Уравнение высоты треугольника
Как составить уравнение высоты треугольника по координатам его вершин?
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Следовательно, для составления уравнения высоты треугольника нужно:
- Найти уравнение стороны треугольника.
- Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.
Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).
Написать уравнения высот треугольника.
1) Составим уравнение стороны BC треугольника ABC.
Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:
Таким образом, уравнение прямой BC —
Угловой коэффициент прямой, перпендикулярной BC,
Значит, уравнение высоты, проведённой к стороне BC, имеет вид
Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:
Итак, уравнение высоты, проведённой к стороне BC:
2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):
Уравнение прямой AB:
Угловой коэффициент перпендикулярной ей прямой
Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):
Угловой коэффициент прямой, перпендикулярной AC,
Таким образом, уравнение перпендикулярной AC прямой имеет вид
Подставив в него координаты точки B(5;-3), найдём b:
Итак, уравнение высоты треугольника ABC, опущенной из вершины B:
Вектор высоты в треугольнике
Как найти вектор высоты треугольника
Формулы для нахождения высоты треугольника
В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.
Нахождение высоты треугольника
Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.
Высота в разностороннем треугольнике
Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:
1. Через площадь и длину стороны
где S – площадь треугольника.
2. Через длины всех сторон
где p – это полупериметр треугольника, который рассчитывается так:
3. Через длину прилежащей стороны и синус угла
4. Через стороны и радиус описанной окружности
где R – радиус описанной окружности.
Высота в равнобедренном треугольнике
Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:
Высота в прямоугольном треугольнике
Высота, проведенная к гипотенузе, может быть найдена:
1. Через длины отрезков, образованных на гипотенузе
2. Через стороны треугольника
Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.
Высота в равностороннем треугольнике
Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:
Примеры задач
Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.
Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:
Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.
Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:
Уравнение высоты треугольника
Как составить уравнение высоты треугольника по координатам его вершин?
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Следовательно, для составления уравнения высоты треугольника нужно:
- Найти уравнение стороны треугольника.
- Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.
Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).
Написать уравнения высот треугольника.
1) Составим уравнение стороны BC треугольника ABC.
Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:
Таким образом, уравнение прямой BC —
Угловой коэффициент прямой, перпендикулярной BC,
Значит, уравнение высоты, проведённой к стороне BC, имеет вид
Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:
Итак, уравнение высоты, проведённой к стороне BC:
2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):
Уравнение прямой AB:
Угловой коэффициент перпендикулярной ей прямой
Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):
Угловой коэффициент прямой, перпендикулярной AC,
Таким образом, уравнение перпендикулярной AC прямой имеет вид
Подставив в него координаты точки B(5;-3), найдём b:
Итак, уравнение высоты треугольника ABC, опущенной из вершины B:
Как найти вектор высоты треугольника
И в итоге: x+2y+z-9=0
это вы написали уравнение плоскости, проходящей через точку С перпендикулярно АВ.
Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости
I. «Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости»
Нужно найти не длину, а уравнение CH.
II. «Можно воспользоваться двойным векторным произведением. и найти направляющий вектор высоты. »
То есть:
AC
AB
Нужно найти не длину, а уравнение CH. — Если найдёте `H`, то сможете написать уравнение по двум точкам.
Так? — Да. только вычисления не проверял. а в том, что получили, можно сократить на 36.
Уравнение высоты треугольника
Как составить уравнение высоты треугольника по координатам его вершин?
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Следовательно, для составления уравнения высоты треугольника нужно:
- Найти уравнение стороны треугольника.
- Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.
Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).
Написать уравнения высот треугольника.
1) Составим уравнение стороны BC треугольника ABC.
Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:
Таким образом, уравнение прямой BC —
Угловой коэффициент прямой, перпендикулярной BC,
Значит, уравнение высоты, проведённой к стороне BC, имеет вид
Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:
Итак, уравнение высоты, проведённой к стороне BC:
2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):
Уравнение прямой AB:
Угловой коэффициент перпендикулярной ей прямой
Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):
Угловой коэффициент прямой, перпендикулярной AC,
Таким образом, уравнение перпендикулярной AC прямой имеет вид
Подставив в него координаты точки B(5;-3), найдём b:
Итак, уравнение высоты треугольника ABC, опущенной из вершины B:
Векторы в пространстве и метод координат
Существует два способа решения задач по стереометрии
Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.
Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.
Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.
Система координат в пространстве
Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.
Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.
Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:
Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.
Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.
Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:
Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма
Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .
Произведение вектора на число:
Скалярное произведение векторов:
Косинус угла между векторами:
Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.
1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.
Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:
Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.
Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.
Запишем координаты векторов:
и найдем косинус угла между векторами и :
2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.
Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.
Координаты точек A, B и C найти легко:
Из прямоугольного треугольника AOS найдем
Координаты вершины пирамиды:
Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.
Найдем координаты векторов и
и угол между ними:
Покажем теперь, как вписать систему координат в треугольную призму:
3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1
Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.
Запишем координаты точек:
Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.
Найдем координаты векторов и , а затем угол между ними:
Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.
Плоскость в пространстве задается уравнением:
Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.
Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.
Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.
Покажем, как это делается.
Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).
Уравнение плоскости выглядит так:
Подставим в него по очереди координаты точек M, N и K.
То есть A + C + D = 0.
Аналогично для точки K:
Получили систему из трех уравнений:
В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.
Пусть, например, D = −2. Тогда:
Выразим C и B через A и подставим в третье уравнение:
Решив систему, получим:
Уравнение плоскости MNK имеет вид:
Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:
Вектор — это нормаль к плоскости MNK.
Уравнение плоскости, проходящей через заданную точку имеет вид:
Угол между плоскостями равен углу между нормалями к этим плоскостям:
Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.
Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.
Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.
4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.
Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.
Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.
Итак, первый вектор нормали у нас уже есть:
Напишем уравнение плоскости AEF.
Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.
Пусть С = -1. Тогда A = B = 2.
Уравнение плоскости AEF:
Нормаль к плоскости AEF:
Найдем угол между плоскостями:
5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.
Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂
Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».
Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?
«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.
Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .
Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:
Координаты вектора — тоже:
Находим угол между плоскостями, равный углу между нормалями к ним:
Зная косинус угла, находим его тангенс по формуле
Получим:
Ответ:
Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.
Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.
Находим синус угла между прямой m и плоскостью α по формуле:
6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.
Как всегда, рисуем чертеж и выбираем систему координат
Находим координаты вектора .
Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .
Найдем угол между прямой и плоскостью:
Ответ:
Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:
7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.
Построим чертеж и выпишем координаты точек:
Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D
Решим эту систему. Выберем
Тогда
Уравнение плоскости A1DB имеет вид:
Дальше все просто. Находим расстояние от точки A до плоскости A1DB:
В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.
Вектор высоты треугольника в пространстве
И в итоге: x+2y+z-9=0
это вы написали уравнение плоскости, проходящей через точку С перпендикулярно АВ.
Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости
I. «Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости»
Нужно найти не длину, а уравнение CH.
II. «Можно воспользоваться двойным векторным произведением. и найти направляющий вектор высоты. »
То есть:
AC<2,2,2>
AB
Нужно найти не длину, а уравнение CH. – Если найдёте `H`, то сможете написать уравнение по двум точкам.
Так? – Да. только вычисления не проверял. а в том, что получили, можно сократить на 36.
[spoiler title=”источники:”]
http://b4.cooksy.ru/articles/vektor-vysoty-v-treugolnike-2
http://diary.ru/~eek/p183898406_uravnenie-vysoty-treugolnika-v-prostranstve.htm
[/spoiler]
Высота, проведенная к стороне АС, перпендикулярна к стороне АС по определению. Значит вектор высоты, обозначим его Х (х1,х2), должен быть перпендикулярным к вектору АС.
В качестве вектора высоты Х можно взять вектор
Х (с2-а2, -с1+а1). Чтобы проверить, что этот вектор перпендикулярен к вектору АС, надо посчитать скалярное произведение.
Получаем:
(с1-а1)*(с2-а2) + (с2-а2)*(-с1+а1) = 0
Раз скалярное произведение равно нулю, значит векторы перпендикулярны, что нам и нужно.
вектор a(2, -1, 1) вектор b (0, 4, 1)
задан 27 Янв ’14 18:40
Длины векторов легко находятся. Далее через скалярное произведение выражаем косинус угла. Зная косинус, находим синус. Через синус и длины выражаем площадь. Длина разности векторов — это противолежащая сторона. Поделив на неё удвоенную площадь, находим длину высоты.
Здравствуйте
Математика — это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.
И в итоге: x+2y+z-9=0
это вы написали уравнение плоскости, проходящей через точку С перпендикулярно АВ.
Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости
I. «Теперь нужно найти точку пересечения прямой АВ с этой плоскостью (пусть это точка Н),
тогда расстояние от С до Н и будет равно длине высоты.
Т.е.:
1) составляйте уравнение АВ (лучше параметрическое)
2) ищите точку пересечения прямой и плоскости»
Нужно найти не длину, а уравнение CH.
II. «Можно воспользоваться двойным векторным произведением. и найти направляющий вектор высоты. »
То есть:
AC<2,2,2>
AB
Нужно найти не длину, а уравнение CH. — Если найдёте `H`, то сможете написать уравнение по двум точкам.
Так? — Да. только вычисления не проверял. а в том, что получили, можно сократить на 36.
Сообщения без ответов | Активные темы
Автор | Сообщение | ||
---|---|---|---|
Заголовок сообщения: Найдите координаты вектора высоты треугольника Добавлено: 09 янв 2018, 15:48 |
|||
|
Здравствуйте! Что то не складывается, подсобите найти ошибку в решении. Даны вершины треугольника А(4; 6), В(–4; 0) и С(–1; –4). Мои рассуждения: Верны ли мои рассуждения?
|
||
Вернуться к началу |
|
||
_Sasha_ |
Заголовок сообщения: Re: Найдите координаты вектора высоты треугольника Добавлено: 09 янв 2018, 15:58 |
RETU писал(а): Верны ли мои рассуждения? Да, верны. RETU писал(а): Что то не складывается, подсобите найти ошибку в решении. А где Вы считаете у Вас может быть ошибка? Только одно замечание. Уравнение прямой можно составить и зная точку, через которую проходит прямая, и зная её нормальный вектор. Но это уже как Вам проще.
|
|
Вернуться к началу |
|
RETU |
Заголовок сообщения: Re: Найдите координаты вектора высоты треугольника Добавлено: 09 янв 2018, 16:07 |
Система уравнений не имеет решения у меня. Получается прямые параллельны.Но радует что рассуждения верны.
|
|
Вернуться к началу |
|
_Sasha_ |
Заголовок сообщения: Re: Найдите координаты вектора высоты треугольника Добавлено: 09 янв 2018, 16:35 |
RETU писал(а): Получается прямые параллельны. Может Вы путаете уравнение прямой, проходящей через данную точку, с данным направляющим вектором, с уравнением прямой, проходящей через данную точку, с данным нормальным вектором?
|
|
Вернуться к началу |
|
RETU |
Заголовок сообщения: Re: Найдите координаты вектора высоты треугольника Добавлено: 09 янв 2018, 18:16 |
Как ни странно. но сейчас все сошлось.Решал несколько дней, с перерывами, не сходилось. А сейчас все сошлось. Прошу, проверьте мое решение в деталях, To _Sasha_: Форум пока что не пускает к личным сообщениям.Не могу прочитать.
|
|
Вернуться к началу |
|
Andy |
Заголовок сообщения: Re: Найдите координаты вектора высоты треугольника Добавлено: 10 янв 2018, 21:31 |
RETU По-моему, Вы допустили ошибку при выводе уравнения прямой [math]BC.[/math] Должно быть так: [math]frac{x-left( -4 right)}{-1-left( -4 right)}=frac{y-0}{-4-0},[/math] [math]frac{x+4}{3}=frac{y}{-4},[/math] [math]-4x-16=3y,[/math] [math]4x+3y+16=0.[/math] Дальше я не стал смотреть.
|
|
Вернуться к началу |
|
RETU |
Заголовок сообщения: Re: Найдите координаты вектора высоты треугольника Добавлено: 11 янв 2018, 18:38 |
Действительно ошибся, подправил, но ответ тот же получается. Он сходится с ответом в задаче. Еще есть вопрос по этой задаче. Автор предлагает решить ее, доказав что треугольник НВА прямоугольный и векторы АН и АВ равны. И тут у меня “разрыв шаблона”. Получается что в прямоугольном треугольнике гипотенуза равна катету?
|
|
Вернуться к началу |
|
Andy |
Заголовок сообщения: Re: Найдите координаты вектора высоты треугольника Добавлено: 11 янв 2018, 18:48 |
RETU RETU писал(а): Автор предлагает решить ее, доказав что треугольник НВА прямоугольный и векторы АН и АВ равны Треугольник, разумеется прямоугольный, потому что отрезок [math]AH[/math] — высота. А вот векторы [math]vec{AH}[/math] и [math]vec{AB}[/math] равными быть не могут, согласно определению. RETU писал(а): Получается что в прямоугольном треугольнике гипотенуза равна катету? Как это получается? Вы правильно излагаете условие задачи?
|
|
Вернуться к началу |
|
RETU |
Заголовок сообщения: Re: Найдите координаты вектора высоты треугольника Добавлено: 11 янв 2018, 19:35 |
Вот скопированное задание , примечание к нему и ответ Даны вершины треугольника А(4; 6), В(–4; 0) и С(–1; –4). УКАЗАНИЯ И ПОДСКАЗКИ К ЗАДАЧАМ Ответ: 4. а) [math]overrightarrow{AH }[/math] =[math]overrightarrow{AB}[/math] (-8; -6).
|
|
Вернуться к началу |
|
Похожие темы | Автор | Ответы | Просмотры | Последнее сообщение |
---|---|---|---|---|
Найдите координаты вектора, коллинеарного прямой
в форуме Аналитическая геометрия и Векторная алгебра |
Scofield |
10 |
1044 |
08 дек 2014, 18:26 |
Вычислить координаты вектора относительно базиса вектора
в форуме Аналитическая геометрия и Векторная алгебра |
Camilla1910 |
1 |
502 |
11 ноя 2014, 22:18 |
Две высоты треугольника
в форуме Геометрия |
Gagarin |
3 |
402 |
21 апр 2015, 08:51 |
Уравнение высоты и медианы треугольника
в форуме Аналитическая геометрия и Векторная алгебра |
Sonnoe Chudo |
5 |
888 |
12 окт 2014, 06:16 |
Дана вершина треугольника и уравнение высоты
в форуме Аналитическая геометрия и Векторная алгебра |
Roccat526 |
25 |
863 |
04 янв 2017, 01:57 |
Высоты треугольника пересек. в одной точке: доказательство
в форуме Геометрия |
sb1219 |
16 |
352 |
27 апр 2022, 16:43 |
Написать уравнение сторон треугольника, медианы, высоты и
в форуме Геометрия |
kity2503 |
1 |
751 |
01 май 2016, 21:14 |
1.Найдите координаты. 2. найдите синус
в форуме Аналитическая геометрия и Векторная алгебра |
ivan kumaev |
1 |
71 |
12 дек 2022, 19:41 |
Координаты вектора
в форуме Геометрия |
lika01 |
17 |
1895 |
13 ноя 2014, 14:24 |
Вектора и координаты
в форуме Аналитическая геометрия и Векторная алгебра |
azxssaa |
1 |
254 |
15 ноя 2015, 16:34 |
Кто сейчас на конференции |
Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 6 |
Вы не можете начинать темы Вы не можете отвечать на сообщения Вы не можете редактировать свои сообщения Вы не можете удалять свои сообщения Вы не можете добавлять вложения |
Как составить уравнение высоты треугольника по координатам его вершин?
Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.
Следовательно, для составления уравнения высоты треугольника нужно:
- Найти уравнение стороны треугольника.
- Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.
Пример.
Дано: ΔABC, A(-7;2), B(5;-3), C(1;8).
Написать уравнения высот треугольника.
Решение:
1) Составим уравнение стороны BC треугольника ABC.
Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:
Таким образом, уравнение прямой BC —
Угловой коэффициент прямой, перпендикулярной BC,
Значит, уравнение высоты, проведённой к стороне BC, имеет вид
Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:
Итак, уравнение высоты, проведённой к стороне BC:
2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):
Уравнение прямой AB:
Угловой коэффициент перпендикулярной ей прямой
Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):
Угловой коэффициент прямой, перпендикулярной AC,
Таким образом, уравнение перпендикулярной AC прямой имеет вид
Подставив в него координаты точки B(5;-3), найдём b:
Итак, уравнение высоты треугольника ABC, опущенной из вершины B:
Тема: Векторная алгебра. Нужно вычислить длину высоты в треугольнике (Прочитано 15622 раз)
0 Пользователей и 1 Гость просматривают эту тему.
Всем здрасте! Прошу помощи в решении этой задачи. Нужно вычислить длину высоты опущенной из вершины треугольника А на сторону ВС, если известны все его вершины:А(5;-6;3)В(1;-1;3)С(1;3;0)
Думаю, что есть какая-то формула. но не знаю какая точно.
« Последнее редактирование: 16 Января 2011, 21:02:37 от Asix »
1. составляйте уравнение стороны BC
2. используя уравнение расстояния от точки до прямой, найдете искомую высоту
« Последнее редактирование: 16 Января 2011, 21:02:44 от Asix »
Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.
но там ведь только с х и у без z….не подскажете как с z будут выглядеть эти формулы?
« Последнее редактирование: 16 Января 2011, 21:03:15 от Asix »
« Последнее редактирование: 16 Января 2011, 21:03:27 от Asix »
Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.
Для начала
1. Находите координаты вектора BC
2. Через точку (например B) и вектор BC строите прямую
( overrightarrow{BC} {l,m,n} )
( B(x_0,y_0) )
тогда уравнение прямой
( frac{x-x_0}{l}=frac{y-y_0}{m}=frac{z-z_0}{n} )
« Последнее редактирование: 16 Января 2011, 21:07:07 от Dlacier »
Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.
а то, что l=0 не играет роль? ведь на 0 вроде как делить нельзя….
Вы какую-нибудь литературу читали??
Как выглядит каноническое уравнение прямой?
Что такое в уравнении ( l,m,n )?
Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.
у=kx+b? координаты направляющего вектора…
у=kx+b? координаты направляющего вектора…
Это уравнение прямой в декартовой система координат – 2D, а вам надо в 3D.
Dlacier Вам до этого писала каноническое уравнение прямой в 3D.
Если записали уравнение в каноническом виде, дальше нужно делать следующее:
записать уравнение прямой в параметрическом виде и вспомнить/впервые услышать, что
“В пространстве расстояние от точки ( (x_1,;y_1,;z_1) ) до прямой, заданной параметрическим уравнением:
( begin{cases}x=x_0+t l, \
y=y_0+tm, \
z=z_0+tn,
end{cases} )
можно найти как минимальное расстояние от заданной точки до произвольной точки прямой. Коэффициент ( t ) этой точки может быть найден по формуле:
( t_{min}=dfrac{l(x_1-x_0)+m(y_1-y_0)+n(z_1-z_0)}{l^2+m^2+n^2}. )
“
Дальше все просто, подставляете найденное ( t ) в параметрическое уравнение прямой, т.о. получите координаты точки. А затем останется найти расстояние между двумя точками.
Чтобы правильно задать вопрос, нужно знать большую часть ответа. (с)
Формулы пишите в LaTex.