Как найти вероятность b10

Как решить задачу на вероятность?

Здравствуйте, дорогие учащиеся!

Задачи по теории вероятности были включены в ЕГЭ (B10), а также изучают в школьном курсе математике. Это задачи простого уровня сложности. Достаточно знать базовые понятия, чтобы решить задачи на вероятность.Теперь перейдем к разбору основных понятий теории вероятности, а также рассмотрим примеры на практике.

Вероятность — мера которой измеряют возможность наступления некоторого события.

Событие — факт который может произойти (оно называется вероятным) или не произойти (оно называется невероятным или маловероятным) при данном испытании.

Пример события:

A — выигрыш в лотерею;

A1, A2, A3, A4, A5, A6 — множество элементарных событий, допустим при бросании игральной кости рассчитать вероятность, что ни разу не выпадет 6 очков.

Событие бывает:

Случайным — событие, которое не возможно предсказать заранее. Например, бросание монеты. Может выпасть орел или решка. Такое действие в котором есть различные исходы называют испытанием.

Благоприятный исход — событие которое ожидают.
Всевозможные исходы или общее число исходов — все события которые могут произойти.

Пример, в пакете 10 яблок, из них 3 — красные, остальные — зеленые. Вы запускаете в пакет руку и наугад вынимаете яблоко. Найдите вероятность вытащить зеленое яблоко? В данной задаче количество благоприятных событий будет равно 7, так как событий — вытащить зеленое яблоко равно 10-3=7. Количество всевозможных событий равно 10, так как есть вероятность вытащить и зеленое и красное яблоко.

Невозможным — в результате опыта такое событие никогда не произойдет.

Достоверным — в результате опыта такое событие наступает всегда.

Определение вероятности:

Вероятность события равна отношению числа благоприятных исходов к общему числу исходов.

Формула нахождения вероятности:

P(A)=m:n

где m — число благоприятных исходов, n — число всевозможных исходов

Вероятность не может быть больше единицы.

Если вероятность равна единице, то событие в данном испытание наступает всегда.
Если вероятность равна нулю, то событие в данном испытание никогда не наступит.

Делаем вывод, что вероятность заключена в пределах от нуля до единицы.

Задача №1:

К каким классам событий (возможное, невозможное, достоверное) относятся:
а) расстояние между двумя произвольными населенными пунктами меньше, чем 180 тысяч километров;
б) в корзине лежат яблоки, вероятность достать из корзины грушу;
в) выиграть в лотерее?

Решение:
Первое из событий достоверное;
второе – невозможное;
третье событие может произойти, а может не произойти – оно является возможным, но не достоверным.

Задача №2:

Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 4 раза?

Решение:
Нужный нам звонок 1, а всего цифр десять ( 0; 1; 2; 3; 4; 5; 6; 7; 8; 9).
По формуле вероятности P(A)=m:n, m=1, n=10.
Вероятность набрать верную цифру из десяти равна 1/10.
Рассмотрим случаи:
1. первый звонок оказался верным, вероятность равна 1/10 (сразу набрана нужная цифра).
2. первый звонок оказался неверным, а второй — верным, вероятность равна 9/10*1/9=1/10 (9 цифр нас не интересующих, а второй раз правильная цифра из девяти цифр).
3. первый и второй звонки оказались неподходящими , а третий — верным, P(А)=9/10*8/9*1/8=1/10 (первый раз набираем и попадаем на ненужный нам номер 9 цифр нас не интересующих, второй раз остается 8 цифр не интересующих нас и последний третий раз один нужный нам номер уже из 8 оставшихся цифр).
4. первый, второй и третий звонки оказались неподходящими , а четвертый — верным, P(А)=9/10*8/9*7/8*1/7=1/10 (аналогично рассуждаем пунктам 2-3).

P=1/10+1/10+1/10+1/10=4/10=0,4 — вероятность того, что ему придется звонить не более чем в четыре места.

Ответ: 0,4

Задача №3:

В ящике лежат шары: 6 белых, 8 красных, 3 зеленых, 13 коричневых. Из ящика вынимают один шар. Какова вероятность того что при вынимания шара из ящика наугад, шар окажется цветным (не белым) ?

Решение:
По формуле вероятности P(A)=m:n,
m=8+3+13=24 количество интересующих нас шаров,в данном случае не белых;
n=6+8+3+13=30 общее количество шаров.

Подставляем данные в формулу:

P(A)= 24:30=0,8 вероятность того, что из ящика наугад достанут цветной шар.

Ответ: 0,8.

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ
На сайте Вы можете в меню ПОМОГИТЕ РЕШИТЬ задавать вопросы мы Вам обязательно ответим.
Рекомендуем подписаться на новостную рассылку нашего сайта TutoMath.ru, чтобы быть в курсе всех новинок.

На чтение 16 мин Просмотров 125к. Опубликовано 25 мая, 2018

Вероятность — очень лёгкая тема, если концентрироваться на смысле задач, а не на формулах. Найти вероятность того что — не просто. И  как решать задачи на вероятность?. Во-первых, что такое вероятность? Это шанс, что какое-то событие произойдёт. Если мы говорим, что вероятность некоторого события 50%, что это значит? Что оно либо произойдет, либо не произойдет — одно из двух. Таким образом подсчитать значение вероятности очень просто — нужно взять количество подходящих нам вариантов и разделить на количество всех возможных вариантов. Например, шанс получить решку при подбрасывании монеты это ½. Как мы получаем ½? Всего у нас два возможных варианта (орёл и решка), из них нам подходит один (решка), так мы и получаем вероятность ½.

вероятность

Как мы уже с вами увидели, вероятность может быть выражена как в процентах, так и в обычных числах. Важно: на ЕГЭ вам нужно будет записать ответ в числах, не в процентах. Принято, что вероятность изменяется от 0 (никогда не произойдет) до 1 (абсолютно точно произойдет). Также можно сказать, что всегда

Вероятность подходящих событий + вероятность неподходящих событий = 1

Теперь мы точно понимаем, как считать вероятность отдельного события, и даже такие задачи есть в банке ФИПИ, но понятно, что на этом всё не заканчивается. Чтобы жизнь была веселее, в задачах на вероятность обычно происходят как минимум два события, и надо посчитать вероятность с учетом каждого из них.

Содержание

  1. Вероятность нескольких событий
  2. Задачи и решения задач на вероятность
  3. Вероятность нескольких событий
  4. Дополняющая вероятность

Вероятность нескольких событий

Подсчитываем вероятность каждого события в отдельности, затем между дробями ставим знаки:

1. Если нужно первое И второе событие, то умножаем.

2. Если нужно первое ИЛИ второе событие, то складываем.

Задачи и решения задач на вероятность

Задача 1. Среди натуральных чисел от 23 до 37 случайно выбирают одно число. Найдите вероятность того, что оно не делится на 5.

Решение:

Вероятность, это отношение благоприятных вариантов к общему их количеству.

Всего в этом промежутке 15 чисел. Из них на 5 делится всего 3, значит не делится 12.

Вероятность тогда: формула 1

Ответ: 0,8.

Задача 2. Для дежурства в столовой случайно выбирают двух учащихся класса. Какова вероятность того, что дежурить будут два мальчика, если в классе обучается 7 мальчиков и 8 девочек?

Решение: Вероятность, это отношение благоприятных вариантов к общему их количеству. В классе 7 мальчиков, это благоприятные варианты. А всего 15 учеников.

Вероятность что первый дежурный мальчик:

формула 2

Вероятность что второй дежурный мальчик:

формула 3

Раз оба должны быть мальчики, вероятности перемножим:

формула 4

Ответ: 0,2.

Задача 3. На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест.

Решение: Пассажиру В. удобны 30 мест (12 + 18 = 30), а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30/300, т. е. 0,1.

Задача 4. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам.

Решение: Из 25 билетов 15 не содержат вопроса по неравенствам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам, равна 15/25, т. е. 0,6.

Задача 5. В сборнике билетов по химии всего 35 билетов, в 7 из них встречается вопрос по кислотам.

Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам.

Решение: Из 35 билетов 28 не содержат вопроса по кислотам, поэтому вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по кислотам, равна 28/35, т. е. 0,8.

Задача 6. В среднем из 500 садовых насосов, поступивших в продажу, 2 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.

Решение: Если из 500 насосов 2 подтекают, то 498 не подтекают. Следовательно, вероятность выбора хорошего насоса — 498/500, т. е. 0,996.

Задача 7. Вероятность того, что новый пылесос в течение года поступит в гарантийный ремонт, равна 0,065. В некотором городе из 1000 проданных пылесосов в течение года в гарантийную мастерскую поступило 70 штук.

На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: Частота события «гарантийный ремонт» равна 70/1000, т. е. 0,07. Она отличается от предсказанной вероятности на 0,005 (0,07 – 0,065 = 0,005).

Задача 8. В чемпионате по гимнастике участвуют 50 спортсменок: 18 из России, 14 из Украины, остальные — из Белоруссии. Порядок, в котором выступают гимнастки, определяется жребием.

Найдите вероятность того, что спортсменка, выступающая первой, окажется из Белоруссии.

Решение: Всего участниц на чемпионате 50, а спортсменок из Белоруссии — 18 (50 – 18 – 14 = 18).

Вероятность того, что первой будет выступать спортсменка из Белоруссии — 18 из 50, т. е. 18/50, или 0,36.

Задача 9. Научная конференция проводится в 5 дней. Всего запланировано 80 докладов — первые три дня по 12 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой.

Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: За первые три дня будут прочитаны 36 докладов (12 ∙ 3 = 36), на последние два дня планируется 44 доклада. Поэтому на последний день запланировано 22 докладов (44 : 2 = 22). Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 22/80, т. е. 0,275.

Задача 10.

Перед началом первого тура чемпионата по шахматам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шахматистов, среди которых 14 участников из России, в том числе Егор Косов.

Найдите вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России?

Решение: В первом туре Егор Косов может сыграть с 25 шахматистами (26 – 1 = 25), из которых 13 ― из России. Значит, вероятность того, что в первом туре Егор Косов будет играть с каким-либо шахматистом из России, равна 13/25, или 0,52.

Задача 11.

В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе?

Решение: Вероятность того, что команда России окажется во второй группе, равна отношению количества карточек с номером 2, к общему числу карточек, т. е. 4/16, или 0,25.

Задача 12.  В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин?

Решение: Выбирают двоих туристов из пяти. Следовательно, вероятность быть выбранным равна 2/5, т. е. 0,4.

Задача 13. В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта.

Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист полетит первым рейсом вертолёта, равна 6/30, или 0,2.

Задача 14. Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

Решение: Натуральных чисел от 10 до 19 десять, из них на 3 делятся три числа: 12, 15 и 18. Следовательно, искомая вероятность равна 3/10, т. е. 0,3.

Вероятность нескольких событий

Задача 1. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Стартер» по очереди играет с командами «Ротор», «Мотор» и «Стратор». Найдите вероятность того, что «Стартер» будет начинать только вторую игру.

Решение: 

Тип вопроса: совмещение событий.

Нас устроит следующий вариант: «Статор» не начинает первую игру, начинает вторую игру, не начинает третью игру. Вероятность такого развития событий равна произведению вероятностей каждого из этих событий. Вероятность каждого из них равна 0,5, следовательно: 0,5 · 0,5 · 0,5 = 0,125.

Задача 2. Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей ― 1 очко, если проигрывает ― 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4.

Решение: 

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Игра №1 Игра №2 Вероятность данного варианта
3 1 0,4 · 0,2 = 0,08
1 3 0,2 · 0,4 = 0,08
3 3 0,4 · 0,4 = 0,16

Вероятность происхождения какого-либо их этих 3-х вариантов равна сумме вероятностей каждого из вариантов: 0,08 + 0,08 + 0,16 = 0,32.

Задача 3. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти вероятность того что Аня и Нина окажутся в одной группе.

Решение: 

Тип вопроса: уменьшение групп.

Вероятность попадания Ани в одну из групп равна 1. Вероятность попадания Нины в ту же группу равна 2 из 20 (2 оставшихся места в группе, а человек осталось 20). 2/20 = 1/10 = 0,1.

Задача 4. В кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что обе двухрублёвые монеты лежат в одном кармане.

Решение:

Способ №1

Тип задачи: уменьшение групп.

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая однорублевая монета попадет в один из карманов (групп) = 1.

Вероятность, что две двухрублевые монеты попадут в этот же карман = количество оставшихся мест в этом кармане/на количество оставшихся мест в обоих карманах = 2/5 = 0,4.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют в несколько вариантов:

Если Петя переложил в другой карман три из четырех рублевых монет (а двухрублевые не перекладывал), или если переложил в другой карман обе двухрублевые монеты и одну рублевую одним из трех способов: 1, 2, 2; 2, 1, 2; 2, 2, 1. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 5

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 6

Задача 5. В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того, что пятирублевые монеты лежат теперь в разных карманах.

Решение:

Тип задачи: уменьшение групп.

Способ №1

Представим, что шесть монет делят на две группы по три монеты. Вероятность, что первая двухрублевая монета попадет в один из карманов (групп) = 1. Вероятность, что вторая монета попадет в другой карман = количество оставшихся мест в другом/ на количество оставшихся мест в обоих карманах = 3/5 = 0,6.

Способ №2

Тип вопроса: совмещение событий.

Задачу выполняют несколько вариантов:

Чтобы пятирублевые монеты оказались в разных карманах, Петя должен взять из кармана одну пятирублевую и две десятирублевые монеты. Это можно сделать тремя способами: 5, 10, 10; 10, 5, 10 или 10, 10, 5. Можно изобразить это на схеме (перекладывает Петя в карман 2, поэтому будем высчитывать вероятности в колонке «карман 2»):

формула 7

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: формула 8

Задача 6. В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орёл выпадет ровно два раза.

Решение: Тип вопроса: нахождение желаемого и действительного совмещение событий Нас устраивают три варианта:

Орёл ― решка ― орёл;

Орёл ― орёл ― решка;

Решка ― орёл ― орёл;

Вероятность каждого случая ― 1/2, а каждого варианта ― 1/8 (1/2 ∙ 1/2 ∙ 1/2 = 1/8)

Нас устроит либо первый, либо второй, либо третий вариант. Следовательно, складываем их вероятности и получаем 3/8 (1/8 + 1/8 + 1/8 = 3/8), т. е. 0,375.

Задача 7. Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,5. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,34. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Решение: 

Тип вопроса: совмещение событий.

В любом случае А. будет играть как белыми, так и черными, поэтому нас устроит вариант, когда гроссмейстер А. выиграет, играя белыми (вероятность ― 0,5), а также играя чёрными (вероятность ― 0,34). Поэтому надо перемножить вероятности этих двух событий: 0,5 ∙ 0,34 = 0,17.

Задача 8. Вероятность того, что батарейка бракованная, равна 0,02. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.

Решение: 

Тип вопроса: совмещение событий.

Вероятность того, что батарейка исправна, равна 0,98. Покупателю надо, чтобы и первая, и вторая батарейка были исправны: 0,98 · 0,98 = 0,9604.

Задача 9. На рок-фестивале выступают группы ― по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из США будет выступать после группы из Канады и после группы из Китая? Результат округлите до сотых.

Решение: 

Тип вопроса: совмещение событий.

Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (КИТ — Китай, КАН = Канада):

… США, КАН, КИТ …

… США, КИТ, КАН …

… КИТ, США, КАН …

… КАН, США, КИТ …

… КАН, КИТ, США …

… КИТ, КАН, США …

США находится после Китая и Канады в двух последних случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна:

формула 9

≈ 0,33.

Дополняющая вероятность

Задача 1. 

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,97. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,05.

Найдите вероятность того, что случайно выбранная батарейка будет забракована.

Решение: 

Существуют 2 варианта, которые нам подходят:

Вариант А: батарейка забракована, она неисправна;

Вариант Б: батарейка забракована, она исправна.

Вероятность варианта А: 0,02 ∙ 0,97 = 0,0194;

Вероятность варианта Б: 0,05 ∙ 0,98 = 0,049;

Нас устроит либо первый, либо второй вариант: 0,0194 + 0,049 = 0,0684.

Задача 2. Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 60% этих стекол, вторая — 40%. Первая фабрика выпускает 3% бракованных стекол, а вторая — 5%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Решение: 

Вероятность того, что стекло куплено на первой фабрике и оно бракованное: 0,6 · 0,03 = 0,018.

Вероятность того, что стекло куплено на второй фабрике и оно бракованное: 0,4 · 0,05 = 0,02.

Вероятность того, что случайно купленное в магазине стекло окажется бракованным, равна 0,018 + 0,02 = 0,038.

Задача 3. На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Результат округлите до тысячных.

Решение: 

Предположим, у нас х тарелок изначально (ведь мы постоянно имеем дело с процентами, поэтому нам ничего не мешает оперировать конкретными величинами).

Тогда 0,1х — дефектные тарелки, а 0,9х — нормальные, которые поступят в магазин сразу. Из дефектных убирается 80%, то есть 0,08х, и остаётся 0,02х, которые тоже пойдут в магазин. Таким образом, общее количество тарелок на полках в магазине окажется: 0,9х + 0,02х = 0,92х. Из них нормальными будет 0,9х. Соответственно, по формуле вероятность будет 0,9х/0,92х ≈ 0,978.

Задача 4. По отзывам покупателей Игорь Игоревич оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,91. Вероятность того, что этот товар доставят из магазина Б, равна 0,89. Игорь Игоревич заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар.

Решение. Вероятность того, что первый магазин не доставит товар, равна 1 − 0,91 = 0,09. Вероятность того, что второй магазин не доставит товар, равна 1 − 0,89 = 0,11. Вероятность происхождения двух этих событий одновременно равна произведению вероятностей каждого из них: 0,09 · 0,11 = 0,0099.

Задача 5. При изготовлении подшипников диаметром 70 мм вероятность того, что диаметр будет отличаться от заданного меньше чем на 0,01 мм, равна 0,961. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше чем 69,99 мм или больше чем 70,01 мм.

Решение: Нам дана вероятность события, при котором диаметр будет в пределах между 69,99 мм и 70,01 мм, и она равна 0,961. Вероятность всех остальных вариантов мы можем найти по принципу дополняющей вероятности: 1 − 0,961 = 0,039.

Задача 6. Вероятность того, что на тесте по истории учащийся верно решит больше 9 задач, равна 0,68. Вероятность того, что верно решит больше 8 задач, равна 0,78. Найдите вероятность того, что верно решит ровно 9 задач.

Решение: Вероятность того, что Т. верно решит более 8 задач, включает в себя вероятность решения ровно 9 задач. При этом, события, при которых О. решит больше 9 задач, нам не подходят. Следовательно, отняв от вероятности решения более 9 задач вероятность решения более 8 задач, мы и найдём вероятность решения только 9 задач: 0,78 – 0,68 = 0,1.

Задача 7. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 21 пассажира, равна 0,88. Вероятность того, что окажется меньше 12 пассажиров, равна 0,66. Найдите вероятность того, что число пассажиров будет от 12 до 20.

Решение. Вероятность того, что в автобусе окажется меньше 21 пассажира, включает в себя вероятность, что в нём окажутся от 12 до 20 пассажиров. При этом события, при которых пассажиров будет меньше 12, нам не подходят. Следовательно, отняв от первой вероятности (менее 21) вторую вероятность (менее 12), мы и найдём вероятность того, что пассажиров будет от 12 до 20 : 0,88 – 0,66 = 0,22.

Задача 8. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,9 погода завтра будет такой же, как и сегодня. 10 апреля погода в Волшебной стране хорошая. Найдите вероятность того, что 13 апреля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» — хорошая погода, «О» — отличная погода):

11 апреля 12 апреля 13 апреля Вероятность данного варианта
X – 0,9 X – 0,9 O – 0,1 0,9 ·0,9 ·0,1 = 0,081
X – 0,9 O – 0,1 O – 0,9 0,9 ·0,1 ·0,9 = 0,081
O – 0,1 O – 0,9 O – 0,9 0,1 ·0,9 ·0,9 = 0,081
O – 0,1 X – 0,1 O – 0,1 0,1 ·0,1 ·0,1 = 0,001

Вероятность происхождения какого-либо их этих 4-х вариантов равна сумме вероятностей каждого из вариантов: 0,081 + 0,081 + 0,081 + 0,001 = 0,244.

Задача 9. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.

Решение:

Задачу выполняют несколько вариантов («Х» ― хорошая погода, «О» ― отличная погода):

4 июля 5 июля 6 июля Вероятность данного варианта
X – 0,8 X – 0,8 O – 0,2 0,8 · 0,8 · 0,2 = 0,128
X – 0,8 O – 0,2 O – 0,8 0,8 · 0,2 · 0,8 = 0,128
O – 0,2 O − 0,8 O − 0,8 0,2 · 0,8 · 0,8 = 0,128
O – 0,2 X – 0,2 O – 0,2 0,2 · 0,2 · 0,2 = 0,008

Вероятность происхождения какого-либо их этих 4 ― х вариантов равна сумме вероятностей каждого из вариантов: 0,128 + 0,128 + 0,128 + 0,008 = 0,392.

Полная вероятность и формула Байеса

  1. Зависимые события и условные вероятности
  2. Вероятность совместного появления событий
  3. Формула полной вероятности
  4. Формула Байеса
  5. Примеры

п.1. Зависимые события и условные вероятности

Чтобы вспомнить о сложении и умножении вероятностей и независимых событиях – см. §39 справочника для 9 класса.

Напомним, что два случайных события A и B называют независимыми, если наступление одного из них не изменяет вероятность наступления другого.
Например: при бросании монеты несколько раз каждый следующий бросок совершенно не зависит от предыдущих.

Два случайных события A и B называют зависимыми, если вероятность одного из них зависит от того, произошло или нет другое событие.
Вероятность события B, определенная при условии, что событие A произошло, называется условной вероятностью и обозначается (P(B|A)) или (P_A(B)).
Для условных вероятностей справедливы формулы: $$ P(A|B)=frac{P(Awedge B)}{P(B)}, P(B|A)=frac{P(Awedge B)}{P(A)} $$ где (P(Awedge B)) – вероятность совместного появления событий A и B.

Например:
Рассмотрим урну, в которой находится 3 белых и 3 черных шара.
Мы достаем шары, смотрим на их цвет и не возвращаем их на место. События в последовательности становятся зависимыми.
Пусть событие A=”в 1й раз достаем черный шар”,
Событие B=”во 2й раз достаем белый шар”
Событие C=”во 2й раз достаем черный шар”
После того, как произошло событие A, в урне остается 3 белых и 2 черных шара.
Тогда условная вероятность для события B при условии, что событие A произошло:
(P(B|A)=frac35)
Аналогично, условная вероятность для события C:
(P(B|A)=frac25)

п.2. Вероятность совместного появления событий

Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло: $$ P(Awedge B)=P(B)cdot P(A|B)=P(A)cdot P(B|A) $$ Это утверждение также называют теоремой умножения вероятностей.

Например:
Продолжая предыдущий пример, вероятность события ((Awedge B)) – 1й раз достали черный шар и 2й раз белый – равна: $$ P(Awedge B)=P(A)cdot P(B|A)=frac12cdot frac35=0,3 $$ Также, напомним:

Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий: $$ P(Awedge B)=P(A)cdot P(B) $$

Например:
Пусть в урне 3 белых и 3 черных шара. Мы достаем шары, смотрим на их цвет и возвращаем их на место. В последовательности наших действий все события будут независимыми. Каждый раз, вероятность достать белый или черный шар будет равна 1/2. Поэтому, в этом случае вероятность события ((Awedge B)) – 1й раз достали черный шар, а 2й раз белый – равна: $$ P(Awedge B)=P(A)cdot P(B)=frac12cdotfrac12=0,25 $$

п.3. Формула полной вероятности

Чтобы вспомнить о несовместных событиях и полной группе событий – см. §39 справочника для 9 класса.
Например:
При подбрасывании монеты события A=«получить орла» и B=«получить решку» – несовместные, т.к. одновременно произойти не могут.
В то же время, эти несовместные события A и B образуют пространство элементарных событий или полную группу (Omega=left{B;Bright}), т.к. ничего другого, кроме орла или решки, получить нельзя. Сумма вероятностей (P(A)+P(B)=frac12+frac12=1), как и положено для полной группы.

Если событие A может произойти только при выполнении одного из событий (B_1,B_2,…,B_k), которые образуют полную группу событий, то вероятность события A определяется по формуле полной вероятности: $$ P(A)=P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+…+P(B_k)P(A|B_k)=sum_{i=1}^k P(B_i)P(A|B_i) $$

Например:
В 11А и 11Б учится по 35 человек, а в 11В – 30 человек. Будем считать тех, у кого 4 и 5 баллов по алгебре и геометрии, «знатоками математики». Таких учеников в 11А – 10 человек, в 11Б – 7 человек, и в 11В – 3 человека.
Какова вероятность, что произвольно выбранный 11-классник окажется знатоком математики?
Пусть события A=«знаток математики», Bi=«ученик i-го класса», (i=overline{1,3})
Составим таблицу:

i Класс К-во
учеников
(P(B_i)) К-во
знатоков
(P(A|B_i)) (P(B_i)cdot P(A|B_i))
1 11A 35 35/100=0,35 10 10/35=2/7 0,1
2 11Б 35 35/100=0,35 7 7/35=1/5 0,07
3 11В 30 30/100=0,3 10 3/30=1/10 0,03
Всего 100 1 20 × 0,2

Получаем полную вероятность (P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,2)
В данном случае ответ можно получить и проще: 20 знатоков на 100 человек дает (P(A)=0,2).

п.4. Формула Байеса

По данному выше определению полной вероятности событие A случается, если происходит одно из событий полной группы (left{B_iright}).
Допустим, что событие A случилось. А какова вероятность, что при этом произошло конкретное событие (B_1inleft{B_iright})? Т.е., нас интересует условная вероятность (P(B_1|A)).
По теореме об умножении вероятностей: $$ P(Awedge B_1)=P(B_1)cdot P(A|B_1)=P(A)cdot P(B_1|A) $$ Откуда: $$ P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)} $$ То же самое справедливо для любого события (B_pinleft{B_iright}). Предположение о том, что случилось событие (B_p), называют гипотезой.

Если событие A может произойти только при выполнении одного из событий полной группы (left{B_iright}) и событие A случилось, то вероятность гипотезы, что при этом случилось событие (B_pinleft{B_iright}), определяется формулой Байеса: $$ P(B_p|A)=frac{P(B_p)cdot P(A|B_p)}{P(A)}=frac{P(B_p)cdot P(A|B_p)}{sum_{i=1}^k P(B_i)P(A|B_i)} $$ Вероятность (P(B_p)) называют априорной вероятностью.
Вероятность (P(B_p|A)) называют апостериорной вероятностью. Случившееся событие A может поменять априорную (предварительную) оценку вероятности события (B_p).

Например:
Продолжим задачу с 11-классниками. Какова вероятность того, что произвольно взятый знаток математики учится в 11Б?
Наши события: A=«знаток математики», B2=«ученик 11Б класса».
Событие A «случилось» – у нас имеется знаток, а событие B2 – это гипотеза про 11Б.
И ответом на поставленный вопрос является вероятность (P(B_2|A)).
Из нашей таблицы: $$ P(B_2)cdot P(A|B_2)=0,07; P(A)=0,2 $$ Получаем: $$ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{0,07}{0,2}=0,35 $$ Т.е. 11Б дает 35% всех знатоков математики в этой школе.
Если сравнить апостериорную вероятность (P(B_2|A)=0,35) с априорной вероятностью (P(B_2)=0,35), они равны. Событие A не повлияло на оценку вклада 11Б в интеллектуальный багаж школы, он находится на среднем уровне.
Теперь найдем вероятность того, что произвольно взятый знаток математики учится в 11А: begin{gather*} P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)}=frac{0,1}{0,2}=0,5\ P(B_1|A)gt P(B_1) end{gather*} Вклад 11А по факту (апостериорная вероятность 0,5) оказывается большим, чем ожидалось по количеству учеников (априорная вероятность 0,35). 50% знатоков всей школы – из этого класса.
Наконец, найдем вероятность того, что произвольно взятый знаток математики учится в 11В: begin{gather*} P(B_3|A)=frac{P(B_3)cdot P(A|B_3)}{P(A)}=frac{0,03}{0,2}=0,15\ P(B_3|A)lt P(B_3) end{gather*} Вклад 11В по факту (апостериорная вероятность 0,15) оказывается меньшим, чем ожидалось по количеству учеников (априорная вероятность 0,3). Только 15% знатоков всей школы – из этого класса.

п.5. Примеры

Пример 1. Двигатель работает в трех режимах: нормальном (65% времени), форсированном (25% времени) и холостом. Вероятность поломки в каждом из режимов соответственно равна (p_1=0,1; p_2=0,8; p_3=0,05).
а) найдите вероятность поломки двигателя во время работы;
б) двигатель сломался. Какова вероятность, что он в этот момент работал в форсированном режиме?

а) Пусть событие A=«поломка двигателя», Bi – «работа в i-м режиме», (i=overline{1,3})
Необходимо найти полную вероятность (P(A)).
Составим таблицу:

i Режим Часть
времени
(P(B_i))
Вероятность
поломки
(P(A|B_i))
(P(B_i)cdot P(A|B_i))
1 Нормальный 0,65 0,1 0,065
2 Форсированный 0,25 0,8 0,2
3 Холостой 0,1 0,05 0,005
Всего 1 × 0,27

Вероятность поломки (полная вероятность): $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,27 $$
б) Событие A=«поломка двигателя» произошло. Гипотеза B2 – «работа в форсированном режиме» при фактической поломке имеет вероятность: $$ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{0,2}{0,27}=frac{20}{27}approx 0,741 $$ Апостериорная вероятность (P(B_2|A)approx 0,741) больше априорной вероятности (P(B_2)=0,25).

Ответ: a) 0,27; б) (frac{20}{27}approx 0,741)

Пример 2. В состязании лучников участвуют три стрелка. Вероятность попадания в мишень для каждого из них равна 0,3; 0,5 и 0,7. Один из стрелков стреляет и не попадает. Какова вероятность, что это был:
а) первый стрелок;
б) второй стрелок;
в) третий стрелок;

Пусть событие A=«промах», Bi – «выстрел i-го стрелка», (i=overline{1,3})
Т.к. стрелять мог любой из стрелков (P(B_i)=frac13) для каждого из них.
Чтобы найти вероятность промаха, нужно от 1 отнять вероятность попадания.
Составим таблицу:

i (P(B_i)) Вероятность
промаха
(P(A|B_i))
(P(B_i)cdot P(A|B_i))
1 (frac13) 1-0,3=0,7 (frac13cdot 0,7=frac{7}{30})
2 (frac13) 1-0,5=0,5 (frac13cdot 0,5=frac{1}{6})
3 (frac13) 1-0,7=0,3 (frac13cdot 0,3=frac{1}{10})
1 × 0,5

Полная вероятность: $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=frac{7}{30}+frac16+frac{1}{10}=0,5 $$ Промах произошел. Находим апостериорные вероятности для каждого стрелка: begin{gather*} P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)}=frac{7/30}{0,5}=frac{7}{15}approx 0,467\ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{1/6}{0,5}=frac{2}{3}approx 0,333\ P(B_3|A)=frac{P(B_3)cdot P(A|B_3)}{P(A)}=frac{1/10}{0,5}=frac{1}{5}=0,2\ end{gather*} С точки зрения практической, можно сказать, что «вероятнее всего», это был первый стрелок.

Ответ: a) (frac{7}{15}); б) (frac{1}{3}); в) (frac{1}{5})

Пример 3. Три фрилансера на площадке выполняют заказы в отношении по количеству 3:4:3. Доля успешно выполненных заказов для каждого из них составляет 98%, 95% и 90%.
а) найдите вероятность успешного выполнения заказа на площадке;
б) найдите вероятность неуспеха на площадке;
в) кто из фрилансеров, вероятнее всего, виноват в неуспешной работе?

Пусть событие A=«успех», Bi – «работа i-го фрилансера», (i=overline{1,3})
Составим таблицу успешной деятельности:

i (P(B_i)) Вероятность успеха
(P(A|B_i))
(P(B_i)cdot P(A|B_i))
1 0,3 0,98 0,294
2 0,4 0,95 0,38
3 0,3 0,9 0,27
1 × 0,944

Вероятность успешного выполнения (полная вероятность): $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,944 $$ б) Вероятность неуспеха (противоположное событие): $$ P(overline{A})=1-P(A)=1-0,944=0,056 $$ в) Составим таблицу неуспешной деятельности:

i (P(B_i)) Вероятность неуспеха
(P(overline{A}|B_i))
(P(B_i)cdot P(overline{A}|B_i))
1 0,3 1-0,98=0,02 0,006
2 0,4 1-0,95=0,05 0,02
3 0,3 1-0,9=0,1 0,03
1 × 0,056

Апостериорные вероятности для каждого из фрилансеров: begin{gather*} P(B_1|overline{A})=frac{P(B_1)cdot P(overline{A}|B_1)}{P(overline{A})}=frac{0,006}{0,056}=frac{3}{28}approx 0,107\ P(B_2|overline{A})=frac{P(B_2)cdot P(overline{A}|B_2)}{P(overline{A})}=frac{0,02}{0,056}=frac{5}{14}approx 0,357\ P(B_3|overline{A})=frac{P(B_3)cdot P(overline{A}|B_3)}{P(overline{A})}=frac{0,03}{0,056}=frac{15}{28}approx 0,536 end{gather*} Наибольшая вероятность неуспеха – у третьего фрилансера.

Ответ: а) 0,944; б) 0,056; в) третий фрилансер.

Пример 4. Докажите, что если полная вероятность события A равна $$ P(A)=sum_{i=1}^k P(B_i)cdot P(A|B_i) $$ то вероятность противоположного события равна (P(overline{A})=1-P(A)).

По условию событие A происходит только при выполнении одного из событий полной группы (left{B_iright}. i=overline{i,k}). Соответственно, противоположное событие (overline{A}) также происходит при выполнении одного из событий (B_i). При этом условная вероятность для противоположного события: $$ P(overline{A}|B_i)=1-P(A|B_i) $$ Заметим также, что для полной группы сумма вероятностей равна 1: begin{gather*} sum_{i=1}^k P(B_i)=1 end{gather*} Получаем: begin{gather*} P(overline{A})=sum_{i=1}^k P(B_i)cdot P(overline{A}|B_i)=sum_{i=1}^k P(B_i)cdot (1-P(A|B_i))=\ =sum_{i=1}^k P(B_i)-sum_{i=1}^k P(B_i)cdot P(A|B_i)=1-P(A) end{gather*} Что и требовалось доказать.

❓ Что такое теория вероятностей?

Теория вероятностей использует случайные величины и распределения вероятностей для математической оценки неопределенных ситуаций. Понятие вероятности используется для присвоения числового описания вероятности наступления события. Вероятность можно определить как число благоприятных исходов, деленное на общее число возможных исходов события.

Определение теории вероятностей

Теория вероятностей – это область математики и статистики, которая занимается определением вероятностей, связанных со случайными событиями. Существует два основных подхода к изучению теории вероятностей: теоретический и экспериментальный. Теоретическая вероятность определяется на основе логических рассуждений без проведения экспериментов. В отличие от нее, экспериментальная вероятность определяется на основе исторических данных путем проведения повторных экспериментов.

Пример теории вероятностей

Предположим, нам необходимо определить вероятность выпадения числа 4 при бросании игральной кости. Число благоприятных исходов равно 1. Возможные исходы игральной кости – {1, 2, 3, 4, 5, 6}. Из этого следует, что всего существует 6 исходов. Таким образом, вероятность выпадения 4 при бросании игральной кости, используя теорию вероятности, можно вычислить как 1 / 6 ≈ 0,167.

🎲 Основы теории вероятностей

Мы можем понять эту область математики с помощью нескольких основных терминов, напрямую связанных с теорией вероятностей.

Случайный эксперимент

Случайный эксперимент в теории вероятностей – это испытание, которое повторяется несколько раз для получения четко определенного набора возможных результатов. Подбрасывание монеты является примером случайного эксперимента.

Пространство выборки

Пространство выборки можно определить как множество всех возможных исходов, полученных в результате проведения случайного эксперимента. Например, пространство выборки при подбрасывании симметричной монеты (fair coin), стороны которой – это орел и решка.

Событие

Теория вероятностей определяет событие как набор исходов эксперимента, который образует подмножество пространства выборки.

Примеры событий:

  1. Независимые – те, на которые не влияют другие события, являются независимыми.
  2. Зависимые – те, на которые влияют другие события.
  3. Взаимоисключающие – события, которые не могут произойти в одно и то же время.
  4. Равновероятные – два или более события, которые имеют одинаковые шансы произойти.
  5. Исчерпывающие – это события, которые равны выборочному пространству эксперимента.

Случайная величина

В теории вероятностей случайную переменную можно определить как величину, которая принимает значение при всех возможных исходах эксперимента.

Существует два типа случайных величин:

  1. Дискретная случайная величина – принимает точные значения, такие как 0, 1, 2…. Описывается кумулятивной функцией распределения и функцией массы вероятности.
  2. Непрерывная случайная величина – переменная, которая может принимать бесконечное число значений. Для определения характеристик этой переменной используются кумулятивная функция распределения и функция плотности вероятности.

Вероятность

Вероятность мы можем определить как численную вероятность наступления события. Вероятность того, что событие произойдет, всегда лежит между 0 и 1. Это связано с тем, что число желаемых исходов никогда не может превысить общее число исходов события. Теоретическая вероятность и эмпирическая вероятность используются в теории вероятностей для измерения шанса наступления события.

Формула вероятности P(A): количество благоприятных исходов для A делимое на общее количество возможных исходов.

Формула вероятности P(A): количество благоприятных исходов для A делимое на общее количество возможных исходов.

Условная вероятность

Ситуация, когда необходимо определить вероятность наступления события, притом что другое событие уже произошло.

Обозначается как P(A | B).

Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», на котором ты:

  • Усвоишь специальную терминологию и сможешь читать статьи по Data Science без постоянных обращений к поисковику.
  • Подготовишься к успешной сдачи вступительных экзаменов в Школу анализа данных Яндекс.
  • Овладеешь математическим аппаратом, который необходим, чтобы стать специалистом в Data Science.

Ожидание

Ожидание случайной величины X можно определить как среднее значение результатов эксперимента, проводимого многократно. Ожидание обозначается как E[X]. Также известно как среднее значение случайной величины.

Дисперсия

Дисперсия – это мера, которая показывает, как распределение случайной величины изменяется относительно среднего значения. Дисперсия определяется как среднее квадратичное отклонение от среднего значения случайной величины. Обозначается как Var[X].

Функция распределения теории вероятностей

Распределение вероятностей или кумулятивная функция распределения – это функция, которая моделирует все возможные значения эксперимента, используя случайную переменную. Распределение Бернулли и биномиальное распределение – это примеры дискретных распределений вероятностей. Например, нормальное распределение представляет собой пример непрерывного распределения.

Массовая функция вероятности

Массовая функция вероятности определяется как вероятность того, что дискретная случайная величина будет в точности равна определенному значению.

Функция плотности вероятности

Функция плотности вероятности – это вероятность того, что непрерывная случайная величина принимает множество возможных значений.

Формулы теории вероятностей

В теории вероятностей существует множество формул, которые помогают рассчитать различные вероятности, связанные с событиями.

Наиболее важные формулы:

  1. Теоретическая вероятность: Число благоприятных исходов / Число возможных исходов.
  2. Эмпирическая вероятность: Число случаев, когда событие происходит / Общее число испытаний.
  3. Правило сложения: P(A ∪ B) = P(A) + P(B) – P(A∩B), где A и B – события.
  4. Правило комплементарности: P(A’) = 1 – P(A). P(A’) означает вероятность того, что событие не произойдет.
  5. Независимые события: P(A∩B) = P(A) ⋅ P(B).
  6. Условная вероятность: P(A | B) = P(A∩B) / P(B).
  7. Теорема Байеса: P(A | B) = P(B | A) ⋅ P(A) / P(B).
  8. Массовая функция вероятности: f(x) = P(X = x).
  9. Функция плотности вероятности: p(x) = p(x) = dF(x) / dx, где F(x) – кумулятивная функция распределения.
  10. Ожидание непрерывной случайной величины: ∫xf(x)dx, где f(x) является МФВ (Массовой функцией вероятности).
  11. Ожидание дискретной случайной величины: ∑xp(x), где p(x) – это ФПВ (Функцией плотности вероятности).
  12. Дисперсия: Var(X) = E[X2] – (E[X])2.

Применение теории вероятностей

Теория вероятностей используется во многих областях и помогает оценить риски, которые связаны с теми или иными решениями. Некоторые из направлений, где применяют теорию вероятностей:

  • В финансовой отрасли теория вероятностей используется для создания математических моделей фондового рынка с целью прогнозирования будущих тенденций. Это помогает инвесторам вкладывать средства в наименее рискованные активы, которые дают наилучший доход.
  • В потребительской индустрии теория вероятностей используется для снижения вероятности неудачи при разработке продукта.
  • Казино использует теорию вероятностей для разработки азартных игр с максимизацией своей прибыли.

🏋️ Практические задания

🎲 Орел или решка? Основы теории вероятностей простыми словами

Задача 1: При бросании двух игральных костей, какова вероятность того, что выпадет комбинация, сумма которой будет равна 8?

При бросании двух игральных костей существует 36 возможных исходов. Для получения суммы, равной 8, существует 5 благоприятных исходов: [(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)]. Используя формулы теории вероятностей: Вероятность = Число благоприятных исходов / общее число возможных исходов = 5 / 36. Ответ: Вероятность получения суммы 8 при бросании двух игральных костей равна 5 / 36.

Задача 2: Какова вероятность вытащить карту королеву из колоды?

Колода карт имеет 4 масти. Каждая масть состоит из 13 карт. Таким образом, общее число возможных исходов = (4) * (13) = 52. Может быть, 4 королевы, по одной из каждой масти. Следовательно, количество благоприятных исходов = 4. Карточная вероятность = 4 / 52 = 1 / 13. Ответ: Вероятность получить королеву из колоды карт равна 1 / 13

Задача 3: Из 10 человек 3 купили карандаши, 5 купили тетради, а 2 купили и карандаши, и тетради. Если покупатель купил тетрадь, какова вероятность того, что он также купил карандаш?

Используя понятие условной вероятности, P(A | B) = P(A∩B) / P(B). Пусть A – событие, когда люди покупают карандаши, а B – событие, когда люди покупают тетради. P(A) = 3 / 10 = 0,3P(B) = 5 / 10 = 0,5P(A∩B) = 2 / 10 = 0,2. Подставим полученные значения в приведенную формулу, P(A | B) = 0,2 / 0,5 = 0,4. Ответ: Вероятность того, что покупатель купил карандаш, при условии, что он купил блокнот, равна 0,4.

В заключение

Подведем итоги:

  • Теория вероятностей – это раздел математики, в котором рассматриваются вероятности случайных событий.
  • Понятие вероятности объясняет возможность наступления того или иного события.
  • Значение вероятности всегда лежит между 0 и 1.
  • В теории вероятностей все возможные исходы случайного эксперимента составляют пространство выборки.
  • Теория вероятностей использует такие важные понятия, как случайные величины и кумулятивные функции распределения для моделирования случайного события. Сюда же относится определение различных вероятностей, связанных с этим.

Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», который включает в себя:

  • 47 видеолекций и 150 практических заданий.
  • Консультации с преподавателями курса.

Для двух событий, A и B, «найти вероятность A или B» означает найти вероятность того, что произойдет либо событие A, либо событие B.

Обычно мы записываем эту вероятность одним из двух способов:

  • P (A или B) – Письменная форма
  • P(A∪B) – Форма записи

То, как мы вычисляем эту вероятность, зависит от того, являются ли события A и B взаимоисключающими или нет. Два события являются взаимоисключающими, если они не могут произойти одновременно.

Если A и B взаимоисключающие , то формула, которую мы используем для вычисления P(A∪B):

Mutually Exclusive Events: P(A∪B) = P(A) + P(B)

Если A и B не исключают друг друга , то формула, которую мы используем для вычисления P(A∪B):

Not Mutually Exclusive Events: P(A∪B) = P(A) + P(B) - P(A∩B)

Обратите внимание, что P(A ∩ B) — это вероятность того, что событие A и событие B произойдут одновременно.

Следующие примеры показывают, как использовать эти формулы на практике.

Примеры: P(A∪B) для взаимоисключающих событий.

Пример 1: Какова вероятность того, что при бросании игральной кости выпадет либо 2, либо 5?

Решение: если мы определим событие A как получение 2, а событие B как получение 5, то эти два события являются взаимоисключающими, потому что мы не можем выбросить 2 и 5 одновременно. Таким образом, вероятность того, что выпадет либо 2, либо 5, рассчитывается как:

Р(А∪В) = (1/6) + (1/6) = 2/6 = 1/3.

Пример 2: Предположим, что в урне 3 красных шара, 2 зеленых шара и 5 желтых шаров. Если мы случайно выберем один шар, какова вероятность того, что вы выберете либо красный, либо зеленый шар?

Решение: если мы определим событие А как выбор красного шара, а событие В как выбор зеленого шара, то эти два события будут взаимоисключающими, потому что мы не можем выбрать одновременно красный и зеленый шар. Таким образом, вероятность того, что мы выберем красный или зеленый шар, рассчитывается как:

P(A∪B) = (3/10) + (2/10) = 5/10 = 1/2.

Примеры: P(A B) для не взаимоисключающих событий .

В следующих примерах показано, как вычислить P(A∪B), когда A и B не являются взаимоисключающими событиями.

Пример 1. Если мы случайно выберем карту из стандартной колоды из 52 карт, какова вероятность того, что вы выберете пику или даму?

Решение: В этом примере можно выбрать карту, которая является и пикой, и дамой, поэтому эти два события не исключают друг друга.

Если мы допустим, что событие A будет событием выбора пики, а событие B будет событием выбора ферзя, то мы получим следующие вероятности:

  • Р(А) = 13/52
  • Р(В) = 4/52
  • Р(А∩В) = 1/52

Таким образом, вероятность выбора пики или королевы рассчитывается как:

P(A∪B) = P(A) + P(B) – P(A∩B) = (13/52) + (4/52) – (1/52) = 16/52 = 4/13.

Пример 2. Если мы бросим игральную кость, какова вероятность того, что выпадет число больше 3 или четное число?

Решение. В этом примере кости могут выпасть на число, которое одновременно больше 3 и четно, поэтому эти два события не исключают друг друга.

Если мы допустим, что событие А будет событием выпадения числа больше 3, а событие В будет событием выпадения четного числа, то мы получим следующие вероятности:

  • Р(А) = 3/6
  • Р(В) = 3/6
  • Р(А∩В) = 2/6

Таким образом, вероятность того, что кубик выпадет на число больше 3 или на четное число, рассчитывается как:

P(A∪B) = P(A) + P(B) – P(A∩B) = (3/6) + (3/6) – (2/6) = 4/6 = 2/3.

Добавить комментарий