Онлайн калькулятор для нахождения координат вектора на плоскости по двум или по трём точкам в пространстве.
Чтобы узнать координаты вектора в плоскости (i,j) или найти координаты вектора в пространстве (i,j,k), необходимо произвести ряд однотипных вычислений на основе координат точек его начала и конца.
Предположим, нам дана точка начала вектора A с координатами (1;2) и точка конца вектора с координатами B(3;5). Для того чтобы рассчитать координаты самого вектора необходимо отнять координату начала от координаты конца вдоль каждой оси.
[ bar{i}=x_{2}-x_{1}=3-1=2 ]
[ bar{j}=y_{2}-y_{1}=5-2=3 ]
Таким образом, координатами вектора становятся (2;3), причем порядок расположения координат строго соблюдается. Аналогично происходит, если отталкиваться от координат в пространстве (x,y,z).
[ A(0;3;1) ]
[ B(2;2;1) ]
[ bar{i}=x_{2}-x_{1}=2-0=2 ]
[ bar{j}=y_{2}-y_{1}=2-3=-1 ]
[ bar{k}=z_{2}-z_{1}=1-1=0 ]
Координаты вектора: [ = (2,-1,0) ]
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»
Чтобы узнать координаты вектора в плоскости (i,j) или найти координаты вектора в пространстве (i,j,k), необходимо произвести ряд однотипных вычислений на основе координат точек его начала и конца.
Предположим, нам дана точка начала вектора A с координатами (1;2) и точка конца вектора с координатами B(3;5). Для того чтобы рассчитать координаты самого вектора необходимо отнять координату начала от координаты конца вдоль каждой оси.
i=x2-x1=3-1=2
j=y2-y1=5-2=3
Таким образом, координатами вектора становятся (2;3), причем порядок расположения координат строго соблюдается. Аналогично происходит, если отталкиваться от координат в пространстве (x,y,z).
A(0;3;1)
B(2;2;1)
i=x2-x1=2-0=2
j=y2-y1=2-3=-1
k=z2-z1=1-1=0
Координаты вектора: (2,-1,0).
1.5.1. Как найти вектор по двум точкам?
Если даны две точки плоскости и , то вектор имеет следующие координаты:
Если даны две точки пространства и , то вектор имеет следующие координаты:
То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора. Таким образом, для противоположно направленного вектора формулы запишутся так:
Задача 1
Даны две точки плоскости и . Найти координаты вектора
Решение: по соответствующей формуле:
Как вариант, можно использовать следующую запись:
Эстеты решат и так:
Лично я привык к первой версии записи.
Ответ:
По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения важного момента, не поленюсь:
И момент здесь таков:
в чём различие между координатами точек и координатами векторов?
Координаты точек – это обычные координаты в прямоугольной системе координат (единичные векторы тут вообще ни при чём). Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.
Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании мы легко можем переобозначить его через и отложить от какой-нибудь другой точки плоскости. Следует отметить, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .
Записи координат точек и координат вектора формально одинаковы, но смысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.
Дамы и господа, набиваем руку:
Задача 2
а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .
Пожалуй, достаточно…. Не пропускаем! Решаем письменно и «от руки»! Чертежи делать не нужно (коль скоро, не требовалось). Решения и ответы в конце книги.
Для проверки вычислений удобно использовать Геометрический калькулятор, приложенные к данному курсу. Дабы избежать нелепых ошибок а-ля «2 + 2 = 5». А подобные «затмения» бывают. Даже у профессоров. Отвлёкся – и студентка сбежала 🙂
[spoiler title=”источники:”]
Координаты вектора по двум точкам можно вычислять вручную или при помощи онлайн-калькулятора. Сервис используют при решении плоских и пространственных задач. Для этого необходимо знать начальную и конечную точку вектора. После внесения значений в соответствующие окошки и нажатия клавиши «Решение», ответ появляется на экране в течение нескольких минут.
Кто и для чего использует сервис?
Калькулятор координаты вектора по двум точкам – удобный инструмент. Им обычно пользуются:
- школьники и студенты при выполнении письменных работ разного уровня;
- преподаватели при проверке правильности выполнения заданий.
Сервис прост в использовании, поэтому он пользуется спросом у родителей, которые контролируют, как дети выполняют домашние задания.
Инструмент доступен для всех пользователей фриланс-биржи «Напишем».
Вектором называется направленный отрезок AB; точка A – начало, точка B – конец вектора
Чтобы найти координаты вектора AB, зная координаты его начальной точки А и конечной точки В, необходимо из координат конечной точки вычесть соответствующие координаты начальной точки.
Формула определения координат вектора для плоских задач
В случае плоской задачи вектор AB заданный координатами точек A(Ax ; Ay) и B(Bx ; By) можно найти воспользовавшись следующей формулой
AB = {Bx-Ax; By-Ay}
Формула определения координат вектора для пространственных задач
В случае пространственной задачи вектор AB заданный координатами точек A(Ax; Ay; Az) и B(Bx; By; Bz) можно найти воспользовавшись следующей формулой
AB = {Bx-Ax ; By-Ay ; Bz-Az}
Формула определения координат вектора для n -мерного пространства
В случае n-мерного пространства вектор AB заданный координатами точек A(A1 ; A2 ; … ; An) и B(B1 ; B2 ; … ; Bn) можно найти воспользовавшись следующей формулой
AB = {B1-A1 ; B2-A2 ; … ; Bn-An}
Примеры задач
Рассмотрим несколько задач связанных с определением координат вектора по двум точкам
Пример 1.
Найти координаты вектора AB, если A(1; 4), B(3; 1). Решение: AB = {3-1; 1-4} = {2; -3}.
Пример 2.
Найти координаты точки B вектора AB = {5; 1}, если координаты точки A(3; -4). Решение: AB x = B x-A x => B x = AB x + A x => B x = 5 + 3 = 8
AB y = B y-A y => B y = AB y + A y => B y = 1 + (-4) = -3 Ответ: B(8;-3).
Пример 3.
Найти координаты вектора AB, если A(1; 4; 5), B(3; 1; 1). Решение: AB = {3-1; 1-4; 1-5} = {2; -3; -4}.
Пример 4.
Найти координаты вектора AB, если A(1; 4; 5; 5; -3), B(3; 0; 1; -2; 5). Решение: AB = {3-1; 0-4; 1-5; -2-5; 5-(-3)} = {2; -4; -4; -7; 8}.