Медиана равностороннего треугольника
4.6
Средняя оценка: 4.6
Всего получено оценок: 139.
4.6
Средняя оценка: 4.6
Всего получено оценок: 139.
Равносторонний треугольник стоит особняком среди всех фигур: в нем легко можно найти значение всех сторон и углов, так как все углы известны заранее, а найдя одну сторону, можно найти сразу все три. Но именно из-за этих свойств, составители задач любят писать каверзные условия, в которых не всегда можно разобраться с первого раза, например, не всегда можно понять, что такое медиана, потому что человеку проще воспринимать понятие высоты, нежели медианы. Рассмотрим же понятие медианы в равностороннем треугольнике подробно.
Определения
Равносторонний треугольник – это треугольник, все стороны которого равны, а углы по 60 градусов.
Равносторонний треугольник это частный случай равнобедренного, но в равностороннем любую сторону можно считать основанием.
Из этого следует, что любая высота равностороннего треугольника является медианой и биссектрисой, так как любая высота проводится к стороне, которую можно считать основанием.
Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположно стороны. Медиана также имеет ряд свойств, которые можно использовать в решении задач.
Медианы в треугольнике пересекаются в одной точке и делят эту точку в отношении 2:3, считая от вершины. При этом медианы разбивают треугольник на 6 разновеликих треугольников. Если посмотреть на рисунок, то можно увидеть, что в равностороннем треугольнике каждый из 6 этих треугольников будет прямоугольным.
Формула медианы равностороннего треугольника
Выведем формулу медианы равностороннего треугольника. В равностороннем треугольнике АВС проведем высоту АН. Она же будет являться медианой и высотой. Медиана разобьет треугольник на два прямоугольных: АНС и АНВ. Рассмотрим треугольник АНС.
В нем применим теорему Пифагора:
$$АС^2=AH^2+HC^2$$
$$AH=sqrt{AB^2-BH^2}$$
Каждую из сторон обозначим буквой а. Тогда АВ=а; $$ВН={аover2}$$
$$АН=sqrt{a^2-{aover2}^2}=sqrt{a^2-{a^2over4}}$$
Это и есть формула медианы равностороннего треугольника. С другой стороны, можно воспользоваться тригонометрическими тождествами и вывести еще одну формулу:
$$sin(ACH)={AHover AC}$$
При этом угол АСН равен 60 градусам. Значит, можно определить синус угла: $$sin(ACH)={sqrt{3}over 2}$$
Выразим значение медианы АН
$$АН=sin(ACH)*AC={sqrt{3}over2}*AC={sqrt{3}over2}*a$$
Вот еще одна формула, характерная для равностороннего треугольника.
Задача
Для закрепления темы решим простую задачу на обратное использование формулы медианы.
В равностороннем треугольнике медиана равна $$20over{sqrt{3}}$$. Найти площадь треугольника.
Для нахождения площади воспользуемся классической формулой.
Классическую формулу можно использовать для нахождения площади любого треугольника.
Для нее нам нужно значение стороны и высоты. Высота в равностороннем треугольнике совпадает с медианой, поэтому нужно найти только сторону. Выразим ее через формулу медианы равностороннего треугольника.
$$m={sqrt{3}over2}*a$$
$$a={mover{sqrt{3}over2}}=m*{2oversqrt{3}}$$
Подставим в формулу значение медианы:
$$a={20oversqrt{3}}*{2oversqrt{3}}={40over3}$$
Посчитаем площадь:
$$S={1over2}*a*m={1over2}*{40over3}*{20 oversqrt{3}}={400over{3sqrt{3}}}$$
Что мы узнали?
Мы вывели две формулы медианы равностороннего треугольника, дали определения, необходимые для решения задач и решили небольшую задачу для закрепления знаний.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
-
Александр Рудаков
5/5
Оценка статьи
4.6
Средняя оценка: 4.6
Всего получено оценок: 139.
А какая ваша оценка?
В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.
-
Определение медианы
-
Свойства медианы равностороннего треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
-
Свойство 6
- Свойство 7
- Примеры задач
Определение медианы
Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.
- BD – медиана, проведенная к стороне AC;
- AD = DC.
Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).
Свойства медианы равностороннего треугольника
Свойство 1
Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.
- BD – медиана, высота и серединный перпендикуляр к стороне AC, а также биссектриса угла ABC;
- ∠ABD = ∠CBD.
Свойство 2
Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.
Свойство 3
Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.
- G – центр тяжести (центроид) треугольника;
- AG = 2GF;
- BG = 2GD;
- CG = 2GE.
Свойство 4
Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.
Свойство 5
Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.
Свойство 6
Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.
- r – радиус вписанной окружности;
- R – радиус описанной окружности;
- R = 2r (следует из Свойства 3).
Свойство 7
Длину медианы равностороннего треугольника можно вычислить по формуле:
a – сторона треугольника.
Примеры задач
Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.
Решение
Для нахождения требуемого значения применим формулу выше:
Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.
Решение
Нарисуем чертеж согласно условиям задачи.
Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.
- BG = 8 см (самая большая сторона, является гипотенузой △BFG);
- FG = 4 см (катет △BFG, в 2 раза меньше гипотенузы BG – следует из Свойства 3).
Применяем теорему Пифагора, чтобы найти длину второго катета BF:
BF2 = BG2 – FG2 = 82 – 42 = 48 см2.
Следовательно, BF ≈ 6,93 см.
BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.
Найти медиану биссектрису высоту равностороннего треугольника
Формула для вычисления высоты = биссектрисы = медианы.
В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.
L – высота=биссектриса=медиана
a – сторона треугольника
Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):
Калькулятор – вычислить, найти медиану, биссектрису, высоту
- Подробности
-
Автор: Administrator
-
Опубликовано: 07 октября 2011
-
Обновлено: 13 августа 2021
Найти медиану биссектрису высоту равностороннего треугольника
Формула для вычисления высоты = биссектрисы = медианы.
В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.
L – высота=биссектриса=медиана
a – сторона треугольника
Формула длины высоты, биссектрисы и медианы равностороннего треугольника, ( L ):
Калькулятор – вычислить, найти медиану, биссектрису, высоту
Определение и свойства медианы равностороннего треугольника
В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.
Определение медианы
Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.
Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).
Свойства медианы равностороннего треугольника
Свойство 1
Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.
-
BD – медиана, высота и серединный перпендикуляр к стороне AC, а также биссектриса угла ABC;
Свойство 2
Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.
Свойство 3
Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.
Свойство 4
Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.
Свойство 5
Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.
Свойство 6
Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.
- r – радиус вписанной окружности;
- R – радиус описанной окружности;
- R = 2r (следует из Свойства 3).
Свойство 7
Длину медианы равностороннего треугольника можно вычислить по формуле:
a – сторона треугольника.
Примеры задач
Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.
Решение
Для нахождения требуемого значения применим формулу выше:
Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.
Решение
Нарисуем чертеж согласно условиям задачи.
Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.
- BG = 8 см (самая большая сторона, является гипотенузой △BFG);
- FG = 4 см (катет △BFG, в 2 раза меньше гипотенузы BG – следует из Свойства 3).
Применяем теорему Пифагора, чтобы найти длину второго катета BF:
BF 2 = BG 2 – FG 2 = 8 2 – 4 2 = 48 см 2 .
Следовательно, BF ≈ 6,93 см.
BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.
Медиана равностороннего треугольника
Средняя оценка: 4.6
Всего получено оценок: 93.
Средняя оценка: 4.6
Всего получено оценок: 93.
Равносторонний треугольник стоит особняком среди всех фигур: в нем легко можно найти значение всех сторон и углов, так как все углы известны заранее, а найдя одну сторону, можно найти сразу все три. Но именно из-за этих свойств, составители задач любят писать каверзные условия, в которых не всегда можно разобраться с первого раза, например, не всегда можно понять, что такое медиана, потому что человеку проще воспринимать понятие высоты, нежели медианы. Рассмотрим же понятие медианы в равностороннем треугольнике подробно.
Определения
Равносторонний треугольник – это треугольник, все стороны которого равны, а углы по 60 градусов.
Равносторонний треугольник это частный случай равнобедренного, но в равностороннем любую сторону можно считать основанием.
Из этого следует, что любая высота равностороннего треугольника является медианой и биссектрисой, так как любая высота проводится к стороне, которую можно считать основанием.
Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположно стороны. Медиана также имеет ряд свойств, которые можно использовать в решении задач.
Медианы в треугольнике пересекаются в одной точке и делят эту точку в отношении 2:3, считая от вершины. При этом медианы разбивают треугольник на 6 разновеликих треугольников. Если посмотреть на рисунок, то можно увидеть, что в равностороннем треугольнике каждый из 6 этих треугольников будет прямоугольным.
Формула медианы равностороннего треугольника
Выведем формулу медианы равностороннего треугольника. В равностороннем треугольнике АВС проведем высоту АН. Она же будет являться медианой и высотой. Медиана разобьет треугольник на два прямоугольных: АНС и АНВ. Рассмотрим треугольник АНС.
Рис. 2. Рисунок к задаче.
В нем применим теорему Пифагора:
Каждую из сторон обозначим буквой а. Тогда АВ=а; $$ВН=<аover2>$$
Это и есть формула медианы равностороннего треугольника. С другой стороны, можно воспользоваться тригонометрическими тождествами и вывести еще одну формулу:
При этом угол АСН равен 60 градусам. Значит, можно определить синус угла: $$sin(ACH)=<sqrt<3>over 2>$$
Выразим значение медианы АН
Вот еще одна формула, характерная для равностороннего треугольника.
Задача
Для закрепления темы решим простую задачу на обратное использование формулы медианы.
В равностороннем треугольнике медиана равна $$20over<sqrt<3>>$$. Найти площадь треугольника.
Для нахождения площади воспользуемся классической формулой.
Классическую формулу можно использовать для нахождения площади любого треугольника.
Для нее нам нужно значение стороны и высоты. Высота в равностороннем треугольнике совпадает с медианой, поэтому нужно найти только сторону. Выразим ее через формулу медианы равностороннего треугольника.
Рис. 3. Рисунок к задаче.
Подставим в формулу значение медианы:
Что мы узнали?
Мы вывели две формулы медианы равностороннего треугольника, дали определения, необходимые для решения задач и решили небольшую задачу для закрепления знаний.
[spoiler title=”источники:”]
http://obrazovaka.ru/matematika/mediana-ravnostoronnego-treugolnika.html
[/spoiler]
В равностороннем треугольнике медианы, также как в равнобедренном медиана основания, равны друг другу и совпадают с биссектрисами и высотами. Воспользуясь этим свойством, найдем медиану равностороннего треугольника как высоту. Для этого обратимся к прямоугольному треугольнику, в котором медиана является катетом, а сторона треугольника – гипотенузой. Поскольку все углы в равностороннем треугольнике равны 60°, то медиана равностороннего треугольника будет выглядеть следующим образом: