Как найти величину угла транспортиром


Загрузить PDF


Загрузить PDF

Транспортир — это простой и удобный инструмент для измерения и построения углов. В основном распространены транспортиры полукруглой формы, хотя существуют и круглые транспортиры, рассчитанные на 360 градусов. Если вы впервые столкнулись с транспортиром и не знаете, как им пользоваться, прочитайте эту статью! Это совсем несложно: несколько простых шагов, и вы как следует освоите этот полезный инструмент.

  1. Изображение с названием Use a Protractor Step 1

    1

    Оцените, к какому типу относится интересующий вас угол. Углы можно разделить на три класса: острые, тупые и прямые. Острые углы относительно узки (менее 90 градусов), тупые углы шире (более 90 градусов), а величина прямых углов составляет 90 градусов (их стороны перпендикулярны друг другу).[1]
    Оцените на глаз, к какому типу принадлежит тот угол, который вы собираетесь измерить. Предварительная оценка поможет вам определить необходимый диапазон и правильно выбрать шкалу транспортира.

    • На первый взгляд мы можем сказать, что выше изображен острый угол, то есть его величина меньше 90 градусов.
  2. 2

    Приложите центр транспортира к вершине измеряемого угла.[2]
    В середине транспортира есть небольшое отверстие. Приложите транспортир к углу так, чтобы это отверстие совпало с вершиной угла.

  3. Изображение с названием Use a Protractor Step 3

    3

    Поверните транспортир так, чтобы одна из сторон угла совпала с основанием инструмента. Не спеша поворачивайте транспортир и следите за тем, чтобы вершина угла оставалась в центре. В результате одна из сторон угла должна совместиться с основанием транспортира.[3]

    • При этом вторая сторона угла должна пересекать дугу транспортира (его округлую часть).
  4. 4

    Проследите за второй стороной угла, которая пересекает дугу транспортира. Если вторая сторона не доходит до дуги инструмента, продлите ее. Можно также приложить к этой стороне угла лист бумаги, который доходил бы до дуги транспортира. Пересекаемое число покажет вам величину угла в градусах.

    • В приведенном выше примере величина угла составляет 70 градусов. При этом мы пользуемся меньшей шкалой, так как определили ранее, что имеем дело с острым углом, то есть его величина не превышает 90 градусов. Для тупых углов следует использовать более крупную шкалу со значениями больше 90 градусов.
    • На первых порах можно путаться со шкалой. Большинство транспортиров имеют две шкалы, одну на внутренней и вторую на внешней стороне округлой части. Это сделано для того, чтобы было удобно измерять углы как левой, так и правой ориентации.

    Реклама

  1. 1

    Проведите прямую линию. Это будет опорная линия, которая послужит одной из двух сторон будущего угла. С ее помощью вы определите направление, в котором следует провести вторую сторону угла. Как правило, первую прямую линию удобно провести горизонтально.

    • При этом можно воспользоваться прямым краем транспортира.
    • Длина линии не важна.
  2. 2

    Расположите центр транспортира на одном из концов проведенной линии. Это будет вершина будущего угла. Отметьте на бумаге точку вершины.[4]

    • Не обязательно располагать вершину на краю линии. Вершина угла может размещаться в любой точке на линии, просто удобнее использовать крайнюю точку.
  3. 3

    Отыщите на соответствующей шкале транспортира необходимый вам угол. Приложите к прямой линии основание транспортира и отметьте на бумаге соответствующее число градусов. Если необходимо построить острый угол (менее 90 градусов), используйте шкалу с меньшими значениями. Для тупого угла воспользуйтесь шкалой с большими величинами.

    • Помните о том, что основание транспортира — это его прямая часть. Совместите его центр с вершиной будущего угла и отметьте на бумаге необходимую величину угла.
    • На приведенном выше видео величина угла составляет 36 градусов.
  4. 4

    Проведите вторую сторону угла. С помощью линейки, прямого края транспортира или другого инструмента проведите вторую сторону угла — соедините вершину со сделанной ранее меткой. В результате у вас получится заданный угол. С помощью транспортира можно измерить угол и убедиться, что все правильно.

    Реклама

Что вам понадобится

  • карандаш или ручка
  • бумага
  • транспортир
  • линейка (необязательно)

Об этой статье

Эту страницу просматривали 241 225 раз.

Была ли эта статья полезной?

Транспортир – как правильно пользоваться инструментом для построения и измерения углов?

Люди обычно сталкиваются с транспортирами в математике, когда учатся в школе создавать точные геометрические фигуры. Возможно, у многих из них никогда больше не будет причин снова использовать эти приборы, тем не менее транспортиры имеют долгую историю применения в различных областях.

История изобретения

Происхождение этого математического инструмента восходит к жрецам в Египте и Вавилоне, которые установили меру углов в градусах, минутах и секундах. Однако до времён классической Греции тригонометрия не использовалась в математике.

Во втором веке до нашей эры астроном Гиппарх из Никии изобрёл тригонометрический стол, для измерения треугольников. Затем Птолемей включил в свою великую астрономическую книгу «Альмагест» таблицу, с угловыми приращениями от 0 до 180°, с погрешностью менее 1/3600 единиц. Он также объяснил метод составления этой таблицы, и на протяжении всей книги приводил много примеров того, как вычислять с помощью неё неизвестные элементы фигур.

Птолемей также был автором, так называемой теоремы Менелая для решения сферических треугольников, и на протяжении многих веков его тригонометрия была основным пособием для астрономов.

Возможно, в то же время, учёные Индии также разработали тригонометрическую систему, основанную на функции синуса, которая, в отличие от используемого в настоящее время синуса, была не пропорцией, а длиной стороны, противоположной углу в прямом треугольнике этой гипотенузы. Индийские математики использовали разные значения для этого в своих таблицах.

Томас Бландевиль рассказал о приборе специально созданном, для рисования и измерения фигур в своём «Кратком описании универсальных карт» 1589 года. Как видно из названия, он применял его, чтобы править навигационные карты для использования в высоких широтах.

Другие европейские математики также описывали подобные приборы примерно в то же время. Независимо от того, кто первым придумал этот инструмент, к началу XVII века он вошёл в стандартную практику мореплавателей и геодезистов. К XVIII веку транспортиры начали появляться в учебниках по геодезии и геометрии.

Транспортиры в современном понимании возникли во второй половине XVIII века, когда такие учёные, как Джесси Рамсден и Георг Фридрих Брандер, усовершенствовали ранее созданные устройства.

В то время предпочтительными материалами для их изготовления были:

В первой половине XX века начали применять олово и целлулоид.

Называться транспортиром (рус.) прибор стал в 1610 году. Термин произошёл от средневекового слова protractor, что означает «переносить», который, в свою очередь, произошел от латинского слова protrahere «тянуть вперёд».

Разновидности и использование

Транспортир — это простой гониометр для измерения или создания угла. Он выглядит как круглый или полукруглый диск с делением. Диск может быть изготовлен из пластика, прочной бумаги или листового металла. Типичными являются диаметры от 8 до 15 см и деления на 1° и 0,5°, при измерении также 0,5 Гон (новый градус). Точность составляет от 0,1 до 0,5° в зависимости от диаметра шкалы. Более точные приборы имеют поворотную рейку со шкалой (длина до миллиметра).

Частично из-за различного использования их изготавливают во многих формах: знакомый полукруг, а также круги, прямоугольники, квадраты или четверть круга (квадранты). Они также могут иметь различные диаметры. Их изготавливают из латуни, стали, дерева, слоновой кости или пластика. Самой распространённой формой является полукруг с ограничительной шкалой в 180 градусов.

Угловой транспортир — градуированный круглый инструмент с одной поворотной рукой; используется для измерения или разметки. В строительстве часто требуется отмерить угол в 90 градусов. Иногда прилагается шкала Вернье, чтобы дать более точные показания. Прибор широко применяется для изготовления архитектурных и механических чертежей, хотя его использование уменьшилось с появлением современного программного обеспечения для рисования.

Универсальные транспортиры скоса используются изготовителями инструментов; поскольку они делают измерения посредством механического контакта с предметом, то классифицируются как механические транспортиры.

Угловой транспортир применяется для того, чтобы измерить и проверить углы с очень жёсткими допусками. Он считывает до 5 угловых минут (5 или 1/12°) и может измерять от 0 до 360°.

Сегодня также применяются электронные приборы, которые обычно работают с поворотным датчиком. Кроме того, связанными с транспортиром приборами являются:

  • теодолит;
  • оптический транспортир в строительной промышленности и геодезии;
  • инклинометр для определения уклонов и косвенной альтиметрии;
  • секстант для навигации.

Измерение градусов угла

Для того чтобы научиться пользоваться транспортиром инструкция нужна на начальном этапе. Для его освоения достаточно нескольких минут и примеров (смотреть онлайн) того, как можно измерить и построить угол с помощью этого прибора.

Измерить угол, значит найти его величину. Углы разделяют на три типа: острый, тупой и прямой. Прямоугольный имеет 90 градусов. Все углы что имеют больше этого значения называются тупыми, и соответственно меньше 90 градусов называются острыми. Развёрнутый угол имеет 180 градусов.

Понимание того, что углы являются частями окружностей, полезно, потому что тогда конструкция транспортира обретает смысл. Поскольку полный круг имеет 360º, отдельный угол должен быть меньше этого числа, потому что он часть круга.

Алгоритм измерения следующий: для того чтобы измерить угол транспортиром необходимо приложить его центр верхней кромки линейки к вершине измеряемого угла. Вершина — это точка, в которой две из трёх сторон треугольника пересекаются.

Нижнюю планку (основание) транспортира нужно выставить горизонтально. Каждый транспортир имеет точку, спроектированную в центре основания, Эта средняя точка располагается на вершине угла, который должен быть измерен или нанесён на график. Другая сторона должна пересекать транспортир в одной из точек его дуги.

Если вторая сторона (линия) до дуги не доходит нужно продолжить её с помощью простой или масштабной линейки. То число, на шкале дуги, которое будет пересечено линией и есть величина угла в градусах.

Для удобства на большинстве транспортиров сделано две шкалы, внутренняя и внешняя, которые отображают числа в каждой строке.

Построение угла

Берётся чистый лист бумаги в клетку. На нём карандашом отмечается точка, от которой проводиться прямая линия, как одна из сторон будущего угла. Эта черта служит для того, чтобы задать направление второй стороне. В простых упражнениях, для приобретения навыка построения угла, линия проводится горизонтально.

Центр основы транспортира располагается на любом из концов черты, который будет вершиной угла. Эта точка отмечается на бумаге карандашом. И именно к этому месту, внутри отверстия и присоединяется вершина угла, одна из сторон которого должна совпадать в горизонтальной плоскости с внутренней стороной линейки транспортира.

Затем на шкале отмечается необходимый градус. С внутренней стороны отверстия также обозначается точка возле этого градуса. И от вершины проводится прямая линия к этой точке. Таким образом, получается необходимый угол.

Для того чтобы правильно пользоваться транспортиром очень важно его выровнять, и точно прикладывать, для получения верных измерений.

Пересечённые линии в верхней части прямой кромки линейки должны совпадать с вершиной (конечной точкой), где соединяются два луча.

Измерение углов. Транспортир. Виды углов

Нам известно, что при измерении отрезков, мы сравниваем измеряемый отрезок с отрезком, который принят за единицу измерения (1 мм, 1 см, 1 м и т.д.). Аналогично происходит измерение углов: чтобы измерить угол его сравнивают с углом, который принят за единицу измеренияс градусом, записывают так 1 ° .

Градусная мера угла – это число, которое показывает, сколько раз градус и его части укладываются в данном угле.

Пример:

Градусная мера угла ABC равна . Говорят: “Угол ABC равен 120 градусам”. Пишут: .

Транспортир – это измерительный инструмент, который используется для измерения и построения углов. Состоит из линейки (прямолинейной шкалы) и полукруга (угломерной шкалы: внутренней и внешней), который разделен на градусы от 0 до .

Для того чтобы измерить угол, необходимо совместить вершину угла с центром транспортира, при этом одна из сторон угла должна пройти через нулевое деление шкалы, тогда вторая сторона угла укажет градусную меру угла.

Пример: Измерим угол ABC, для этого совместим точку B с центром транспортира, и расположим транспортир так, чтобы сторона BC прошла через нулевое деление шкалы (обратите внимание отсчёт угла ведётся по той шкале, через нулевое деление которой пройдет одна из сторон угла: в нашем случае по внутренней шкале).

Вторая сторона при этом, как мы видим, проходит через деление шкалы 120, значит: .

Свойства:

АОС = АОВ + ВОС.

Виды углов:

  1. Острый угол – угол, градусная мера которого меньше 90 ° .

  1. Прямой угол – угол, градусная мера которого равна 90 ° .

  1. Тупой угол – угол, градусная мера которого больше 90 °, но меньше 180 ° .

Биссектриса развернутого угла делит его на два угла, градусная мера каждого из которых равна 90 0 .

АОС – развернутый, ОВ – биссектриса, АОВ = ВОС = 90 0 .

Поделись с друзьями в социальных сетях:

Измерение углов. Транспортир

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На уроке мы вспомним, что такое единицы измерения, узнаем какими единицами можно измерять углы, познакомимся с такой единицей измерения, как градус, научимся измерять углы в градусах и чертить их с помощью транспортира. Также мы узнаем о других единицах измерения углов, которые применяются в различных ситуациях.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Измерение» и «Связь числа и геометрии. Часть 1. Измерения в геометрии. Свойства фигур»

[spoiler title=”источники:”]

http://budu5.com/manual/chapter/2261

http://interneturok.ru/lesson/matematika/5-klass/instrumenty-dlja-vychislenij-i-izmerenij/izmerenie-uglov-transportir

[/spoiler]

Измерение углов

  • Измерение углов транспортиром
  • Свойства измерения углов

Измерить угол — значит найти его величину. Величина угла показывает, сколько раз угол, выбранный за единицу измерения, укладывается в данном углу.

Обычно за единицу измерения углов принимают градус. Градус — это угол, равный    части развёрнутого угла. Для обозначения градусов в тексте, используется знак  °,  который ставится в правом верхнем углу числа, показывающего количество градусов (например, 60°).

Измерение углов транспортиром

Для измерения углов используют специальный прибор — транспортир:

Транспортир

У транспортира две шкалы — внутренняя и внешняя. Начало отсчёта у внутренней и у внешней шкал располагается с разных сторон. Чтобы получить правильный результат измерения, отсчёт градусов должен начинаться с правильной стороны.

Измерение углов производится следующим образом: транспортир накладывают на угол так, чтобы вершина угла совпала с центром транспортира, а одна из сторон угла прошла через нулевое деление на шкале. Тогда другая сторона угла укажет величину угла в градусах:

Измерение углов с помощью транспортира

Говорят: угол  BOC  равен 60 градусов, угол  MON  равен 120 градусов и пишут:  ∠BOC = 60°,  ∠MON = 120°.

Для более точного измерения углов используют доли градуса: минуты и секунды. Минута — это угол, равный 
  части градуса. Секунда — это угол, равный    части минуты. Минуты обозначают знаком  ,  a секунды — знаком  .  Знак минут и секунд ставится в правом верхнем углу числа. Например, если угол имеет величину 50 градусов 34 минуты и 19 секунд, то пишут:

50°3419.

Свойства измерения углов

Если луч делит данный угол на две части (на два угла), то величина данного угла равна сумме величин двух полученных углов.

Рассмотрим угол  AOB:

Луч  OD  делит его на два угла:  ∠AOD  и  ∠DOB.  Таким образом,  ∠AOB = ∠AOD + ∠DOB.

Развёрнутый угол равен  180°.

Измерение углов в градусах

Любой угол имеет определённую величину, большую нуля.

  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Геометрия
  5. Измерение углов. Транспортир. Виды углов

Нам известно, что при измерении отрезков, мы сравниваем измеряемый отрезок с отрезком, который принят за единицу измерения (1 мм, 1 см, 1 м и т.д.). Аналогично происходит измерение углов: чтобы измерить угол его сравнивают с углом, который принят за единицу измерения –  с  градусом, записывают так 1°.

Градусная мера угла – это число, которое показывает, сколько раз градус и его части укладываются в данном угле.

Пример:

Градусная мера угла ABC равна . Говорят: “Угол ABC равен 120 градусам”. Пишут: .


Транспортир – это измерительный инструмент, который используется для измерения и построения углов. Состоит из линейки (прямолинейной шкалы) и полукруга (угломерной шкалы: внутренней и внешней), который разделен на градусы от 0 до .

Для того чтобы измерить угол, необходимо совместить вершину угла с центром транспортира, при этом одна из сторон угла должна пройти через нулевое деление шкалы, тогда вторая сторона угла укажет градусную меру угла.

Пример: Измерим угол ABC, для этого совместим точку B с центром транспортира, и расположим транспортир так, чтобы сторона BC прошла через нулевое деление шкалы (обратите внимание отсчёт угла ведётся по той шкале, через нулевое деление которой пройдет одна из сторон угла: в нашем случае по внутренней шкале).

Вторая сторона при этом, как мы видим, проходит через деление шкалы 120, значит: .


Свойства:

         АОС = АОВ + ВОС.


Виды углов:

  1. Острый угол – угол, градусная мера которого меньше 90°.

  1. Прямой уголугол, градусная мера которого равна 90°.

  1. Тупой уголугол, градусная мера которого больше 90°, но меньше 180°.

  1. Развернутый уголугол, градусная мера которого равна 180°.

Биссектриса развернутого угла делит его на два угла, градусная мера каждого из которых равна 900.

АОС – развернутый, ОВ – биссектриса, АОВ = ВОС = 900.

Советуем посмотреть:

Отрезок

Ломаная

Четырехугольники

Единицы измерения площадей. Свойства площадей

Прямоугольник, его периметр и площадь. Ось симметрии фигуры

Квадрат. Периметр и площадь квадрата.

Многоугольники. Правильные многоугольники. Равенство фигур.

Плоскость

Прямая

Луч

Шкалы и координаты

Прямоугольный параллелепипед. Пирамида.

Объем прямоугольного параллелепипеда

Куб. Площадь поверхности куба

Куб. Объем куба

Угол. Обозначение углов

Прямой и развернутый угол

Чертежный треугольник

Треугольник и его виды

Окружность, круг, шар

Цилиндр, конус

Отрезок-xx

Геометрия


Правило встречается в следующих упражнениях:

5 класс

Задание 746,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1669,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1684,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1695,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1696,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Номер 299,
Мерзляк, Полонский, Якир, Учебник

Номер 302,
Мерзляк, Полонский, Якир, Учебник

Номер 312,
Мерзляк, Полонский, Якир, Учебник

Номер 443,
Мерзляк, Полонский, Якир, Учебник

Номер 14,
Мерзляк, Полонский, Якир, Учебник

6 класс

Номер 220,
Мерзляк, Полонский, Якир, Учебник

Номер 391,
Мерзляк, Полонский, Якир, Учебник

Номер 392,
Мерзляк, Полонский, Якир, Учебник

Номер 433,
Мерзляк, Полонский, Якир, Учебник

Номер 1235,
Мерзляк, Полонский, Якир, Учебник

Задание 163,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 287,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 724,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 773,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

Задание 1534,
Виленкин, Жохов, Чесноков, Шварцбург, Учебник

7 класс

Номер 759,
Мерзляк, Полонский, Якир, Учебник


Мы знаем, что мера угла — это количество единичных углов, равных (1°), входящих в данный угол. Для измерения углов используют транспортир.

Транспортир — это прибор для измерения и построения углов.

Обычно на транспортире есть две шкалы, верхняя и нижняя, и центр, который отмечают чёрточкой или кольцом.

Frame.png

Как пользоваться транспортиром? Самое главное — совместить вершину угла с центром транспортира и найти точки пересечения сторон угла со шкалой. Расстояние между этими точками и будет являться мерой угла в градусах.

Каждая шкала показывает результат откладывания углов от той стороны, где расположен нуль. Рассмотрим примеры измерения углов по верхней шкале и по нижней шкале.

Обрати внимание!

Во избежание ошибки выбора шкалы всегда проверяй, соответствует ли полученная мера угла его виду:

  • острый угол меньше (90°);
  • прямой угол равен (90°);
  • тупой угол больше (90°).

Пример:

найти угол (KOP) с помощью транспортира.

Решение:
точка (O) совмещена с центром транспортира, луч (OK) проходит через отметку (0) на верхней шкале. Найдём точку пересечения луча (OP) и верхней шкалы — это отметка (120). Между (0) и (120) расположено (120) градусов. Значит, мера угла (KOP) равна (120°). Это больше (90°), угол (KOP) является тупым.

3.png

Пример:

найти угол (MTN) с помощью транспортира.

Решение:

точка (T) совмещена с центром транспортира, луч (TN) проходит через отметку (0) на нижней шкале. Найдём точку пересечения луча (TM) и нижней шкалы — это отметка (70). Между (0) и (70) расположено (70) градусов. Значит, мера угла (MTN) равна (70°). Это меньше (90°), угол (MTN) является острым.

6.png

Для нахождения величины угла можно поступить следующим образом:
1) совместить центр транспортира с вершиной угла;
2) расположить транспортир так, чтобы одна из сторон угла проходила через нуль выбранной шкалы транспортира;
3) найти точку пересечения второй стороны угла с выбранной шкалой транспортира;
4) число, соответствующее найденной точке на выбранной шкале, определяет величину угла.

Конечно, угол можно измерить и в том случае, если ни одна его сторона не проходит через точку (0).

Пример:

найти угол (ABC) с помощью транспортира.

Решение:

расположим транспортир так, чтобы центр транспортира совместился с точкой (B). Найдём точки пересечения сторон угла с верхней шкалой транспортира. Сторона (BA) пересекает верхнюю шкалу транспортира в точке (60), а сторона (BC) пересекает верхнюю шкалу транспортира в точке (130), следовательно, угол (ABC) равен (130-60=70°). Это меньше (90°), угол (ABC) является острым.

8.png

Выбор шкалы не влияет на результат. Проверим это.

По верхней шкале:

По нижней шкале:

Вы уже догадались, что используется общее правило нахождения расстояния между точками шкалы (чтобы найти расстояние между точками, нужно из большей координаты вычесть меньшую).

Если центр транспортира расположен в вершине угла, одна сторона угла проходит через отметку (a), вторая сторона — через отметку (b), тогда величина угла (AOB) равна:

a°−b°

.

Конечно, проще вычислять угол, когда одна сторона угла проходит через отметку (0), тогда мера угла равна:

Источники:

Изображения: транспортир, измерение углов. © ЯКласс.

Добавить комментарий