Данная статья раскрывает смысл перпендикулярности двух векторов на плоскости в трехмерном пространстве и нахождение координат вектора, перпендикулярному одному или целой паре векторов. Тема применима для задач, связанных с уравнениями прямых и плоскостей.
Мы рассмотрим необходимое и достаточное условие перпендикулярности двух векторов, решим по методу нахождения вектора, перпендикулярному заданному, затронем ситуации по отысканию вектора, который перпендикулярен двум векторам.
Необходимое и достаточное условие перпендикулярности двух векторов
Применим правило о перпендикулярных векторах на плоскости и в трехмерном пространстве.
При условии значения угла между двумя ненулевыми векторами равным 90°( π2 радиан) называют перпендикулярными.
Что это значит, и в каких ситуациях необходимо знать про их перпендикулярность?
Установление перпендикулярности возможно через чертеж. При отложении вектора на плоскости от заданных точек можно геометрически измерить угол между ними. Перпендикулярность векторов если и будет установлена, то не совсем точно. Чаще всего данные задачи не позволяют делать это при помощи транспортира, поэтому данный метод применим только в случае, когда ничего больше о векторах неизвестно.
Большинство случаев доказательства перпендикулярности двух ненулевых векторов на плоскости или в пространстве производится с помощью необходимого и достаточного условия перпендикулярности двух векторов.
Скалярное произведение двух ненулевых векторов a→ и b→ равном нулю для выполнения равенства a→, b→=0 достаточно для их перпендикулярности.
Пусть заданные векторы a→ и b→ перпендикулярны, тогда выполним доказательство равенства a⇀, b→=0.
Из определения про скалярное произведение векторов мы знаем, что оно равняется произведению длин заданных векторов на косинус угла между ними. По условию a→ и b→ перпендикулярны, а, значит, исходя из определения, угол между ними 90°. Тогда имеем a→, b→=a→·b→·cos(a→, b→^)=a→·b→·cos90°=0.
Вторая часть доказательства
При условии, когда a⇀, b→=0 доказать перпендикулярность a→ и b→.
По сути доказательство является обратным предыдущему. Известно, что a→ и b→ ненулевые, значит, из равенстваa⇀, b→=a→·b→·cos(a→, b→)^ найдем косинус. Тогда получим cos(a→, b→)^=(a→,b→)a→·b→=0a→·b→=0. Так как косинус равен нулю, можем сделать вывод, что угол a→, b→^ векторов a→ и b→ равен 90°. По определению это и есть необходимое и достаточное свойство.
Условие перпендикулярности на координатной плоскости
Раздел скалярного произведения в координатах демонстрирует неравенство (a→, b→)=ax·bx+ay·by, справедливое для векторов с координатами a→=(ax, ay) и b→=(bx, by), на плоскости и (a→,b→)=ax·bx+ay·by для векторов a→=(ax, ay, az) и b→=(bx, by, bz) в пространстве. Необходимым и достаточным условием перпендикулярности двух векторов в координатной плоскости имеет вид ax·bx+ay·by=0, для трехмерного пространства ax·bx+ay·by+az·bz=0.
Применим на практике и рассмотрим на примерах.
Проверить свойство перпендикулярности двух векторов a→=(2, -3), b→=(-6, -4).
Решение
Для решения данной задачи необходимо найти скалярное произведение. Если по условию оно будет равным нулю, значит, они перпендикулярны.
(a→, b→)=ax·bx+ay·by=2·(-6)+(-3)·(-4)=0. Условие выполнено, значит, заданные векторы перпендикулярны на плоскости.
Ответ: да, заданные векторы a→ и b→ перпендикулярны.
Даны координатные векторы i→, j→, k→. Проверить, могут ли векторы i→-j→ и i→+2·j→+2·k→ быть перпендикулярными.
Решение
Для того, чтобы вспомнить, как определяются координаты вектора, нужно прочитать статью про координаты вектора в прямоугольной системе координат. Таким образом получаем, что у заданных векторов i→-j→ и i→+2·j→+2·k→ имеются соответствующие координаты (1,-1, 0) и (1, 2, 2). Подставляем числовые значения и получаем: i→+2·j→+2·k→, i→-j→=1·1+(-1)·2+0·2=-1.
Выражение не равно нулю, (i→+2·j→+2·k→, i→-j→)≠0, а это означает, что векторы i→-j→ и i→+2·j→+2·k→ не перпендикулярны, так как условие не выполнилось.
Ответ: нет, векторы i→-j→ и i→+2·j→+2·k→ не перпендикулярны.
Даны векторы a→=(1,0,-2) и b→=(λ, 5, 1). Найти значение λ, при котором данные векторы перпендикулярны.
Решение
Используем условие перпендикулярности двух векторов в пространстве в квадратной форме, тогда получим
ax·bx+ay·by+az·bz=0 ⇔1·λ+0·5+(-2)·1=0 ⇔λ=2
Ответ: векторы перпендикулярны при значении λ=2.
Имеются случаи, когда вопрос о перпендикулярности невозможен даже при необходимом и достаточном условии. При известных данных о трех сторонах треугольника на двух векторах, возможно, найти угол между векторами и проверить его.
Дан треугольник АВС со сторонами АВ=8, АС=6, ВС=10 см. проверить на перпендикулярность векторы AB→ и AC→.
Решение
При перпендикулярности векторов AB→ и AC→ треугольник ABC считается прямоугольным. Тогда применим теорему Пифагора, где ВС – гипотенуза треугольника. Равенство BC2=AB2+AC2 должно выполниться. Отсюда следует, что 102=82+62⇔100=100. Значит, АВ и АС являются катетами треугольника АВС, следовательно, AB→ и AC→ перпендикулярны.
Нахождение вектора, перпендикулярного данному
Важно научиться находить координаты вектора, перпендикулярного заданному. Это возможно как на плоскости, так и в пространстве при условии перпендикулярности векторов.
Нахождение вектора, перпендикулярного данному в плоскости.
Ненулевой вектор a→ может иметь бесконечное количество перпендикулярных векторов на плоскости. Изобразим это на координатной прямой.
Задан ненулевой вектор a→, лежащий на прямой а. Тогда заданный b→, расположенный на любой прямой, перпендикулярной прямой а, становится перпендикулярным иa→. Если вектору i→ перпендикулярен вектор j→ или любой из векторов λ·j→при λ равной любому действительному числу кроме нуля, то нахождение координат вектора b→, перпендикулярному a→=(ax, ay), сводится к бесконечному множеству решений. Но необходимо найти координаты вектора, перпендикулярного a→=(ax, ay). Для этого необходимо записать условие перпендикулярности векторов в такой форме ax·bx+ay·by=0. Имеем bx и by , являющиеся искомыми координатами перпендикулярного вектора. Когда ax≠0, значение by является ненулевым, а bx вычислим из неравенства ax·bx+ay·by=0 ⇔bx=-ay·byax. При ax=0 и ay≠0 присваиваем bx любое значение кроме нуля, а by находим из выражения by=-ax·bxay.
Дан вектор с координатами a→=(-2, 2). Найти перпендикулярный данному вектор.
Решение
Обозначим искомый вектор как b→(bx, by). Найти его координаты можно из условия перпендикулярности векторов a→ и b→. Тогда получим: (a→, b→)=ax·bx+ay·by=-2·bx+2·by=0. Присвоим by=1 и подставим: -2·bx+2·by=0⇔-2·bx+2=0. Отсюда из формулы получим bx=-2-2=12. Значит, вектор b→=(12, 1) является вектором, перпендикулярным a→.
Ответ: b→=(12, 1).
Если ставится вопрос о трехмерном пространстве, задача решается по такому же принципу. При заданном векторе a→=(ax, ay, az) существует бесконечное множество перпендикулярных векторов. Зафиксирует это на координатной трехмерной плоскости. Дана a→ , лежащая на прямой a. Перпендикулярную прямой a плоскость обозначаем α. В этом случае любой ненулевой вектор b→ из плоскости α перпендикулярен a→.
Необходимо найти координаты b→, перпендикулярного ненулевому вектору a→=(ax, ay, az).
Пусть задан b→ с координатами bx, by и bz. Чтобы найти их, необходимо применить определение условия перпендикулярности двух векторов. Равенство ax·bx+ay·by+az·bz=0 должно выполняться. Из условия a→ – ненулевой, значит, одна из координат имеет значение не равное нулю. Предположим, что ax≠0, ( ay≠0 или az≠0). Следовательно, имеем право разделить на эту координату все неравенство ax·bx+ay·by+az·bz=0, получим выражениеbx+ay·by+az·bzax=0⇔bx=-ay·by+az·bzax. Присваиваем координатам by и bx любое значение, вычисляем значение bx, исходя из формулы, bx=-ay·by+az·bzax. Искомый перпендикулярный вектор будет иметь значение a→=(ax, ay, az).
Рассмотрим доказательство на примере.
Дан вектор с координатами a→=(1, 2, 3) . Найти вектор, перпендикулярный данному.
Решение
Обозначим искомый вектор за b→=(bx, by, bz). Исходя из условия о перпендикулярности векторов, скалярное произведение должно быть равным нулю.
a⇀, b⇀=0⇔ax·bx+ay·by+az·bz=0⇔1·bx+2·by+3·bz=0⇔bx=-(2·by+3·bz)
Если значение by=1, bz=1, тогда bx=-2·by-3·bz=-(2·1+3·1)=-5. Отсюда следует, что координаты вектора b→(-5, 1, 1). Вектор b→ является одним из перпендикулярных векторов заданному.
Ответ: b→=(-5, 1, 1).
Нахождение координат вектора, перпендикулярного двум заданным векторам
Нужно найти координаты вектора в трехмерном пространстве. Он перпендикулярен не коллинеаренным векторамa→(ax, ay, az) и b→=(bx, by, bz). При условии коллинеарности векторов a→ и b→ в задаче достаточно будет найти вектор, перпендикулярный a→ или b→.
При решении применяется понятие векторного произведения векторов.
Векторным произведением векторов a→ и b→ называют вектор, одновременно перпендикулярный и a→ и b→. Для решения данной задачи применяется векторное произведение a→×b→. Для трехмерного пространства имеет вид a→×b→=a→j→k→axayazbxbybz
Разберем подробнее векторное произведение на примере задачи.
Заданы векторы b→=(0, 2, 3) и a→=(2, 1, 0). Найти координаты любого перпендикулярного вектора данным одновременно.
Решение
Для решения необходимо найти векторное произведение векторов. (Необходимо обратиться к пункту вычисления определителя матрицы для нахождения вектора). Получим :
a→×b→=i→j→k→210023=i→·1·3+j→·0·0+k→·2·2-k→·1·0-j→·2·3-i→·0·2=3·i→+(-6)·j→+4·k→
Ответ: (3, -6, 4) – координаты вектора, одновременно перпендикулярного заданным a→ и b→.
Анна Кирпиченкова
Эксперт по предмету «Геометрия»
Задать вопрос автору статьи
Понятие вектора и перпендикулярности векторов
Вначале надо разобраться, что является геометрическим вектором. Для этого сначала введем понятие отрезка.
Определение 1
Отрезком будем называть такую часть прямой, которая ограничена точками с двух сторон.
Определение 2
Концами отрезка будем называть точки, которые его ограничивают.
Для введения определения вектора один из концов отрезка назовем его началом.
Определение 3
Вектором (направленным отрезком) будем называть такой отрезок, у которого обозначено, какая граничная точка его начало, а какая является его концом.
Обозначение: $overline{AB}$ – вектор $AB$, имеющий начало в точке $A$, а конец в точке $B$.
Иначе одной маленькой буквой: $overline{a}$ (рис. 1).
Определение 4
Нулевым вектором будем называть любую точку, которая принадлежит плоскости.
Обозначение: $overline{0}$.
Введем теперь, непосредственно, определение коллинеарных векторов.
Определение 5
Два ненулевых вектора будем называть перпендикулярными (ортогональными), если они лежат на каких-либо перпендикулярных прямых (рис.2).
«Как найти вектор, перпендикулярный вектору» 👇
Также введем определение скалярного произведения, которое будет нам необходимо далее.
Определение 6
Скалярным произведением двух данных векторов будем называть такой скаляр (или число), который равняется произведению длин двух этих векторов с косинусом угла между данными векторами.
Математически это может выглядеть следующим образом:
$overline{α}overline{β}=|overline{α}||overline{β}|cos∠(overline{α},overline{β})$
Скалярное произведение также можно найти с помощью координат векторов следующим образом
$overline{α}overline{β}=α_1 β_1+α_2 β_2+α_3 β_3$
Признак перпендикулярности через пропорциональность
Теорема 1
Чтобы ненулевые векторы были перпендикулярны между собой, необходимо и достаточно, чтобы их скалярное произведение этих векторов равнялось нулю.
Доказательство.
Необходимость: Пусть нам даны векторы $overline{α}$ и $overline{β}$, которые имеют координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно, причем они перпендикулярны друг другу. Тогда нам нужно доказать следующее равенство
$overline{α}cdot overline{β}=0$
Так как векторы $overline{α}$ и $overline{β}$ перпендикулярны, то угол между ними равняется $90^0$. Найдем скалярное произведение данных векторов по формуле из определения 6.
$overline{α}cdot overline{β}=|overline{α}||overline{β}|cos90^circ =|overline{α}||overline{β}|cdot 0=0$
Достаточность: Пусть верно равенство $overline{α}cdot overline{β}=0$. Докажем, что векторы $overline{α}$ и $overline{β}$ будут перпендикулярны друг другу.
По определению 6, будет верно равенство
$|overline{α}||overline{β}|cos∠(overline{α},overline{β})=0$
$cos∠(overline{α},overline{β})=0$
$∠(overline{α},overline{β})=90^circ$
Следовательно, векторы $overline{α}$ и $overline{β}$ будут перпендикулярны друг другу.
Теорема доказана.
Пример 1
Доказать, что векторы с координатами $(1,-5,2)$ и $(2,1,3/2)$ перпендикулярны.
Доказательство.
Найдем скалярное произведение для этих векторов через формулу, данную выше
$overline{α}cdot overline{β}=1cdot 2+(-5)cdot 1+2cdot frac{3}{2}=2cdot 5+3=0$
Значит, по теореме 1, эти вектор перпендикулярны.
Нахождение перпендикулярного вектора к двум данным векторам через векторное произведение
Введем вначале понятие векторного произведения.
Определение 7
Векторным произведением двух векторов будем называть такой вектор, который будет перпендикулярен обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.
Обозначение: $overline{α}хoverline{β}$.
Чтобы найти векторное произведение, будем пользоваться формулой
$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}$
Так как вектор векторного произведения двух векторов перпендикулярен обоим этим векторам, то он и будет иском вектором. То есть, для того, чтоб найти перпендикулярный для двух векторов вектор, нужно просто найти их векторное произведение.
Пример 2
Найти вектор, перпендикулярный к векторам с координатами $overline{α}=(1,2,3)$ и $overline{β}=(-1,0,3)$
Решение.
Найдем векторное произведение данных векторов.
$overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\1&2&3\-1&0&3end{vmatrix}=(6-0)overline{i}-(3+3)overline{j}+(0+2)overline{k}=6overline{i}-6overline{j}+2overline{k}=(6,6,2)$
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Short answer: the vector $(s_z,(z + s_z) – x^2, -x y, -x,(z + s_z))$ with $s_z := text{sign}(z) , |(x,y,z)|$ is orthogonal to the vector $(x,y,z)$.
Note that we assume that $text{sign}(x)$ is defined as $+1$ for $x ge 0$ and as $-1$ otherwise.
Let $(x,y,z)$ be a vector with norm s and z > -s then the following matrix is an orthogonal basis where every basis vector has norm s:
$left(
begin{array}{ccc}
s – frac{x^2}{z+s} & -frac{x y}{z+s} & x \
-frac{x y}{z+s} & s – frac{y^2}{z+s} & y \
-x & -y & z \
end{array}
right)$
There are two notable cases if z = -s:
- The vector is of form $(0,0,z)$ with z < 0 and we can simply invert it before applying the formula above. As shown below this can be exploited to get a branch-free implementation.
- The vector is the zero vector $(0,0,0)$. “perpendicular” doesn’t make much sense in case of the null vector. If you interpret it as “dot product is zero” than you can just return the zero vector.
We can deal with these two problems as follows:
Let’s look at the first vector: $(s – frac{x^2}{z+s}, -frac{x y}{z+s}, -x)$. The singularity at $(0,0,-1)$ can be avoided by inverting the input vector and then inverting the result which gives: $(-s – frac{x^2}{z-s}, -frac{x y}{z-s}, -x)$.
Following this idea we can set $s_z := text{sign}(z) , s$ and compute an orthogonal basis vector for any non-null vector $(x,y,z)$ as:
$(s_z – frac{x^2}{z + s_z}, -frac{x y}{z + s_z}, -x)$
This leads to a nice branch-free C++ implementation for a normalized vector:
Vector3 OrthoNormalVector(double x, double y, double z) {
const double g = std::copysign(1., z);
const double h = z + g;
return Vector3(g - x*x/h, -x*y/h, -x);
}
Check the implementation of copysign on your platform to make sure that copysign(1., 0.) returns 1 and not 0.
For an arbitrary vector, not necessarily normalized, we can use a little trick to get an orthogonal vector: we scale the vector by the factor $z+s_z$ to get:
$(s_z,(z + s_z) – x^2, -x y, -x,(z + s_z))$
This vector is still orthogonal to the original vector $(x,y,z)$ as it was just scaled by a factor. It also has zero norm if and only if the norm of the original vector is 0.
This leads again to a branch-free implementation:
Vector3 OrthogonalVector(double x, double y, double z) {
const double s = std::sqrt(x*x + y*y + z*z);
const double g = std::copysign(s, z); // note s instead of 1
const double h = z + g;
return Vector3(g*h - x*x, -x*y, -x*h);
}
Нормальный вектор прямой, координаты нормального вектора прямой
Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.
Нормальный вектор прямой – определение, примеры, иллюстрации
Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.
Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.
Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.
Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а 1 параллельные, а n → считается нормальным вектором прямой a , также считается нормальным вектором для прямой a 1 . Когда прямая а имеет прямой вектор, тогда вектор t · n → является ненулевым при любом значении параметра t , причем также является нормальным для прямой a .
Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.
Если задана плоскость О х у , то множеством векторов для О х является координатный вектор j → . Он считается ненулевым и принадлежащим координатной оси О у , перпендикулярной О х . Все множество нормальных векторов относительно О х можно записать, как t · j → , t ∈ R , t ≠ 0 .
Прямоугольная система O x y z имеет нормальный вектор i → , относящийся к прямой О z . Вектор j → также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный О z , считается нормальным для O z .
Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой
При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.
Задана прямая вида 2 x + 7 y – 4 = 0 _, найти координаты нормального вектора.
По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты , которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2 , 7 .
Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.
Указать нормальный вектор для заданной прямой y – 3 = 0 .
По условию нам дано общее уравнение прямой, значит запишем его таким образом 0 · x + 1 · y – 3 = 0 . Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0 , 1 .
Если дано уравнение в отрезках вида x a + y b = 1 или уравнение с угловым коэффициентом y = k · x + b , тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.
Найти координаты нормального вектора, если дано уравнение прямой x 1 3 – y = 1 .
Для начала необходимо перейти от уравнения в отрезках x 1 3 – y = 1 к уравнению общего вида. Тогда получим, что x 1 3 – y = 1 ⇔ 3 · x – 1 · y – 1 = 0 .
Отсюда видно, что координаты нормального вектора имеют значение 3 , – 1 .
Ответ: 3 , – 1 .
Если прямая определена каноническим уравнением прямой на плоскости x – x 1 a x = y – y 1 a y или параметрическим x = x 1 + a x · λ y = y 1 + a y · λ , тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a → = ( a x , a y ) . Возможность нахождения координат нормального вектора n → возможно, благодаря условию перпендикулярности векторов n → и a → .
Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:
x – x 1 a x = y – y 1 a y ⇔ a y · ( x – x 1 ) = a x · ( y – y 1 ) ⇔ a y · x – a x · y + a x · y 1 – a y · x 1 x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x – x 1 a x = y – y 1 a y ⇔ a y · x – a x · y + a x · y 1 – a y · x 1 = 0
Для решения можно выбирать любой удобный способ.
Найти нормальный вектор заданной прямой x – 2 7 = y + 3 – 2 .
Из прямой x – 2 7 = y + 3 – 2 понятно, что направляющий вектор будет иметь координаты a → = ( 7 , – 2 ) . Нормальный вектор n → = ( n x , n y ) заданной прямой является перпендикулярным a → = ( 7 , – 2 ) .
Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a → = ( 7 , – 2 ) и n → = ( n x , n y ) запишем a → , n → = 7 · n x – 2 · n y = 0 .
Значение n x – произвольное , следует найти n y . Если n x = 1 , отсюда получаем, что 7 · 1 – 2 · n y = 0 ⇔ n y = 7 2 .
Значит, нормальный вектор имеет координаты 1 , 7 2 .
Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем
x – 2 7 = y + 3 – 2 ⇔ 7 · ( y + 3 ) = – 2 · ( x – 2 ) ⇔ 2 x + 7 y – 4 + 7 3 = 0
Полученный результат координат нормального вектора равен 2 , 7 .
Ответ: 2 , 7 или 1 , 7 2 .
Указать координаты нормального вектора прямой x = 1 y = 2 – 3 · λ .
Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:
x = 1 y = 2 – 3 · λ ⇔ x = 1 + 0 · λ y = 2 – 3 · λ ⇔ λ = x – 1 0 λ = y – 2 – 3 ⇔ x – 1 0 = y – 2 – 3 ⇔ ⇔ – 3 · ( x – 1 ) = 0 · ( y – 2 ) ⇔ – 3 · x + 0 · y + 3 = 0
Отсюда видно, что координаты нормального вектора равны – 3 , 0 .
Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат О х у z .
Когда прямая задается при помощи уравнений пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда нормальный вектор плоскости относится к A 2 x + B 2 y + C 2 z + D 2 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда получаем запись векторов в виде n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) .
Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x – x 1 a x = y – y 1 a y = z – z 1 a z или параметрического, имеющего вид x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , отсюда a x , a y и a z считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a → = ( a x , a y , a z ) . Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a → = ( a x , a y , a z ) .
Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору
Пусть дана некоторая точка М0 и вектор n. Проведем через точку М0 прямую l перпендикулярно вектору n (рис. 82).
Пусть M – произвольная точка. Точка M лежит на прямой l в том и только в том случае, когда вектор (overrightarrowM>) перпендикулярен вектору n, а для этого необходимо и достаточно, чтобы скалярное произведение векторов n и (overrightarrowM>) равнялось нулю:
Чтобы выразить последнее равенство в координатах, введем прямоугольную декартову систему координат. Пусть точки M0 и M имеют координаты (x0 ; у0 ) и (x; у).
Тогда (overrightarrowM>) = (x – x0; у – у0). Обозначим координаты нормального вектора n через (А; В). Теперь равенство (1) можно записать так:
Уравнение (2) есть уравнение прямой l, проходящей через данную точку М0 (x0; у0) перпендикулярно данному вектору n = (А; В).
Задача 1. Составить уравнение прямой, проходящей через точку А (2; -3) перпендикулярно вектору n = (-1;5) (рис.83).
Пользуясь формулой (2), находим уравнение данной прямой:
– 1 • (x-2) + 5 • (у + 3) = 0
или, окончательно, x – 5у – 17 = 0.
Задача 2. Даны точки M1(2; -1) и M2(4; 5). Написать уравнение прямой, проходящей через точку М1 перпендикулярно вектору (overrightarrowM_<2>>).
Нормальный вектор искомой прямой n = (overrightarrowM_<2>>) имеет координаты (2; 6) (рис. 84).
Следовательно, по формуле (2) получим уравнение
Задача 3. В треугольнике с вершинами в точках M1(-5; 2), M2(5; 6) и M3(1; -2) проведена медиана M1А1. Требуется составить уравнение прямой, проходящей через точку А1 перпендикулярно медиане M1A1 (рис. 85).
За нормальный вектор искомой прямой можно принять вектор n = (overrightarrowA_<1>>). Определим его координаты. Точка A1 – середина отрезка M2M3, поэтому, если (x1; y1) – ее координаты, то ( x_1 = frac<5+1><2>=3, ;;а ;; y_1=frac<6-2><2>=2 ).
Тогда нормальный вектор n = (overrightarrowA_<1>>) имеет координаты (8; 0). Следовательно, искомое уравнение прямой имеет вид
Задача 4. Дан треугольник с вершинами в точках А(-3; -1), В(2; 7) и С(5; 4). Требуется составить уравнение прямой, проходящей через вершину С перпендикулярно стороне AB (рис. 86).
За нормальный вектор искомой прямой можно взять вектор n = (overrightarrow).
Так как n = (2-(-3); 7 – (-1)) = (5; 8), то, подставляя координаты точки С и координаты вектора n в формулу (2), получим
или, окончательно, 5х + 8у – 57 = 0.
2.2.5. Нормальный вектор прямой
Или вектор нормали.
Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), но нам хватит одного:
Если прямая задана общим уравнением в декартовой системе координат, то вектор является вектором нормали данной прямой.
Обратите внимание, что это утверждение справедливо лишь для «школьной» системы координат; все предыдущие выкладки п. 2.2 работают и в общем аффинном случае.
Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения:
И тут всё ещё проще: если координаты направляющего вектора приходилось аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».
Приведу примеры с теми же уравнениями, что и для направляющего вектора:
Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Нутром чувствуется, можно. Ведь вектор нормали ортогонален направляющему вектору и образует с ним «жесткую конструкцию».
[spoiler title=”источники:”]
http://razdupli.ru/teor/116_uravnenie-pryamoj-prohodyacshej-cherez-dannuyu-tochku-perpendikulyarno-dannomu-vektoru.php
http://mathter.pro/angem/2_2_5_normalnyi_vektor_pryamoy.html
[/spoiler]
6
Лекция
9.
Аналитическая
геометрия в пространстве.
Общее
уравнение плоскости.
Определение.
Плоскостью
называется
поверхность, все точки которой
удовлетворяют общему уравнению:
Ax
+ By
+ Cz
+ D
= 0,
где
А, В, С – координаты вектора
-вектор
нормали
к плоскости.
Возможны
следующие частные случаи:
А
= 0 – плоскость параллельна оси Ох
В
= 0 – плоскость параллельна оси Оу
С
= 0 – плоскость параллельна оси Оz
D
= 0 – плоскость проходит через начало
координат
А
= В = 0 – плоскость параллельна плоскости
хОу
А
= С = 0 – плоскость параллельна плоскости
хОz
В
= С = 0 – плоскость параллельна плоскости
yOz
А
= D
= 0 – плоскость проходит через ось Ох
В
= D
= 0 – плоскость проходит через ось Оу
С
= D
= 0 – плоскость проходит через ось Oz
А
= В = D
= 0 – плоскость совпадает с плоскостью
хОу
А
= С = D
= 0 – плоскость совпадает с плоскостью
xOz
В
= С = D
= 0 – плоскость совпадает с плоскостью
yOz
Уравнение
плоскости, проходящей через три точки.
Для
того, чтобы через три какие- либо точки
пространства можно было провести
единственную плоскость, необходимо,
чтобы эти точки не лежали на одной
прямой.
Рассмотрим
точки М1(x1,
y1,
z1),
M2(x2,
y2,
z2),
M3(x3,
y3,
z3)
в декартовой системе координат.
Для
того, чтобы произвольная точка М(x,
y,
z)
лежала в одной плоскости с точками М1,
М2,
М3
необходимо, чтобы векторы
были компланарны т.е. их смешанное
произведение:
()
= 0
Таким
образом,
Уравнение
плоскости, проходящей через три точки:
Уравнение
плоскости проходящей через две точки
параллельно вектору.
Пусть
заданы точки М1(x1,
y1,
z1),
M2(x2,
y2,
z2)
и вектор
.
Составим
уравнение плоскости, проходящей через
данные точки М1
и М2
и произвольную точку М(х, у, z)
параллельно вектору
.
Векторы
и вектор
должны быть компланарны, т.е.
()
= 0
Уравнение
плоскости:
Уравнение
плоскости проходящей через точку
параллельно двум векторам.
Пусть
заданы два вектора
и
,
коллинеарные плоскости и точка М1(х1,
у1,
z1).
Тогда для произвольной точки М(х, у, z),
принадлежащей плоскости, векторы
должны быть компланарны.
Уравнение
плоскости:
Уравнение
плоскости проходящей через точку
перпендикулярной вектору.
Теорема.
Если в
пространстве задана точка М0(х0,
у0,
z0),
то уравнение плоскости, проходящей
через точку М0
перпендикулярно вектору нормали
(A,
B,
C)
имеет вид:
A(x
– x0)
+ B(y
– y0)
+ C(z
– z0)
= 0.
Доказательство.
Для произвольной точки М(х, у, z),
принадлежащей плоскости, составим
вектор
.
Т.к. вектор
– вектор нормали, то он перпендикулярен
плоскости, а, следовательно, перпендикулярен
и вектору
.
Тогда скалярное произведение
=
0
Таким
образом, получаем уравнение плоскости
Теорема
доказана.
Уравнение
плоскости в отрезках.
Если
в общем уравнении Ах + Ву + Сz
+ D
= 0 поделить обе части на -D
,
заменив
,
получим уравнение плоскости в отрезках:
Числа
a,
b,
c
отрезки отсекаемые плоскостью при
пересечении соответственно осей х, у,
z
декартовой прямоугольной системы
координат.
Уравнение
плоскости в векторной форме.
где
–
радиус- вектор текущей точки М(х, у, z),
– единичный вектор,
имеющий направление, перпендикуляра,
опущенного на плоскость из начала
координат.
,
и
– углы, образованные этим вектором с
осями х, у, z.
p
– длина этого перпендикуляра.
В
координатах это уравнение имеет вид:
xcos
+ ycos
+ zcos
– p
= 0.
Параметрическое
уравнение плоскости
Пусть
в пространстве задана точка М0(х0,
у0,
z0)
и два неколлинеарных вектора
(p1,
p2,
p3)
и
(q1,
q2,
q3).
Пусть М(х, у, z)
текущая точка плоскости. Так как векторы
и
неколлинеарны, то они на плоскости
составляют базис, по которому разложим
вектор
=t+s,
где t,s
– параметры. Поместим произвольно на
плоскость декартову прямоугольную
систему координат так, что бы оси Ох и
Оу лежали в плоскости. Из центра О
проведем в точки М0
и M
радиусы векторы
и
.
Тогда
=–и
=+t+s
.
Это
параметрическое уравнение плоскости
в векторной форме, а в скалярной форме
x=x0
+p1t
+ q1
s
y=y0
+p2t
+ q2
s
z=z0
+p3t
+ q3
s
Расстояние от
точки до плоскости.
Расстояние
от произвольной точки М0(х0,
у0,
z0)
до плоскости Ах+Ву+Сz+D=0
равно:
Пример.
Найти уравнение плоскости, зная, что
точка Р(4; -3; 12) – основание перпендикуляра,
опущенного из начала координат на эту
плоскость.
Таким
образом, A
= 4/13; B
= -3/13; C
= 12/13, воспользуемся формулой:
A(x
– x0)
+ B(y – y0)
+ C(z – z0)
= 0.
Пример.
Найти уравнение плоскости, проходящей
через две точки
P(2;
0; -1) и Q(1;
-1; 3) перпендикулярно плоскости 3х + 2у –
z
+ 5 = 0.
Вектор
нормали к плоскости 3х + 2у – z
+ 5 = 0
параллелен
искомой плоскости.
Получаем:
Пример.
Найти уравнение плоскости, проходящей
через точки А(2, -1, 4) и
В(3,
2, -1) перпендикулярно плоскости х
+ у
+ 2z
– 3 = 0.
Искомое
уравнение плоскости имеет вид: Ax
+ By
+ Cz
+ D
= 0, вектор нормали к этой плоскости
(A,
B,
C).
Вектор
(1,
3, -5) принадлежит плоскости. Заданная
нам плоскость, перпендикулярная искомой
имеет вектор нормали
(1,
1, 2). Т.к. точки А и В принадлежат обеим
плоскостям, а плоскости взаимно
перпендикулярны, то
Таким
образом, вектор нормали
(11,
-7, -2). Т.к. точка А принадлежит искомой
плоскости, то ее координаты должны
удовлетворять уравнению этой плоскости,
т.е. 112
+ 71
– 24
+ D
= 0; D
= -21.
Итак,
получаем уравнение плоскости: 11x
– 7y
– 2z
– 21 = 0.
Пример.
Найти уравнение плоскости, зная, что
точка Р(4, -3, 12) – основание перпендикуляра,
опущенного из начала координат на эту
плоскость.
Находим
координаты вектора нормали
=
(4, -3, 12). Искомое уравнение плоскости
имеет вид: 4x
– 3y
+ 12z
+ D
= 0. Для нахождения коэффициента D
подставим в уравнение координаты точки
Р:
16
+ 9 + 144 + D
= 0
D
= -169
Итак,
получаем искомое уравнение: 4x
– 3y
+ 12z
– 169 = 0
Пример.
Даны координаты вершин пирамиды
А1(1;
0; 3), A2(2;
-1; 3), A3(2;
1; 1), A4(1;
2; 5).
-
Найти
длину ребра А1А2.
-
Найти
угол между ребрами А1А2
и А1А4.
Найти
угол между ребром А1А4
и гранью А1А2А3.
Сначала
найдем вектор нормали к грани А1А2А3
–
как векторное произведение векторов
и.
=
(2-1;
1-0; 1-3) = (1; 1; -2);
Найдем
угол между вектором нормали и вектором
.
-4
– 4 = -8.
Искомый
угол
между вектором и плоскостью будет равен
= 900
– .
-
Найти
площадь грани А1А2А3.
-
Найти
объем пирамиды.
(ед3).
-
Найти
уравнение плоскости А1А2А3.
Воспользуемся
формулой уравнения плоскости, проходящей
через три точки.
2x
+ 2y
+ 2z
– 8 = 0
x
+ y
+ z
– 4 = 0;