подвижная система координат, орты которой (рис. 9.3, а).
Рассмотрим произвольную точку М, которая движется относительно как подвижной, так и неподвижной систем координат. Пусть положение этой точки в подвижной системе координат определяется радиусом-вектором в виде:
(9.3)
Установим связь между производными от функции, вычисленными в подвижной и неподвижной системах координат. Для этого сначала найдем производную по времени от вектора в неподвижной системе, которая называется абсолютной производной от вектора . по времени и:
(9.4)
Первые три члена этого выражения представляют собой производную от вектора , вычисленную по предположениям, что орты подвижной системы координат по направлению не меняются, что соответствует вычислению производной в подвижной системе координат. Это выражение называется локальной (относительной) производной и обозначается
(9.5)
Рассмотрим теперь последние три слагаемых в (9.4), которые обозначим через:
(9.6)
Умножив обе части (9.6) скалярно на получим:
(9.7)
Правые части этих выражений являются проекциями вектора на оси подвижной системы координат. Обозначим их через Воспользуемся очевидными соотношениями (рис. 9.3, б):
(9.8)
Продифференцировав их по времени, получим:
(9.9)
Введем обозначения:
(9.10)
Тогда выражения (9.7) с учетом соотношений (9.8)-(9.10) можно записать в форме:
(9.11)
Если ввести на рассмотрение вектор:
(9.12)
то выражение (9.6) можно подать в виде:
(9.13)
Подставив (9.13) и (9.5) в выражение (9.4) получим формулу, которая устанавливает связь между производной не только вектора но и произвольного вектора по времени, вычисленного в неподвижной и подвижной системах координат:
(9.14)
Отметим, что во второй формуле (9.14) указана система координат, в которой вычисляется соответствующая производная.
Здесь вектор to можно рассматривать как угловую скорость вращения подвижной системы координат Oxyz относительно неподвижной Формулу (9.14) называют формулой
Бура. Она имеет следующее содержание: абсолютная производная произвольного вектора по времени:
равна сумме локальной производной и векторному произведению вектора вращения подвижной системы координат на дифференцируемый вектор
Поскольку формула (9.14) может быть распространена на любой вектор, то в дальнейшем будем широко пользоваться ею не только в кинематике, но и в динамике.
Рассмотрим теперь частные случаи.
1. Если система Oxyz неподвижная, то следовательно, то есть
(9.15)
2. Если вектор неподвижный относительно неподвижных осей координат то
(9.16)
3. Если вектор неизменно связанный с системой координат то
(9.17)
Отметим, что в формуле (9.14) не раскрыто пока физического смысла вектора
Полностью он будет установлен в кинематике в разделе “Движение свободного твердого тела”. Сейчас ограничимся рассмотрением некоторых случаев, которые частично отвечают на этот вопрос.
4. Рассмотрим движение подвижной системы координат, считая, что последняя неизменно связана с телом, которое вращается вокруг неподвижной оси, например Тогда и
являются скоростями точек, которые совпадают с концами векторов и и вычисленные относительно неподвижной системы координат, то есть являются скоростями точек неизменной системы, которой является система координат Oxyz. Причем эти скорости имеют направления в соответствии ортов и (рис. 9.3, б). Итак, выражение для скоростей
точек, которые совпадают с концами единичных векторов и , можно записать в виде:
(9.18)
Сравнив эти выражения полученной ранее формуле Эйлера, делаем вывод, что вектор имеет реальный физический смысл.
А именно – это вектор угловой скорости тела, которое вращается вокруг неподвижной оси.
Этот вывод легко обобщается на случай произвольной точки М, положение которой
в подвижной системе координат определяется радиусом-вектором Тогда вектор в выражении (9.14) имеет смысл скорости точки, неизменно связанной с телом, которое вращается в неподвижной системе координат, то есть:
(9.19)
что соответствует формуле (8.23)
5. Если скалярно умножить обе части выражения (9.18) соответственно на и , то
получим:
(9.20)
Левые части этих выражений являются соответственно проекциями вектора на орт и на орт , а правые части имеют значения соответственно и , поскольку
. Итак, проекциями скоростей единичных векторов и являются и
(рис. 9.3, б).
6. Рассмотрим подвижную систему координат и предположим, что она совершает вращательное движение как твердое тело вокруг неподвижной оси , которое определяется углом поворота , который задается относительно положения
(Рис. 9.4). тогда:
(9.21)
где – орты осей
Отсюда получим соотношение, с которыми уже встречались в полярной системе
координат:
(9.22)
Умножив теперь скалярно обе части полученных выражений соответственно на j и
и, будем иметь:
(9.23)
Как видим, производная от угла поворота является ничем иным, как угловой скоростью вращения подвижной системы координат. Таким образом, для одной из компонентов в (9.10) также установлено физический смысл.
7. Пусть подвижная система отсчета осуществляет поступательное движение. Тогда:
Следовательно, и формула (9.14) имеет такую физическую интерпретацию: все точки тела движутся с равными по величине и направлением скоростями, что было установлено нами ранее при изучении поступательного движения тела. Таким образом, для отдельных случаев движения подвижной системы координат Oxyz установлен физический смысл вектора – это вектор угловой скорости тела, или подвижной системы координат Oxyz. Далее будут приведены соответствующее обоснования и для общего случая движений подвижной системы отсчета, неизменно связанной с движением твердого тела.
Теорема о сложении скоростей
Теорема. Абсолютная скорость точки при сложном движении равна векторной сумме относительной и переносной скоростей.
Доказательство. Рассмотрим движение точки М относительно некоторого тела G (рис. 9.1), с которым неизменно связана подвижная система координат Oxyz, которая, в свою очередь, движется относительно условно неподвижной системы координат. Пусть положение точки М в подвижной системе координат определяется радиусом-вектором , в неподвижной – радиусом-вектором , а положение начала О подвижной системы координат относительно неподвижной , – радиусом-вектором . Тогда:
(9.24)
Продифференцировав это выражение в соответствии формуле (9.14):
(9.25)
Здесь индекс отражает то, что вектор характеризует переносное движение. На основании определения абсолютной, относительной и переносной скоростей получим:
(9.26)
С учетом этих обозначений, выражение (9.25) будет иметь следующий вид:
(9.27)
который отражает теорему о распределении скоростей точек при сложном движении. Очевидно, что формула (9.27) отражает правило параллелограмма для сложения скоростей.
Модуль абсолютной скорости на основании теоремы косинусов определяется в виде:
(9.28)
Пример 2. Вдоль хорды АВ (рис. 95) вращающегося диска движется точка М от точки
А к точке В в соответствии с уравнением . Закон вращения диска . Определить абсолютную скорость точки в момент, когда она находится от оси вращения диска на расстоянии
Решение. Движение точки М вдоль хорды подвижного диска относительно. Поэтому относительная скорость и направлена по хорде АВ
Диск вращается вокруг оси, перпендикулярной к его плоскости. Итак, переносное движение диска будет вращательным, поэтому переносная скорость точки М направлена перпендикулярно к ОМ в сторону вращения диска. По теореме о сложении скоростей абсолютная скорость Поскольку
В некоторых задачах кинематики сложного движения точки нужно определить относительную скорость . С формулы (9.27) видно, что:
Итак, чтобы построить вектор относительной скорости, следует добавить вектор абсолютная скорости к вектору, направленному противоположно переносной скорости.
Теорема о сложении ускорений
Теорема Кориолиса. Абсолютное ускорение точки при сложном движении равно
векторной сумме относительного, переносного ускорений и ускорения Кориолиса.
Доказательство. По определению ускорения точки, с учетом (9.27), имеем:
(9.29)
где
(9.30)
С помощью формулы (9.14) для абсолютной производной, определим каждое слагаемое ускорения отдельно, учитывая, что векторы и заданные в подвижной системе
координат Oxyz и поэтому именно на них распространяются формулы (9.14):
(9.31)
)9.32)
Введем обозначения:
(9.33)
Тогда (9.32) перепишем в виде:
(9.34)
где
Введем обозначения в соответствии с определениями абсолютного, относительного и переносного ускорений:
(9.35)
Подставив (9.31) и (9.34) в выражение (9.29), с учетом (9.35), получим:
(9.36)
Последнее слагаемое в этой формуле, который не входит ни в относительное, ни в переносное ускорения, называется поворотным или кориолисовым ускорением :
(9.37)
Окончательно получим:
(9.38)
Теорема доказана.
Заметим, что в ряде случаев может стать полезной формула для определения ускорения, которая непосредственно следует из (9.14):
(9.39)
Отметим, что когда переносное движение подвижной системы координат Oxyz является поступательным , ускорение Кориолиса обращается в ноль. Тогда формула (9.38)
принимает вид:
(9.40)
то есть при поступательном движении абсолютное ускорение точки равно геометрической
сумме относительного и переносного ускорений.
Следовательно, эта формула отражает правило параллелограмма для сложения ускорений в данном случае. В следующих разделах проанализируем выражения для каждой составляющей ускорения более детально.
Вращательное и осевое ускорение в случае вращения тела вокруг неподвижной оси
Проанализируем две составляющие переносного ускорение точки в выражении (9.35) и , обусловленные движением тела относительно полюса О.
Поскольку кинематическое содержание векторов и в общем случае движения тела, а следовательно, подвижной системы координат еще до конца не раскрыто , пока ограничимся рассмотрением только частного случая вращения тела вокруг неподвижной оси (рис. 9.6), для которого физический смысл векторов и полностью определен.
Введем следующие обозначения:
(9.41)
и будем называть ускорение вращательным, а осевым.
Рассмотрим ускорения произвольной точки М, неизменно связанной с телом, вращения вокруг неподвижной оси (рис. 9.6).
В этом случае поэтому ускорения точки М согласно
(9.38), запишем в виде, опустив индекс при и :
(9.42)
Кроме того, ускорение этой же точки, согласно п. 8.3, можно представить в виде векторной суммы нормального и тангенциально ускорений:
(9.43)
Установим связь между составляющими ускорения точки М которые есть в выражениях (9.42) и (9.43). Прежде всего покажем, что составляющая ускорения точки направлена вдоль перпендикуляра MN, который опущен с точки М на ось вращения . Для того чтоб
подчеркнуть это обстоятельство, его называют осевым ускорением. Действительно, если (рис. 9.6) – это радиус-вектор точки М то вектор ее скорости направленный по касательной к траектории (круга) точки, перпендикулярно к плоскости треугольника OMN. Тогда вектор осевого ускорения
(9.44)
будет направлен перпендикулярно к плоскости KLM, которая содержит прямую МК, параллельную оси вращения (рис. 9.6). Итак, вектор направленный вдоль MN. Учитывая, что
(9.45)
получим:
(9.46)
Сравнив последнее выражение с соответствующим выражением (8.27) для нормального ускорения точки, которое всегда направлено по главной нормали к абсолютной траектории с центром кривизны в точке N, которая лежит на оси вращения, получим:
(9.47)
Рассмотрим теперь вторую составляющую ускорения , которую называют вращательным ускорением. Поскольку выполняется равенство (9.47), то с учетом (9.42) и (9.43), получим:
(9.48)
Далее будет показано, что в общем случае движение твердого тела Если учесть, что при вращении тела вокруг неподвижной оси направления векторов и всегда совпадают (и совпадают с осью вращения), то в каждой точке вектора скорости и касательного ускорения направлены вдоль одной прямой – касательной к траектории. Модуль вращательного ускорения запишем в виде:
(9.49)
Ускорение Кориолиса
По формуле (9.37) ускорение Кориолиса появляется тогда, когда переносное движение является вращательным:
(9.50)
Как видно из приведенной формулы, ускорение Кориолиса равно удвоенному векторному произведению вектора на относительную скорость точки Направление ускорения Кориолиса определяется по правилу векторного произведения. Оно направлено вдоль
нормали к плоскости, в которой расположены векторы и , в той части пространства, с
которой, если смотреть с конца вектора , видно поворот на наименьший угол от вектора к вектору против хода часовой стрелки (в правой системе координат).
Модуль ускорения Кориолиса находим по формуле:
(9.51)
Спроектировав обе части равенства (9.50) на подвижные оси координат, получим такие выражения для проекций ускорения Кориолиса :
(9.52)
где – проекции угловой скорости на оси подвижной системы координат – проекции относительной скорости на эти самые оси.
Тогда модуль ускорения Кориолиса :
(9.53)
Направление определяется направляющими косинусами углов, которые вектор образует соответственно с ортами подвижных осей:
(9.54)
Случаи превращения в ноль ускорения Кориолиса
Как следует из (9.51), ускорение Кориолиса равно нулю в те моменты (или на тех промежутках времени), когда:
1) вектор равен нулю, то есть переносное движение является поступательным;
2) относительная скорость равна нулю, то есть нет относительного движения;
3) то есть вектор и – коллинеарные.
Следует отметить, что в те моменты времени, когда ускорения Кориолиса превращается в ноль, абсолютное ускорение точки определяется по правилу параллелограмма.
тогда:
(9.55)
а модуль этого ускорения определяется по теореме косинусов:
(9.56)
Физические причины возникновения ускорения Кориолиса
Покажем, что ускорение Кориолиса возникает вследствие таких двух причин:
1. Представим себе два прямолинейных отрезка , и , по которым движутся
точки и (рис. 9.7). Отрезок движется поступательно, а отрезок вращается вокруг точки Обозначим через и соответственно относительную и переносную скорости точки М. Переносным движением точки (рис. 9.7, а) является поступательное движение, обусловленное движением отрезка . Через элементарный промежуток времени отрезок
займет положение Поскольку переносное движение – поступательное, то переносные
скорости точки и одинаковы.
Переносным движением точки (рис. 9.7, б) является вращательное движение, вызванное вращением отрезка вокруг точки . Поэтому переносные скорости точки М2 на отрезке и разные:
Итак, переносная скорость точки меняется в зависимости от ее относительного движения вдоль отрезка . При этом скорость изменения переносной скорости точки во времени, которая создает дополнительное ускорение, пропорциональна относительной скорости и угловой скорости переносного движения В этом суть первой физической причины возникновения ускорения Кориолиса.
2. Вторая физическая причина возникновения ускорения Кориолиса такова:
относительная скорость точки , то есть , зависит от переносного вращательного движения, поскольку при вращении отрезка меняется направление относительной скорости (Рис. 9.7, б).
Следовательно, скорость изменение во времени относительной скорости точки (т.е. ускорение точки, которое зависит от приведенной выше причины) также будет пропорционально относительной скорости и угловой скорости переносного движения.
А. И. Сомов обратил внимание на то, что ускорения Кориолиса как будто вращает вектор относительной скорости в направлении переносного вращательного движения, из-за чего назвал ускорение Кориолиса поворотным.
Подводя итог изложенного и обращаясь к формуле (9.34), видим, что изменение во времени переносной скорости при условии, что переносное движение является непоступательным, вызывается не только переносным, но и относительным движением точки. Дополнительное ускорение равно векторному произведению . Так же из формулы (9.31) следует, что изменение относительной скорости во времени вызвано не только относительным, но и переносным движением точки. Дополнительное ускорение и в этом случае равна
Ускорение Кориолиса , таким образом, равно удвоенному векторному произведению
векторов и , то есть и характеризует изменение во времени относительной скорости через переносное непоступательное движение и переносной скорости – через относительное движение точки.
Пример 3. Определить абсолютное ускорение точки в примере 2, приведенном в п. 9.3.
Решение. Поскольку переносное движение является вращательным, то абсолютное ускорение точки М (Рис. 9.5) определим по теореме Кориолиса:
Поскольку и переносная угловая скорость- постоянная то и Следовательно,
Относительное движение точки М происходит вдоль прямой АВ, поэтому относительное ускорение направлено вдоль АВ, ускорение – вдоль ОМ к центру вращения. Направление ускорения Кориолиса определяем по правилу векторного произведения . Вектор направленный перпендикулярно к диску , а -вдоль хорды. Итак, ускорения Кориолиса также направлено по ОМ от центра О вращения диска. Вектор абсолютного ускорения направлен по диагонали прямоугольника со сторонами (рис. 9.8), и
Пример 4. На подвижных объектах (самолетах, кораблях и т.д.) используются гироскопические приборы маятникового типа для определения отклонения объектов от горизонтали. При движении относительно Земли в этих приборах возникают так называемые скоростные и баллистические девиации (погрешности), обусловленные тем, что эти объекты, двигаясь горизонтально по поверхности Земли (или по сфере радиусом , где h – высота полета), на самом деле вращаются в инерциальном пространстве и поэтому они движутся с ускорением в инерциальной системе координат, если даже их скорость относительно Земли является постоянной. Поэтому необходимо найти
угловую скорость вращения подвижного объекта и его ускорение в географической системе координат, если составляющая относительной скорости объекта к северу , на восток – (рис. 9.9), а угловая скорость суточного вращения Земли – .
Решение. Движение объекта (точку О) задано в сферической системе координат: – географическая долгота, что отсчитывается от меридиана Гринвича; – географическая широта, что отсчитывается от экватора; – радиус сферы, по которой движется объект: где – средний радиус Земли. Отметим, что линейная скорость точки на земной поверхности, расположенной на экваторе равна 1852 км/ч относительно неподвижной системы координат.
Ось направлена на север (N) по касательной к меридиану, – на восток (£) по касательной к параллели, а – по вертикали вверх.
Очевидно, что движение объекта с составляющей скорости вызванной изменением угла – географической широты, а движение по составляющей скорости на восток – географической долготы . Итак, угловая скорость направлена перпендикулярно к плоскости параллели и параллельная угловой скорости вращения Земли , а угловая скорость направлена в сторону, противоположную направлению оси .
С учетом этого, очевидно, что:
(1)
Если теперь учесть и угловую скорость вращения Земли , то проекции угловой скорости на оси географической системы координат будут:
(2)
В данном случае вращательное движение Земли является переносным, а движение объекта по поверхности относительным. С учетом этого и формул (2) приведем формулы для абсолютной скорости объекта в проекциях на оси географической системы координат:
(3)
Используя уравнение (3) выражение (2) можно переписать в форме:
(4)
Найдем теперь абсолютное ускорение подвижного объекта, воспользовавшись формулой
(9.39):
(5)
тут – угловая скорость вращения системы координат относительно неподвижной системы координат, которая определяется выражениями (2) или (4)
Проектируя (5) на оси будем иметь:
(6)
Подставив в (6) выражения (3) и (4), получим:
(7)
При горизонтальном движении объекта то есть поэтому формулы (7) немного упрощаются:
(8)
В выражениях (8) не видно явно ускорения Кориолиса, хотя понятно, что оно должно было иметь место, потому что переносное движение Земли является вращательным.
Для того, чтобы выделить явно ускорение Кориолиса, осевое ускорение, вращательное и относительное, нужно формулы (8) записать в развернутом виде:
(9)
Перепишем в конечном итоге формулы (9) так, чтобы на первом месте было переносное, дальше относительное и в конце ускорения Кориолиса (таблица).
Таким образом, задача решена.
Пример 5. Точка М неравномерно движется по ободу колеса радиусом R с относительной
скоростью вращается с переменной угловой скоростью Найти двумя методами ускорения точки:
1) задавая движение точки в натуральной системе координат;
2) используя понятие сложного движения точки.
Решение. 1. При заданном движения точки в натуральной системе координат нужно учесть, что ускорение в данном случае имеет две составляющие – тангенциальное и нормальное ускорения:
(1)
Следовательно, для определения ускорений по формулам (1) нужно найти .
Очевидно, что – это по сути абсолютная скорость точки, поэтому:
(2)
Подставив (2) в (1), получим:
(3)
Если спроектировать эти ускорения на оси ортогональной системы координат то получим:
(4)
При и соответственно получим:
(5)
2. Использование понятия сложного движения точки. В этом случае (рис. 9.10,б)
(6)
Переносное ускорение имеет две составляющие и Вращающаяся составляющая ускорения направленная в данном случае по оси и равна:
(7)
Осевое ускорения будет направлено к оси вращения, проходящей через точку О (рис. 9.10, б) и равно:
(8)
Ускорение Кориолиса в этом случае направлено по оси Оу и равно:
(9)
Относительное ускорение в этом случае определяется по формуле (9.31), в которой нужно учесть только ту составляющую угловой скорости , которая обусловлена только относительным движением, потому что взаимодействие вращательного переносного движения и относительной скорости учтено в ускорении Кориолиса:
(10)
Очевидно, что
(11)
Спроектировав выражение (10) на оси и и учитывая (11), получим:
(12)
Найдем теперь проекции абсолютных ускорений на осях и
(13)
Сравнивая выражения (3), (4) и (13), видим, что проекции ускорения на оси и совпадают. Причем в этом случае при любой
(14)
Для сравнения найдем ускорение по формуле (9.39)
(15)
Отметим, что в данном случае в формуле (15) нужно задать полную угловую скорость
вращения подвижной системы координат:
(16)
В нашем случае определяется по формуле (6), Из формулы (15) с учетом (6) и (16), получим:
(17)
или
(18)
Нетрудно заметить, что выражения (3), (13) и (18) одинаковые, то есть приведенный способ решения задачи оказался достаточно эффективным. Задача решена.
Сложное движение материальной точки. Относительное, переносное и абсолютное движение материальной точки
Сложное движение материальной точки — это такое движение, при котором точка может одновременно участвовать в двух и более движениях.
Для представления о сложном движение приведем такой пример. Если человека принять за материальную точку, то ее движение по палубе корабля будет сложным, когда это движение рассматривать относительно палубы и относительно берега (поверхности Земли). Движение человека относительно палубы является относительным, вместе с кораблем — переносным, а относительно поверхности Земли — абсолютным.
При сложном движении можно рассматривать точку, тело переноса или подвижное переносное пространство, с которым связана подвижная система координат, и неподвижную систему координат, которая скреплена с поверхностью Земли.
Движение точки относительно тела переноса или подвижной системы отсчета называется относительным, а скорость и ускорение точки в этом движении — относительными скоростью и ускорением, они обозначаются , (relative — относительный).
Движение точки вместе с подвижным пространством, а точнее вместе с той точкой подвижного пространства, с которой в данный момент совпадает заданная точка, называется переносным движением, а скорость и ускорение точки в этом движении — переносными скоростью и ускорением, они обозначаются , (exporter — захватить).
Движение материальной точки относительно неподвижной системы координат называется абсолютным, а скорость и ускорение — абсолютными, они обозначаются , .
Теорема о сложении скоростей в сложном движении материальной точки
Сформулируем эту теорему.
Абсолютная скорость материальной точки при сложном ее движении равна геометрической сумме ее переносной и относительной скоростей:
.
Докажем это. Выберем материальную точку М (рис. 2.45), что движется независимо по своему закону относительно подвижной системы отсчета Oxyz, которая жестко связана с телом S, и вместе с ним перемещается относительно неподвижной системы координат . Начало подвижной системы координат Oxyz (центр O) выбрано в теле S произвольно, на соответствующих осях координат показаны единичные векторы (орты) , и .
Определим положение материальной точки М относительно выбранных осей координат. Так, относительно подвижной системы координат Oxyz ее положение определяется радиус-вектором . Положение точки М относительно неподвижной системы координат определяется радиус-вектором .
Положение начала (центр O) подвижной системы координат Oxyz относительно неподвижной системы координат будет определяться радиус-вектором .
Как видно из образованного на рис. 2.46 векторного треугольника , всегда сохраняется векторное соотношение:
,
или, если представить радиус-вектор в проекциях на оси координат Oxyz с учетом единичных векторов , и :
.
Используя выражение определим абсолютную скорость материальной точки М.
При произвольном переносном движении тела орты , и меняют свое направление и поэтому являются переменными векторами. Тогда все члены, входящие в выражение выше, считаются переменными величинами. На основании формулы искомая скорость будет равна:
.
Перегруппируем правую часть выражения и перепишем его:
Рассмотрим подробно выражение. Так, в последней скобке в этом выражении можно сделать следующие обозначения:
,
,
.
Тогда она представляет собой
— относительную скорость точки.
Рассмотрим далее первую скобку в выражении, где
— скорость начала подвижной системы координат Oxyz или скорость полюса O.
По формулам Пуассона другие составляющие первой скобки выражения можно представить так:
,
,
,
где — угловая скорость переносного движения, или скорость вращения подвижных осей координат и неизменно связанных с ними ортов , и .
Подставим в первую скобку выражения:
.
Тогда выражение окончательно будет иметь следующий вид:
.
Сумма является скоростью переносного движения, где 0 — скорость полюса или начала отсчета подвижной системы координат.
Поскольку переносное движение в общем случае является сложным, то он разделяется на поступательное вместе с полюсом (точкой О) и вращательное вокруг полюса
Окончательно имеем:
.
Что и необходимо было доказать.
Выражение называют параллелограммом скоростей.
Когда угол , тогда модуль абсолютной скорости равен:
,
Если , так модуль абсолютной скорости движения материальной точки определяется по теореме косинусов:
.
Теорема Кориолиса
Сформулируем эту теорему.
Абсолютное ускорение материальной точки при произвольном переносном движении равно геометрической сумме трех ускорений: переносного, относительного и дополнительного ускорения, которое называется поворотным ускорением или ускорением Кориолиса.
Итак:
,
где — абсолютное ускорение материальной точки; — переносное ускорение; — относительное ускорение; — ускорение Кориолиса.
Предположим, что материальная точка М имеет сложное движение. Считаем, что она движется относительно подвижной системы координат Oxyz, которая сама произвольным образом перемещается относительно другой — неподвижной системы (рис. 2.46). Покажем , , — орты подвижной системы координат Oxyz. Координаты точки M в подвижной системе отсчета — x, y, z.
Как и в предыдущем случае, определим положение материальной точки М. Так, положение точки М в подвижной системе координат Oxyz определяется радиус-вектором . Ее положения относительно неподвижной системы координат определяется радиус-вектором . Положение точки О (начала отсчета подвижной системы координат Oxyz) в неподвижной системе координат определяется радиус-вектором .
Абсолютное ускорение материальной точки М равна производной по времени от абсолютной скорости:
.
Проведем преобразование и анализ выражения. В первой скобке составляющая
— ускорение полюса O.
Превратим дальше выражение первой скобки, пользуясь формулами Пуассона:
— ускорение точки в переносном сферическом движении тела вокруг полюса.
Во второй скобке
— относительное ускорение точки.
В уравнении есть еще такие два выражения, которые также надо превратить:
— ускорение Кориолиса или поворотное ускорение.
Учитывая сделанные преобразования, окончательно запишем:
.
Что и требовалось доказать.
,
где — ускорение начала подвижной системы координат (полюса О) и независимого сферического движения тела вокруг полюса, что выражается составляющей ускорения .
Модуль, направление и физические причины возникновения ускорения Кориолиса
Рассмотрим подробно ускорения Кориолиса и его свойства. Оно, согласно формуле, имеет следующий вид:
.
Ускорение Кориолиса равна двойному векторном произведения векторов переносной угловой скорости и относительной скорости точки.
Как известно, модуль векторного произведения равен:
Из выражения видно, что модуль ускорения Кориолиса равен нулю в следующих случаях:
1. переносное движение не является вращательным, поэтому ускорение Кориолиса называют также поворотным ускорением;
2. движение точки в данный момент времени не является сложным;
3. ,или — векторы переносной угловой скорости и относительной скорости параллельны.
Модуль ускорения Кориолиса будет максимальным, если угол между векторами и составляет 90º или 270º, в этом случае:
Направление ускорения Кориолиса можно найти по двум методами: математическим — по определению векторного произведения двух векторов и физическим — по способу Жуковского.
Рассмотрим первый способ.
Предположим, что тело S вращается вокруг оси z против направления хода часовой стрелки.
Это тело переноса и вектор направлен вверх вдоль оси z (рис. 2.47). Независимо по телу S по своей траектории движется точка М со скоростью (вектор АМ). Перенесем условно вектор в точку М. Вектор ускорения Кориолиса , как итоговый вектор векторного произведения, перпендикулярный плоскости, которую образуют эти векторы (параллелограмм МАВС). Остается определить, к нам этот вектор направлен, или от нас. В данном случае (рис. 2.47) вектор направлен к нам, потому что кратчайший переход от вектора к вектору происходит против направления хода часовой стрелки.
Таким образом, вектор ускорения Кориолиса перпендикулярен плоскости, которую образуют векторы переносной угловой скорости и относительной скорости, и направлен в ту сторону, откуда видим, что кратчайший переход от вектора угловой скорости к вектору относительной скорости происходит против часовой стрелки.
Переходим к рассмотрению определения направления вектора ускорения Кориолиса по методу Жуковского.
Для определения направления вектора ускорения Кориолиса этим методом необходимо вектор относительной скорости спроецировать на плоскость π, перпендикулярной оси переносного вращения , затем вернуть проекцию в плоскости π на угол 90º в направлении переносного вращения (рис. 2.48).
Нетрудно понять, что в плоских механизмах, которые являются объектом курсового проекта по теории механизмов и машин, вектор всегда будет расположен в плоскости движения механизма. Поэтому для определения направления ускорения Кориолиса достаточно повернуть вектор на 90º в направлении переносного поворота ωе.
Рассмотрим далее физические причины возникновения поворотного ускорения или ускорение Кориолиса.
Пусть по пластине, расположенной в плоскости рисунка и равномерно вращается вокруг вертикальной оси с постоянной угловой скоростью (направление вращения показано стрелкой), движется прямолинейно вдоль ее радиуса материальная точка М с постоянной относительной скоростью (рис. 2.49). Через некоторое время пластина повернется на угол 𝞿 и точка М окажется в положении M1 на большем расстоянии от оси вращения А. В результате этого вернется вектор результате переносного вращения, увеличится по модулю и вернется вектор переносной скорости .
Из выше приведенного можно сформулировать две физические причины возникновения ускорения Кориолиса:
— изменение направления вектора относительной скорости материальной точки в результате переносного вращения;
— изменение модуля и направления вектора переносной скорости точки в результате ее относительного движения; это видно из следующих выражений переносной скорости движения для различных ее положений M и M1 (расстояние ):
,
.
Следовательно, ускорение Кориолиса — это новый кинематический эффект, который возникает в результате взаимодействия, взаимовлияния векторов относительной и переносной скоростей при вращательном переносном движении.
Влияние ускорения Кориолиса наблюдается в природе и технике.
Так, за счет сил инерции масс воды, которые формируются этим ускорением, размываются правые берега рек, текущих вдоль меридиана. Поэтому правые берега в северном полушарии всегда являются крутыми. В южном полушарии – наоборот, левые берега являются крутыми.
В технике ускорения Кориолиса возникает в так называемых кулисных механизмах (кулиса — это подвижная направляющая). Относительно кулисы движется кулисный камень, а переносным движением является поворот кулисы относительно недвижимого центра.
Методика решения задач на сложное движение материальной точки
1. Выяснить, движение точки является относительным, какое является переносным, проанализировать законы движения и условие задачи.
2. Для определения характеристик относительного движения необходимо условно остановить переносное движение. Найти положение точки в заданный момент времени на траектории относительного движения.
3. Для определения характеристик переносного движения необходимо условно остановить относительное движение и рассмотреть движение точки, принадлежащей телу переноса, которая совпадает в данный момент с этой точкой.
4. Для определения параметров абсолютного движения точки необходимо выбрать систему координат с началом в самой точке, затем методом проекций определить проекции абсолютных скорости и ускорения и, наконец, полные скорости и ускорения
Пример.
Кольцевая трубка (рис. 2.50) радиуса 16 см вращается вокруг горизонтальной диаметра ОА по закону рад. Внутри трубки движется жидкость согласно уравнению см. Определить абсолютную скорость и абсолютное ускорение частицы М жидкости в момент времени , если в начальный момент частица была в точке А.
Решение
Определяем положение точки М в момент времени t1. Положение точки M удобно определить углом α. Определим его с помощью такого выражения:
рад,
.
Точка М в заданный момент времени изображена на рис. 2.50. Выберем подвижную систему координат, жестко связанную с кольцевой трубкой.
Выделяем переносное движение точки M. Для этого скрепляем точку М с подвижной системой координат. В этом случае точка M будет описывать круг в плоскости, перпендикулярной к диаметру ОА, радиус которого будет равен:
,
Вычислим переносную скорость точки М как скорость вращения данной точки вокруг оси ОА. Она равна:
Определим угловую скорость вращения трубки.
.
Вектор угловой скорости направлен вдоль оси вращения.
Переносная скорость точки M равна:
.
Для момента времени имеем такое значение переносной скорости точки M:
.
Вектор переносной скорости направлен перпендикулярно к плоскости чертежа в направлении вращения.
Относительное движение точки М — это движение жидкости относительно трубки. В этом случае точка М будет двигаться по кругу диаметром ОА.
Вычисляем относительную скорость точки М. Она равна:
.
Для момента времени находим значение относительной скорости движения :
Направляем вектор относительной скорости по касательной к упомянутой окружности в точке M.
Векторы переносной и относительно скоростей изображены на рис. 2.50.
Учитывая, что векторы и взаимно перпендикулярны, находим абсолютную скорость точки M. Она равна:
.
Абсолютное ускорение точки M будет равно:
.
Находим переносное нормальное ускорение точки M:
.
При значение переносного нормального ускорения равно:
.
Направленный вектор переносного нормального ускорения по перпендикуляру к оси вращения OA.
Переносное касательное ускорение точки М равно:
.
Определим угловое ускорение трубки. Оно будет равно:
.
Угловое ускорение положительное, следовательно, вращения трубки являются ускоренными.
Вычисляем переносное касательное ускорение точки M. Оно будет равно:
.
Для имеем значение этого ускорения:
.
Направленное переносное касательное ускорение точки M так же, как и переносная скорость , перпендикулярна к плоскости трубки.
Находим относительное касательное ускорение точки М. Оно равно:
.
Вектор относительного касательного ускорения совпадает с направлением вектора относительной скорости , потому что относительное движение ускоренно, о чем говорит положительный знак в касательном ускорении .
Вычислим относительное нормальное ускорение :
.
Для момента времени имеем такое значение этого ускорения:
.
Направленный вектор нормального относительного ускорения по радиусу к центру кольца трубки.
Находим ускорение Кориолиса . Оно будет равно:
.
Направлено ускорение Кориолиса перпендикулярно плоскости, в которой лежат векторы
и , таким образом, что если посмотреть с положительного конца этого вектора, то поворот от к на наименьший угол происходит против направления хода часовой стрелки. Таким образом, вектор ускорения Кориолиса направлен по одной прямой с вектором переносного касательного ускорения , но имеет направление в противоположную сторону.
Находим относительное касательное ускорение точки М. Оно равно:
.
Вектор относительного касательного ускорения совпадает с направлением вектора относительной скорости , потому что относительное движение ускоренно, о чем говорит положительный знак в касательном ускорении .
Вычислим относительное нормальное ускорение :
.
Для момента времени имеем такое значение этого ускорения:
.
Направленный вектор нормального относительного ускорения по радиусу к центру кольца трубки.
Находим ускорение Кориолиса . Оно будет равно:
.
Направлено ускорение Кориолиса перпендикулярно плоскости, в которой лежат векторы и , таким образом, что если посмотреть с положительного конца этого вектора, то поворот о т к на наименьший угол происходит против направления хода часовой стрелки. Таким образом, вектор ускорения Кориолиса направлен по одной прямой с вектором переносного касательного ускорения , но имеет направление в противоположную сторону.
Векторы относительного, переносного и ускорение Кориолиса изображены на рис. 2.51.
Для нахождения абсолютного ускорения выберем систему координат, как показано на рис. 2.51, и спроектируем векторное равенство, которое определяет абсолютное ускорение точки М, на оси данной системы координат:
/
/
.
Модуль абсолютного ускорения равен:
.
Услуги по теоретической механике:
- Заказать теоретическую механику
- Помощь по теоретической механике
- Заказать контрольную работу по теоретической механике
Учебные лекции:
- Статика
- Система сходящихся сил
- Момент силы
- Пара сил
- Произвольная система сил
- Плоская произвольная система сил
- Трение
- Расчет ферм
- Расчет усилий в стержнях фермы
- Пространственная система сил
- Произвольная пространственная система сил
- Плоская система сходящихся сил
- Пространственная система сходящихся сил
- Равновесие тела под действием пространственной системы сил
- Естественный способ задания движения точки
- Центр параллельных сил
- Параллельные силы
- Система произвольно расположенных сил
- Сосредоточенные силы и распределенные нагрузки
- Кинематика
- Кинематика твердого тела
- Движения твердого тела
- Динамика материальной точки
- Динамика механической системы
- Динамика плоского движения твердого тела
- Динамика относительного движения материальной точки
- Динамика твердого тела
- Кинематика простейших движений твердого тела
- Общее уравнение динамики
- Работа и мощность силы
- Обратная задача динамики
- Поступательное и вращательное движение твердого тела
- Плоскопараллельное (плоское) движение твёрдого тела
- Сферическое движение твёрдого тела
- Движение свободного твердого тела
- Сложное движение твердого тела
- Плоское движение тела
- Статика твердого тела
- Равновесие составной конструкции
- Равновесие с учетом сил трения
- Центр масс
- Колебания материальной точки
- Относительное движение материальной точки
- Статические инварианты
- Дифференциальные уравнения движения точки под действием центральной силы и их анализ
- Динамика системы материальных точек
- Общие теоремы динамики
- Теорема об изменении кинетической энергии
- Теорема о конечном перемещении плоской фигуры
- Потенциальное силовое поле
- Метод кинетостатики
- Вращения твердого тела вокруг неподвижной точки
Под относительностью понимают зависимость чего-либо от выбора системы отсчета. Так, покой и движение тела, его положение в пространстве всегда относительны. Человек, сидящий внутри движущегося автомобиля, покоится относительно этого автомобиля. Но относительно предметов снаружи он движется с некоторой скоростью.
Относительность перемещения
Пусть движение материальной точки (МТ) описывается относительно двух систем отсчета: подвижной (ПСО) и неподвижной (НСО). Зная, как эта точка движется относительно ПСО, и, как ПСО движется относительно НСО, можно вычислить перемещение точки относительно НСО. В этом заключается правило сложения перемещений:
s′ = s1 + s2
s′ — перемещение МТ относительно НСО, s1— перемещение МТ относительно ПСО, s2 — перемещение ПСО относительно НСО.
Чтобы применять правило сложения перемещений, нужно уметь складывать вектора.
Полезные факты
- Если тело движется в направлении движения ПСО, то модуль его перемещения относительно НСО равен сумме модулей перемещения этого тела относительно ПСО и перемещения ПСО относительно НСО:
s′ = s1 + s2
- Если тело движется противоположно движению ПСО, то модуль его перемещения относительно НСО равен разности модулей перемещения этого тела относительно ПСО и перемещения ПСО относительно НСО:
s′ = s1 – s2
- Если тело движется под прямым углом по отношению к направлению движения ПСО, то модуль его перемещения относительно НСО равен корню из суммы квадратов перемещений этого тела относительно ПСО и перемещения ПСО относительно НСО:
s′ = √(s12 + s22)
- Если относительно ПСО тело покоится, то его перемещение относительно НСО равно перемещению ПСО относительно НСО: при s1=0, перемещение s′ = s2
- Если тело движется относительно двух НСО, то его перемещение относительно НСО1 равно перемещению движения относительно НСО2. В этом случае одну из систем можно принять за ПСО с нулевой скоростью. Тогда ее перемещение относительно НСО будет равно 0. При s2=0, перемещение s′ = s1
Пример №1. Человек прошел в автобусе 2 метра в направлении заднего выхода. За это же время автобус успел переместиться относительно остановки на 10 м. Найти перемещение человека относительно автобусной остановки.
Так как человек двигался в сторону конца автобуса, он двигался противоположно его движению. В этом случае его перемещение будет равно модулю разности перемещений, совершенных человеком относительно автобуса и автобусом относительно остановки:
s′=|s1 – s2|=|10 – 2|=8 (м).
Относительность скорости в ПСО и НСО
Тела и системы отсчета могут двигаться с различной скоростью. Но, зная скорость движения МТ относительно ПСО и скорость движения ПСО относительно НСО, можно вычислить скорость движения МТ относительно НСО. В этом заключается правило сложения скоростей:
v′ = v + u
v′ — скорость МТ относительно НСО, v — скорость МТ относительно ПСО, u — скорость движения ПСО относительно НСО.
Складывая векторы скоростей, нужно пользоваться правилами сложения векторов.
Полезные факты
- Если тело движется в направлении движения ПСО, то модуль его скорости относительно НСО равен сумме модулей скорости этого тела относительно ПСО и скорости ПСО относительно НСО:
v′ = v + u
- Если тело движется противоположно движению ПСО, то модуль его скорости относительно НСО равен разности модуля скорости этого тела относительно ПСО и скорости ПСО относительно НСО:
v′ = v – u
- Если тело движется под прямым углом по отношению к направлению движения ПСО, то модуль его скорости относительно НСО равен корню из суммы квадратов скорости этого тела относительно ПСО и скорости ПСО относительно НСО:
v′ = √(v2 + u2)
- Если относительно ПСО тело покоится, то его скорость относительно НСО равна скорости ПСО относительно НСО: при v=0, скорость v′ = u
- Если тело движется относительно двух НСО, то его скорость относительно НСО1 равна скорости движения относительно НСО2. В этом случае одну из неподвижных систем можно принять за ПСО с нулевой скоростью. При u=0, скорость v′ = u
Пример №2. Моторная лодка должна пересечь реку, скорость течения которой равна 5 км/ч, по кратчайшему пути. Собственная скорость лодки равна 10 км/ч. Определить, под каким углом к берегу должна быть направлена лодка, чтобы она не отклонялась от кратчайшего пути.
Кратчайшим путем между двумя параллельными линиями является отрезок, заключенный между этими линиями при условии, что он лежит на прямой, пересекающей эти линии под прямым углом. На рисунке этот путь отметим отрезком АВ.
Лодка движется прямолинейно. Поэтому направление ее скорости относительно берега совпадает с направлением перемещения:
Векторы скоростей образуют прямоугольный треугольник, и собственная скорость лодки направлена к берегу под некоторым углом α. Косинус этого угла равен отношению прилегающего катета (скорости лодки относительно реки) к гипотенузе (скорости течения реки):
Косинусу 0,5 соответствует угол, равный 60 градусам.
Относительная скорость двух тел
Понятие относительной скорости вводится, когда рассматривается движение двух тел относительно друг друга внутри одной и той же системы отсчета (СО). Примером служат два движущихся автомобиля, в то время как их движение рассматривается относительно неподвижного объекта.
Относительная скорость равна векторной разности скоростей первого и второго тела относительно СО:
vотн = v1– v2
vотн — относительная скорость, или скорость первого тела относительно второго, v1 и v2 — скорость первого и второго тела относительно СО.
Варианты обозначения относительной скорости и их проекций:
- v12 — скорость первого тела относительно второго. Ее проекция равна:
v12x = v1x – v2x
- v21 — скорость второго тела относительно первого. Ее проекция равна v21x = v2x – v1x
Для вычисления относительной скорости движения тела важно уметь применять правила вычитания векторов.
Полезные факты
- Если тела движутся в одном направлении, то относительная скорость равна модулю разности скоростей первого и второго тела:
vотн = |v1 – v2|
- Если тела движутся в противоположных направлениях, то относительная скорость равна сумме скоростей первого и второго тела:
vотн = |v1 + v2|
- Если тела движутся взаимно перпендикулярно, то относительная скорость равна корню из суммы квадратов скоростей первого и второго тела:
vотн = √(v12 + v22)
Пример №3. Два автомобиля движутся противоположно друг другу. Скорость первого автомобиля относительно дороги равна 100 км/ч. Скорость второго автомобиля относительно первого равна 180 км/ч. Найти модуль скорости второго автомобиля относительно дороги.
Так как автомобили движутся в противоположном направлении, относительная скорость равна сумме скоростей первого и второго автомобиля. Поэтому скорость второго равна разности относительной скорости и скорости движения второго тела, которым в данном случае является первый автомобиль:
Скорость второго автомобиля относительно дороги равна 80 км/час.
Правила сложения векторов
Эта таблица иллюстрирует правила сложения векторов на примере векторов a и b. Результатом их сложения является вектор c .
Сложение двух сонаправленных векторов | |
Суммой двух сонаправленных векторов является вектор, направленный в ту же сторону.
Его длина равна сумме длин слагаемых векторов: c = a + b. |
|
Сложение двух противоположно направленных векторов | |
Суммой двух противоположно направленных векторов является вектор, направленный в сторону большего по модулю вектора. Его длина равна модулю разности длин слагаемых векторов: c = |a – b|. | |
Сложение двух векторов, расположенных друг к другу под углом | |
Суммой двух векторов, расположенных друг к другу под углом является вектор, направление которого определяется графически методом треугольника или параллелограмма. Его длина зависит от величины угла, под которым расположены два слагаемых векторов. | |
Если слагаемые векторы перпендикулярны, для вычисления длины вектора их суммы используется теорема Пифагора:
. |
|
Если слагаемые векторы расположены под тупым углом α, для вычисления длины вектора их суммы используется теорема косинусов:
. |
|
Если слагаемые векторы расположены под острым углом α, для вычисления длины вектора их суммы используется теорема косинусов:
. |
Правила вычитания векторов
Эта таблица иллюстрирует правила вычитания векторов на примере векторов Результатом их вычитания является вектор .
Вычитание двух сонаправленных векторов | |
Разностью двух сонаправленных векторов является вектор, направленный в сторону большего по модулю вектора.
Его длина равна модулю разности длин вычитаемых векторов: c = |a – b|. |
|
Вычитание двух противоположно направленных векторов | |
Разность двух противоположно направленных векторов есть вектор, направленный в сторону уменьшаемого вектора. Его длина равна сумме длин вычитаемых векторов: c = a + b. | |
Вычитание двух векторов, расположенных друг к другу под углом | |
Разностью двух векторов, расположенных друг к другу под углом является вектор, являющийся обратным вектору, образующемуся при сложении этих векторов. Его направление определяется графически. Его длина зависит от величины угла, под которым расположены два слагаемых векторов. | |
Если вычитаемые векторы перпендикулярны, для вычисления длины вектора их разности используется теорема Пифагора:
. |
|
Если вычитаемые векторы расположены под углом α, для вычисления длины вектора их разности используется теорема косинусов:
. |
Задание EF17727
Два автомобиля движутся по прямому шоссе, первый — со скоростью v, второй — со скоростью –4v. Найти скорость второго автомобиля относительно первого.
Алгоритм решения
- Записать данные в определенной системе отсчета.
- Изобразить графическую модель ситуации задачи.
- Записать классический закон сложения скоростей в векторном виде.
- Записать классический закон сложения скоростей в векторном виде применительно к условиям задачи.
- Найти искомую величину.
Решение
Записываем данные относительно Земли:
- Скорость первого автомобиля относительно оси ОХ: v1 = v.
- Скорость второго автомобиля относительно оси ОХ: v2 = –4v.
Изображаем графическую модель ситуации. Так как у второго автомобиля перед вектором скорости стоит знак «–», первый и второй автомобили движутся во взаимно противоположных направлениях.
Записываем закон сложения скоростей в векторном виде:
v′ = v + u
v′ — скорость второго автомобиля относительно оси ОХ (v2), v — скорость второго автомобиля относительно системы отсчета, связанной с первым автомобилем, u — скорость движения первого автомобиля относительно оси ОХ (v1).
Закон сложения скоростей в векторном виде применительно к условиям задачи будет выглядеть так:
v2 = v + v1
Отсюда:
v = v2 — v1 = –4v – v = –5v
Ответ: -5v
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17518
Два автомобиля движутся в одном направлении. Относительно Земли скорость первого автомобиля 110 км/ч, второго 60 км/ч. Чему равен модуль скорости первого автомобиля в системе отсчёта, связанной со вторым автомобилем?
Алгоритм решения
- Записать данные в определенной системе отсчета.
- Изобразить графическую модель ситуации задачи.
- Записать классический закон сложения скоростей в векторном виде.
- Выбрать систему отсчета.
- Записать классический закон сложения скоростей в скалярном виде.
- Найти искомую величину.
Решение
Записываем данные относительно Земли:
- Скорость первого автомобиля относительно неподвижной системы отсчета: v1 = 110 км/ч;
- Скорость второго автомобиля относительно Земли: v2 = 60 км/ч.
Изображаем графическую модель ситуации:
Записываем закон сложения скоростей в векторном виде:
v′ = v + u
v′ — скорость автомобиля относительно земли (v1), v — скорость второго автомобиля относительно системы отсчета, связанной со вторым автомобилем, u — скорость движения второго автомобиля относительно земли (v2).
По условию задачи в качестве системы отсчета нужно выбрать второй автомобиль. Так как система отсчета, связанная со вторым автомобилем, и первый автомобиль движутся в одном направлении, классический закон сложения скоростей в скалярном виде будет выглядеть так:
v’ = v + u
Отсюда скорость первого автомобиля в системе отсчёта, связанной со вторым автомобилем:
v = v’ – u = v1 – v2 = 110 – 60 = 50 (км/ч).
По условию задачи ответом должен быть модуль этой скорости. Модуль числа 50 есть 50.Ответ: 50
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 7.4k
From Wikipedia, the free encyclopedia
The relative velocity (also or ) is the velocity of an object or observer B in the rest frame of another object or observer A.
Classical mechanics[edit]
In one dimension (non-relativistic)[edit]
Relative motion man on train
We begin with relative motion in the classical, (or non-relativistic, or the Newtonian approximation) that all speeds are much less than the speed of light. This limit is associated with the Galilean transformation. The figure shows a man on top of a train, at the back edge. At 1:00 pm he begins to walk forward at a walking speed of 10 km/h (kilometers per hour). The train is moving at 40 km/h. The figure depicts the man and train at two different times: first, when the journey began, and also one hour later at 2:00 pm. The figure suggests that the man is 50 km from the starting point after having traveled (by walking and by train) for one hour. This, by definition, is 50 km/h, which suggests that the prescription for calculating relative velocity in this fashion is to add the two velocities.
The diagram displays clocks and rulers to remind the reader that while the logic behind this calculation seem flawless, it makes false assumptions about how clocks and rulers behave. (See The train-and-platform thought experiment.) To recognize that this classical model of relative motion violates special relativity, we generalize the example into an equation:
where:
- is the velocity of the Man relative to Earth,
- is the velocity of the Man relative to the Train,
- is the velocity of the Train relative to Earth.
Fully legitimate expressions for “the velocity of A relative to B” include “the velocity of A with respect to B” and “the velocity of A in the coordinate system where B is always at rest”. The violation of special relativity occurs because this equation for relative velocity falsely predicts that different observers will measure different speeds when observing the motion of light. [note 1]
In two dimensions (non-relativistic)[edit]
Relative velocities between two particles in classical mechanics
The figure shows two objects A and B moving at constant velocity. The equations of motion are:
where the subscript i refers to the initial displacement (at time t equal to zero). The difference between the two displacement vectors, , represents the location of B as seen from A.
Hence:
After making the substitutions and , we have:
Galilean transformation (non-relativistic)[edit]
To construct a theory of relative motion consistent with the theory of special relativity, we must adopt a different convention. Continuing to work in the (non-relativistic) Newtonian limit we begin with a Galilean transformation in one dimension:[note 2]
where x’ is the position as seen by a reference frame that is moving at speed, v, in the “unprimed” (x) reference frame.[note 3] Taking the differential of the first of the two equations above, we have, , and what may seem like the obvious[note 4] statement that , we have:
To recover the previous expressions for relative velocity, we assume that particle A is following the path defined by dx/dt in the unprimed reference (and hence dx′/dt′ in the primed frame). Thus and , where and refer to motion of A as seen by an observer in the unprimed and primed frame, respectively. Recall that v is the motion of a stationary object in the primed frame, as seen from the unprimed frame. Thus we have , and:
where the latter form has the desired (easily learned) symmetry.
Special relativity[edit]
As in classical mechanics, in Special Relativity the relative velocity is the velocity of an object or observer B in the rest frame of another object or observer A. However, unlike the case of classical mechanics, in Special Relativity, it is generally not the case that
This peculiar lack of symmetry is related to Thomas precession and the fact that two successive Lorentz transformations rotate the coordinate system. This rotation has no effect on the magnitude of a vector, and hence relative speed is symmetrical.
Parallel velocities[edit]
In the case where two objects are traveling in parallel directions, the relativistic formula for relative velocity is similar in form to the formula for addition of relativistic velocities.
The relative speed is given by the formula:
Perpendicular velocities[edit]
In the case where two objects are traveling in perpendicular directions, the relativistic relative velocity is given by the formula:
where
The relative speed is given by the formula
General case[edit]
The general formula for the relative velocity of an object or observer B in the rest frame of another object or observer A is given by the formula:[1]
where
The relative speed is given by the formula
See also[edit]
- Doppler effect
- Non-Euclidean geometry § Kinematic geometries
- Peculiar velocity
- Proper motion
- Range rate
- Radial velocity
- Rapidity
- Relativistic speed
- Space velocity (astronomy)
Notes[edit]
- ^ For example, replace the “Man” by a photon traveling at the speed of light.
- ^ This result is valid if all motion is restricted to the x-axis, but can be easily generalized by replacing the first equation by
- ^ It is easy to be confused about the minus sign before v, or whether v is defined in the prime or unprimed reference frame. It might help to visualize the fact that if x = vt, then x′ = 0, meaning that a particle that is following the path x = vt is at rest in the primed reference frame.
- ^ Keep in mind that, due to time dilation, dt = dt′ is valid only in the approximation that the speed is much less than that of light.
References[edit]
- ^ Fock 1964 The theory of Space Time and Gravitation, retrieved from https://archive.org/details/TheTheoryOfSpaceTimeGravitation
Further reading[edit]
- Alonso & Finn, Fundamental University Physics ISBN 0-201-56518-8
- Greenwood, Donald T, Principles of Dynamics.
- Goodman and Warner, Dynamics.
- Beer and Johnston, Statics and Dynamics.
- McGraw Hill Dictionary of Physics and Mathematics.
- Rindler, W., Essential Relativity.
- KHURMI R.S., Mechanics, Engineering Mechanics, Statics, Dynamics
External links[edit]
- Relative Motion at HyperPhysics
- A Java applet illustrating Relative Velocity, by Andrew Duffy
- Relatív mozgás (1)…(3) Relative motion of two train (1)…(3). Videos on the portal FizKapu. (in Hungarian)
- Sebességek összegzése Relative tranquility of trout in creek. Video on the portal FizKapu. (in Hungarian)