Как найти вектор по точкам в пространстве

Содержание:

  • Формула
  • Примеры нахождения координат вектора по точкам

Формула

Чтобы найти координаты вектора $overline{A B}$ на плоскости, если он задан координатами своих начала $Aleft(x_{1} ; y_{1}right)$ и конца $Bleft(x_{2} ; y_{2}right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть

$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1}right)$$

Чтобы найти координаты вектора $overline{A B}$, заданного в пространстве координатами $Aleft(x_{1} ; y_{1} ; z_{1}right)$ и $Bleft(x_{2} ; y_{2} ; z_{2}right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:

$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1} ; z_{2}-z_{1}right)$$

Примеры нахождения координат вектора по точкам

Пример

Задание. Даны точки
$A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline{A B}$ и
$overline{B A}$

Решение. Для вектора $overline{A B}$ точка $A$ является началом, а точка $B$ – концом. Тогда координаты вектора $overline{A B}$ равны

$$overline{A B}=(2-4 ; 1-(-1))=(-2 ; 2)$$

Для вектора точка
$B$ является началом, а точка
$A$ – концом. Тогда координаты вектора $overline{B A}$ равны

$$overline{B A}=(4-2 ;-1-1)=(2 ;-2)$$

Ответ. $overline{A B}=(-2 ; 2), overline{B A}=(2 ;-2)$

Пример

Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов
$overline{A B}$,
$overline{A C}$,
$overline{B C}$

Решение. Для искомого вектора
$overline{A B}$ точка
$A$ является началом, а точка
$B$ – концом. Тогда координаты вектора
$overline{A B}$ соответственно равны:

$$overline{A B}=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$

Для вектора $overline{A C}$ точка
$A$ является началом, а точка
$C$ – концом. Тогда его координаты соответственно равны

$$overline{A C}=(0-1 ;-1-(-2) ; 1-0,5)=(-1 ; 1 ; 0,5)$$

Для вектора $overline{B C}$ точка
$B$ является началом, а точка
$C$ – концом. Его координаты равны

$$overline{B C}=(0-3 ;-1-2 ; 1-1,5)=(-3 ;-3 ;-0,5)$$

Ответ. $overline{A B}=(2 ; 4 ; 1), overline{A C}=(-1 ; 1 ; 0,5), overline{B C}=(-3 ;-3 ;-0,5)$

Читать дальше: как найти сумму векторов.

  • Как найти сумму векторов
  • Как найти скалярное произведение векторов
  • Как найти векторное произведение векторов
  • Как найти смешанное произведение векторов
  • Как найти вектор коллинеарный вектору
  • Как найти вектор перпендикулярный вектору
  • Как найти орт вектора
  • Как найти разность векторов
  • Как найти проекцию вектора
  • Как найти длину вектора
  • Как найти модуль вектора
  • Как найти координаты вектора
  • Как найти направляющие косинусы вектора
  • Как найти угол между векторами
  • Как найти косинус угла между векторами

Как найти вектор по точкам

ФОРМУЛА

Чтобы найти координаты вектора (
overline{A B}
)на плоскости, если он задан координатами его начала (
Aleft(x_{1} ; y_{1}right)
) и (
Bleft(x_{2} ; y_{2}right)
) конца, необходимо вычесть соответствующие координаты начала из координат конца, то есть

(
overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1}right)
)

Чтобы найти координаты вектора (
overline{A B}
), заданного в пространстве по координатам (
Aleft(x_{1} ; y_{1} ; z_{1}right)
) и (
Bleft(x_{2} ; y_{2} ; z_{2}right)
), необходимо, по аналогии с плоским случаем, вычесть координаты начала из координат конца:

(
overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1} ; z_{2}-z_{1}right)
)

ПРИМЕРЫ НАХОЖДЕНИЯ КООРДИНАТ ВЕКТОРА ПО ТОЧКАМ

ПРИМЕР

  • Задание: Даны точки (
    A(4 ;-1)
    ) и (
    B(2 ; 1)
    ). Найти координаты векторов (
    overline{A B}
    ) и (
    overline{B A}
    )
  • Решение: Для вектора (
    overline{A B}
    ) точка (
    mathrm{A}
    ) является началом, а точка (
    B
    ) – концом. Тогда координаты вектора (
    overline{B A}
    )равны

    (
    overline{A B}=(2-4 ; 1-(-1))=(-2 ; 2)
    )

    Для вектора (
    overline{B A}
    ) точка (
    B
    ) является началом, а точка (
    mathrm{A}
    ) – концом. Тогда координаты вектора (
    overline{B A}
    )равны

    (
    overline{B A}=(4-2 ;-1-1)=(2 ;-2)
    )

  • Ответ: (
    overline{A B}=(-2 ; 2)
    )

    (
    overline{B A}=(2 ;-2)
    )

    ПРИМЕР

  • Задание: Даны три точки в пространстве точки (
    A(1 ;-2 ; 0,5)
    ) , (
    B(3 ; 2 ; 1,5)
    ) и (
    C(0 ;-1 ; 1)
    ). Найти координаты векторов (
    overline{A B}, overline{A C}, overline{B C}
    )
  • Решение. Для искомого вектора (
    overline{A B}
    ) точка (
    mathrm{A}
    ) является началом, а точка (
    B
    ) – концом. Тогда координаты вектора (
    overline{A B}
    )соответственно равны:

    (
    overline{A B}=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)
    )

    Для вектора (
    overline{A C}
    )точка (
    mathrm{A}
    ) является началом, а точка (
    mathrm{C}
    ) – концом. Тогда его координаты соответственно равны

    (
    overline{A C}=(0-1 ;-1-(-2) ; 1-0,5)=(-1 ; 1 ; 0,5)
    )

    Для вектора (
    overline{B C}
    ) точка (
    B
    ) является началом, а точка (
    mathrm{C}
    ) – концом. Его координаты равны

    (
    overline{B C}=(0-3 ;-1-2 ; 1-1,5)=(-3 ;-3 ;-0,5)
    )

  • Ответ: (
    overline{A B}=(2 ; 4 ; 1)
    )

    (
    overline{A C}=(-1 ; 1 ; 0,5)
    )

    (
    overline{B C}=(-3 ;-3 ;-0,5)
    )

  • 

    1.5.1. Как найти вектор по двум точкам?

    Задача 1

    Даны две точки плоскости  и . Найти координаты вектора

    Решение: по соответствующей формуле:

    Как вариант, можно использовать следующую запись:

    Эстеты решат и так:

    Лично я привык к первой версии записи.

    Ответ:

    По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения

    важного момента, не поленюсь:

    И момент здесь таков:
    в чём различие между координатами точек и координатами векторов?

    Координаты точек – это обычные координаты в прямоугольной системе координат (единичные векторы тут

    вообще ни при чём). Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает

    строгим местом на плоскости, и перемещать их куда-либо нельзя.

    Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании мы легко можем переобозначить

    его через  и отложить от какой-нибудь другой точки

    плоскости. Следует отметить, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис,

    в данном случае ортонормированный базис плоскости .
    Записи координат точек  и координат

    вектора  формально одинаковы, но смысл

    координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и

    для пространства.

    Дамы и господа, набиваем руку:

    Задача 2

    а) Даны точки  и . Найти векторы  и .
    б) Даны точки  и . Найти векторы  и .
    в) Даны точки  и . Найти векторы  и .
    г) Даны точки . Найти векторы .

    Пожалуй, достаточно…. Не пропускаем! Решаем письменно и «от руки»! Чертежи делать не нужно (коль скоро, не требовалось).

    Решения и ответы в конце книги.

    Для проверки вычислений удобно использовать Геометрический калькулятор, приложенные к данному

    курсу. Дабы избежать нелепых ошибок а-ля «2 + 2 = 5». А подобные «затмения» бывают. Даже у профессоров. Отвлёкся – и

    студентка сбежала 🙂

    1.5.2. Как найти длину отрезка?

    1.4. Координаты вектора на плоскости и в пространстве

    | Оглавление |

    

    Автор: Aлeксaндр Eмeлин

    Онлайн калькулятор для нахождения координат вектора на плоскости по двум или по трём точкам в пространстве.

    Чтобы узнать координаты вектора в плоскости (i,j) или найти координаты вектора в пространстве (i,j,k), необходимо произвести ряд однотипных вычислений на основе координат точек его начала и конца.

    Предположим, нам дана точка начала вектора A с координатами (1;2) и точка конца вектора с координатами B(3;5). Для того чтобы рассчитать координаты самого вектора необходимо отнять координату начала от координаты конца вдоль каждой оси.
    [ bar{i}=x_{2}-x_{1}=3-1=2 ]
    [ bar{j}=y_{2}-y_{1}=5-2=3 ]

    Таким образом, координатами вектора становятся (2;3), причем порядок расположения координат строго соблюдается. Аналогично происходит, если отталкиваться от координат в пространстве (x,y,z).
    [ A(0;3;1) ]
    [ B(2;2;1) ]
    [ bar{i}=x_{2}-x_{1}=2-0=2 ]
    [ bar{j}=y_{2}-y_{1}=2-3=-1 ]
    [ bar{k}=z_{2}-z_{1}=1-1=0 ]
    Координаты вектора: [ = (2,-1,0) ]

    ×

    Пожалуйста напишите с чем связна такая низкая оценка:

    ×

    Для установки калькулятора на iPhone – просто добавьте страницу
    «На главный экран»

    Для установки калькулятора на Android – просто добавьте страницу
    «На главный экран»

    Нахождение координат вектора через координаты точек

    Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .

    Векторы i → и j → называют координатными векторами.

    Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.

    Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; – 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .

    Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .

    Таким образом, координаты равных векторов соответственно равны.

    Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.

    Изобразим координатную ось.

    Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → – O A → .

    O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .

    По правилу операций над векторами найдем A B → = O B → – O A → = x b – x a , y b – y a .

    Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.

    Для нахождения координат вектора, необходимо найти разность его точек конца и начала.

    Найти координаты O A → и A B → при значении координат точек A ( 2 , – 3 ) , B ( – 4 , – 1 ) .

    Для начала определяется радиус-вектор точки A . O A → = ( 2 , – 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.

    Получаем: A B → = ( – 4 – 2 , – 1 – ( – 3 ) ) = ( – 6 , 2 ) .

    Ответ: O A → = ( 2 , – 3 ) , A B → = ( – 6 , – 2 ) .

    Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , – 2 ) . Найти координаты конца A B → .

    Подставляем координаты точки A : A B → = ( x b – 3 , y b – 5 , z b – 7 ) .

    По условию известно, что A B → = ( 2 , 0 , – 2 ) .

    Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b – 3 = 2 y b – 5 = 0 z b – 7 = – 2

    Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5

    Ответ: B ( 5 , 5 , 5 ) .

    Векторы в пространстве и метод координат

    Существует два способа решения задач по стереометрии

    Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

    Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

    Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

    Система координат в пространстве

    Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

    Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

    Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

    Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


    Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

    Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

    Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

    Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

    Произведение вектора на число:

    Скалярное произведение векторов:

    Косинус угла между векторами:

    Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

    1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

    Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

    Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

    Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

    Запишем координаты векторов:

    и найдем косинус угла между векторами и :

    2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

    Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

    Координаты точек A, B и C найти легко:

    Из прямоугольного треугольника AOS найдем

    Координаты вершины пирамиды:

    Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

    Найдем координаты векторов и

    и угол между ними:

    Покажем теперь, как вписать систему координат в треугольную призму:

    3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

    Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

    Запишем координаты точек:

    Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
    отрезка.

    Найдем координаты векторов и , а затем угол между ними:

    Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

    Плоскость в пространстве задается уравнением:

    Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

    Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

    Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

    Покажем, как это делается.

    Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

    Уравнение плоскости выглядит так:

    Подставим в него по очереди координаты точек M, N и K.

    То есть A + C + D = 0.

    Аналогично для точки K:

    Получили систему из трех уравнений:

    В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

    Пусть, например, D = −2. Тогда:

    Выразим C и B через A и подставим в третье уравнение:

    Решив систему, получим:

    Уравнение плоскости MNK имеет вид:

    Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

    Вектор — это нормаль к плоскости MNK.

    Уравнение плоскости, проходящей через заданную точку имеет вид:

    Угол между плоскостями равен углу между нормалями к этим плоскостям:

    Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

    Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

    Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

    4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

    Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

    Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

    Итак, первый вектор нормали у нас уже есть:

    Напишем уравнение плоскости AEF.

    Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

    Пусть С = -1. Тогда A = B = 2.

    Уравнение плоскости AEF:

    Нормаль к плоскости AEF:

    Найдем угол между плоскостями:

    5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

    Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

    Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.

    Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

    «Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

    Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

    Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

    Координаты вектора — тоже:

    Находим угол между плоскостями, равный углу между нормалями к ним:

    Зная косинус угла, находим его тангенс по формуле

    Получим:

    Ответ:

    Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

    Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

    Находим синус угла между прямой m и плоскостью α по формуле:

    6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

    Как всегда, рисуем чертеж и выбираем систему координат

    Находим координаты вектора .

    Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

    Найдем угол между прямой и плоскостью:

    Ответ:

    Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

    7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

    Построим чертеж и выпишем координаты точек:

    Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

    Решим эту систему. Выберем

    Тогда

    Уравнение плоскости A1DB имеет вид:

    Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

    В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

    [spoiler title=”источники:”]

    Добавить комментарий