Как найти вероятность отказа схемы

Как решать задачи о прохождении тока через электрические схемы

В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про подбрасывания игральных кубиков и монеток, задачи про стрелков и станки.

решаем задачи про электрические схемы

В этой статье мы рассмотрим задачи вида
“задана схема электрической цепи с надежностью элементов (или вероятностями выхода из строя), найти вероятность работы цепи (или вероятность разрыва цепи)”.

Задачи могут иметь чуть разные формулировки, но принцип решения для них одинаков, и его мы изучим, чтобы суметь решать такие задачи со схемами любой сложности.

Далее:

  • Базовые события, обозначения и формулы
  • Последовательно или параллельно?
  • Усложняем схему цепи
  • Примеры решений
  • На закуску: схема с мостиком
  • Полезные ссылки
  • Решебник

Лучшее спасибо – порекомендовать эту страницу

Базовые события, обозначения и формулы

Самое первое, с чего мы начнем – формализация задачи (и решение любой своей задачи рекомендую начинать с этого). А именно, мы введем основные события:

$X$ = (Цепь работает) = (Цепь пропускает ток) и противоположное ему:

$overline{X}$ =(Цепь не пропускает ток) = (Произошел разрыв в цепи).

$A_i$ = (Элемент i работает, пропускает ток) и $overline{A_i}$ =(Элемент i отказал, не пропускает ток), $i=1,2,…,n$.

Обычно в условии задачи известны вероятности работы элементов (надежности): $p(A_i)=p_i$ или вероятности отказа $p(overline{A_i})=q_i=1-p_i$, $i=1,2,…,n$.

Также напомним основные формулы (из темы действий с событиями, формулы сложения и умножения вероятностей), которые пригодятся в решении этого типа задач.

Для независимых в совокупности событий (а отказы/работа элементов цепи – именно такие):

$$
P(A cdot B) = P(A) cdot P(B); quad(1)
$$
$$
P(A+B) = P(A)+P(B)-P(A)cdot P(B); quad(2)
$$
$$
P(A_1+A_2+…+A_n)=1-P(overline{A_1})cdot P(overline{A_2})cdot … cdot P(overline{A_n}). quad(3)
$$

Последовательно или параллельно?

Еще немного времени посвятим теории, вспомним о том, как могут соединяться элементы в цепи.

Последовательное соединение

последовательное соединение элементов в цепи

Элементы цепи “нанизаны” на провод один за другим (следуют один за другим, отсюда и “последовательно”). Если откажет один любой – ток в цепи прервётся. Или, иначе говоря, цепь работает тогда и только тогда, когда ВСЕ элементы работают. В терминах теории вероятностей получаем произведение событий: $X=A_1 cdot A_2 cdot A_3$, а вероятность работы цепи равна

$$
P(X)=P(A_1 cdot A_2 cdot A_3)= P(A_1) cdot P(A_2) cdot P(A_3) =p_1 cdot p_2 cdot p_3.
$$

Если в цепи последовательно соединены не три, а больше независимо работающих элементов, формула легко обобщается и получаем:

$$
P(X) = p_1 cdot p_2 cdot …cdot p_n; qquad P(overline{X})=1-p_1 cdot p_2 cdot …cdot p_n. quad(4)
$$

Параллельное соединение

параллельное соединение элементов в цепи

Тут тоже сама схема дает нам подсказку, когда мы видим, что элементы в схеме расположены как бы на параллельных проводах, речь идет о параллельном соединении.

В этом случае если откажет, скажем, элемент 1, ток может пройти через 2. Если откажут 1 и 2, ток пройдет через 3. И только если ВСЕ элементы откажут, цепь разорвется.

Еще говорят, цепь работает, если работает хотя бы один элемент в ней, в терминах теории вероятностей – это сумма событий: $X=A_1+A_2+A_3$.

Используем формулу (3) чтобы записать вероятность работы такой цепи:

$$
P(A_1+A_2+A_3)=1-P(overline{A_1})cdot P(overline{A_2}) cdot P(overline{A_3})=1-q_1 cdot q_2 cdot q_3.
$$

И обобщим на случай $n$ параллельных элементов в цепи:

$$
P(X) = 1-q_1 cdot q_2 cdot …cdot q_n; qquad P(overline{X})=q_1 cdot q_2 cdot …cdot q_n. quad(5)
$$

Важно запомнить правило

Последовательному соединению соответствует произведение событий,
параллельному соединению – сумма событий.

Усложняем схему цепи

И все это была присказка к настоящему решению задач. Конечно, даже если у вас простая контрольная, схема с “тремя лампочками подряд” вряд ли попадется. Давайте посмотрим на типовые электрические схемы, для которых надо находить надежность в задачах:

Примеры цепей в задачах на вероятность

Как для таких схем выписывать вероятности? Нам нужно научиться делать декомпозицию: выделять уровни схемы и определять тип соединения на каждом уровне.

Возьмем для примера левую верхнюю схему:

найти надежность цепи, 9 элементов

Работаем с первым уровнем схемы. Нужно мысленно выделить крупные части, которые между собой соединены одинаково (параллельно или последовательно). В данном случае видно три группы элементов, соединенных последовательно. Выделим для наглядности цветом:

цепь: выделили цветом группы

То есть тип схемы на первом уровне – последовательный:

скелет цепи: выделили цветом группы

Как мы уже знаем, если соединение последовательное, нужно перемножать события, то есть

$$
X=X_1 cdot X_2 cdot X_3,
$$

$X_1$ – работает первая группа элементов,
$X_2$ – работает вторая группа элементов,
$X_3$ – работает третья группа элементов.

Теперь смотрим на каждую группу. В первой группе всего один элемент, то есть она работает, когда работает первый элемент цепи ($X_1=A_1$). Мы дошли до элемента, разбор этой группы закончен.

А вот дальше интереснее. Рассмотрим поближе вторую группу:

подробнее: группа 2

В ней сразу выделим цветом подгруппы элементов. Видно, что вторая группа имеет уже параллельную структуру из розовых и фиолетовых элементов (они “висят” на параллельных линиях, это второй уровень вложенности схемы). А вот внутри розовые соединены последовательно (розовая группа работает – $A_4 cdot A_5$), фиолетовые элементы также между собой последовательно (фиолетовая группа работает – $A_2 cdot A_3$). Это уже третий уровень вложенности и он заканчивается отдельными элементами, значит, разбор окончен.

Так как розовая и фиолетовая группа соединены параллельно, речь идет о сумме этих событий, то есть вторая группа работает если:

$$X_2 = A_2 cdot A_3 + A_4 cdot A_5.$$

Абсолютно аналогично разбирается третья подгруппа (она совпадает по структуре со второй):

$$X_3 = A_6 cdot A_7 + A_8 cdot A_9.$$

Сводим все в одну формулу и выпишем искомое событие (Цепь работает исправно):

$$
X=X_1 cdot X_2 cdot X_3 = A_1 cdot left( A_2 cdot A_3 + A_4 cdot A_5 right) cdot left( A_6 cdot A_7 + A_8 cdot A_9right).
$$

Теперь переходим ко второму этапу решения задачи. Не забываем, что мы решаем задачу по теории вероятностей и надо определить вероятность того, что ток проходит в цепи. Будем использовать формулы (1)-(3).

Так как вероятность произведения для независимых событий равна произведению вероятностей, получим:

$$
P(X)= P left( A_1 cdot left( A_2 cdot A_3 + A_4 cdot A_5 right) cdot left( A_6 cdot A_7 + A_8 cdot A_9right) right) =\
= P (A_1) cdot P left ( A_2 cdot A_3 + A_4 cdot A_5 right ) cdot P left( A_6 cdot A_7 + A_8 cdot A_9right) =
$$

Для множителей с суммой событий внутри используем формулу (2):

$$
= P (A_1) cdot left[ P(A_2 cdot A_3) + P(A_4 cdot A_5) – P(A_2 cdot A_3 cdot A_4 cdot A_5) right] cdot left[ P(A_6 cdot A_7) + P(A_8 cdot A_9) – P(A_6 cdot A_7 cdot A_8 cdot A_9)right] =
$$

И снова раскрываем вероятности произведений:

$$
= P (A_1) cdot left[ P(A_2) cdot P(A_3) + P(A_4) cdot P(A_5) – P(A_2) cdot P(A_3) cdot P(A_4) cdot P(A_5) right] cdot left[ P(A_6) cdot P(A_7) + P(A_8) cdot P(A_9) – P(A_6) cdot P(A_7) cdot P(A_8) cdot P(A_9)right].
$$

Перейдем к более компактной записи, положив $p_i=P(A_i)$:

$$
P(X)= p_1 cdot left[ p_2 cdot p_3 + p_4 cdot p_5 – p_2 cdot p_3 cdot p_4 cdot p_5 right] cdot left[ p_6 cdot p_7 + p_8 cdot p_9 – p_6 cdot p_7 cdot p_8 cdot p_9right].
$$

Если заданы надежности отдельных элементов $p_i$, подставляя их в формулу, можно найти вероятность работы схемы.

Алгоритм разбора схемы

  • Выделяем в схеме основу: группы элементов, соединенные ТОЛЬКО последовательно или ТОЛЬКО параллельно между собой. Это верхний уровень. Записываем событие $X$ = (Цепь работает) как произведение или сумму соответственно.
  • Каждую полученную группу анализируем также: ищем в ней подгруппы, соединенные только последовательно или только параллельно. Записываем событие соответственно типу соединения.
  • Продолжаем до тех пор, пока не опустимся на уровень элементов (событий $A_i$).
  • Подставляем все выражения в исходную формулу, получаем итоговую запись события $X$.
  • Пользуясь формулами (1)-(3) выписываем вероятность события $P=P(X)$.
  • Подставляем числовые значения $p_i, q_i$ и находим численное значение надежности схемы $P$.
  • Если необходимо, находим вероятность отказа цепи $1-P$.

Примеры решений

Отработаем несколько раз этот алгоритм на примерах, чтобы он закрепился.

схема цепи для задачи 1 по теории вероятностей (Максимов)

Пример 1. Дана схема включения элементов. Вероятность безотказной работы каждого элемента в течение времени Т равна р. Элементы работают независимо и включены в цепь по приведенной схеме. Пусть событие $А_i$ означает безотказную работу за время Т элемента с номером $i$ ($i=1,2,3,…$), а событие $В$ – безотказную работу цепи. Требуется:
1) Написать формулу, выражающую событие $В$ через все события $А_i$.
2) Найти вероятность события $B$.
3) Вычислить $Р(В)$ при $р=0,6$.

Приступим к разбору схемы. Можно увидеть, что на первом уровне мы имеем три группы, соединенные последовательно: (1), (2,3) и (4,5,6) элементы. Выделим их цветом для наглядности:

разбор цепи на первом уровне

Значит, исходное событие можно представить в виде произведения трех событий $B=B_1 cdot B_2 cdot B_3$, где $B_i$ – работает $i$-aя группа элементов.

Первая группа элементов состоит из одного элемента, то есть $B_1=A_1$.

Вторая группа элементов состоит из двух элементов, соединенных параллельно (см. розовые), поэтому $B_2=A_2+A_3$.

разбор цепи на втором уровне

Третья группа элементов (см. зеленые) состоит из трех элементов, ее можно представить как параллельное соединение двух подгрупп: (4 и 5, соединены последовательно) и (6), поэтому $B_3=A_4 cdot A_5 + A_6$.

Подставляем все и получаем выражение для события $B$

$$
B=B_1 cdot B_2 cdot B_3 = A_1 cdot (A_2+A_3) cdot (A_4 cdot A_5 + A_6).
$$

Теперь выразим вероятность безотказной работы цепи за время T. Сначала применим формулу (1), чтобы раскрыть произведение:

$$
P(B)=P left( A_1 cdot (A_2+A_3) cdot (A_4 cdot A_5 + A_6) right) = P(A_1) cdot P left( A_2+A_3 right) cdot P left( A_4 cdot A_5 + A_6 right) =
$$

Раскроем вторую вероятность по формуле (3), а третью по формуле (2), получим:

$$= P(A_1) cdot left(1 – P(overline{A_2}) cdot P(overline{A_3}) right) cdot left( P(A_4) cdot P(A_5) + P(A_6) – P(A_4) cdot P(A_5) cdot P(A_6) right).$$

Подставляем $P(A_i)=p$ и получим:

$$
p(B)=pcdot(1-(1-p)cdot(1-p))cdot(pcdot p + p -p cdot p cdot p) = pcdotleft(1-(1-p)^2right)cdot left(p+p^2-p^3right).
$$

Осталось только найти значение при $p=0,6$:

$$
p(B)= 0,6cdotleft(1-(1-0,6)^2right)cdot left(0,6+0,6^2-0,6^3right) approx 0,375.
$$

схема цепи для задачи 2 по теории вероятностей

Пример 2. Найти вероятность обрыва цепи, если вероятность отказа каждого элемента равна 0,2, а отказы элементов – независимые события.

Пронумеруем элементы и сразу раскрасим схему, чтобы выделить ее структуру.

схема цепи с раскраской для задачи 2 по теории вероятностей

Это опять последовательная схема, но розовая группа состоит из двух элементов, соединенных параллельно, поэтому можем сразу выписать:

$$
X= A_1 cdot (A_2+A_3) cdot A_4 cdot A_5.
$$

Найдем вероятность этого события (работы цепи):

$$
P(X)= P left( A_1 cdot (A_2+A_3) cdot A_4 cdot A_5 right)= P(A_1) cdot P(A_2+A_3) cdot P(A_4) cdot P(A_5)= \
= P(A_1) cdot left( 1- P(overline{A_2}) cdot P(overline{A_3}) right) cdot P(A_4) cdot P(A_5).
$$

Вероятности отказа элементов цепи равна 0,2, вероятность работы элементов – 0,8, поэтому

$$
P(X)= 0,8 cdot left( 1- 0,2 cdot 0,2 right) cdot 0,8 cdot 0,8 = 0,492.
$$

Но в задаче требовалось найти вероятность обрыва цепи, это противоположное событие:

$$
P(overline{X}) = 1- P(X) = 1-0,492 = 0,508.
$$

схема функциональной цепи для задачи 3

Пример 3. Найти вероятность безотказной работы функциональной цепи, состоящей из независимо работающих элементов, если вероятность надежной работы элементов равна $p_1=p_2=p_3=p_4=0,8$, $p_5=p_6=p_7=0,9$.

Приступим к решению, сразу раскрасив схему. В этот раз схема на первом уровне имеет параллельное соединение: верхняя розово-зеленая группа и нижняя желтая находятся на параллельных линиях. Поэтому $X=X_1+X_2$, где $X_1$ – работает розово-зеленая линия, $X_2$ – работает желтая.

схема функциональной цепи для задачи 3

Для желтой группы, состоящей из трех последовательно расположенных элементов, сразу выписываем $X_2=A_5 cdot A_6 cdot A_7$.

Теперь рассмотрим верхнюю группу. Она состоит из двух подгрупп, связанных последовательно: розовой и зеленой. При этом каждая из них состоит из двух параллельно соединенных элементов. Записываем: розовая группа работает = $A_1+A_2$, зеленая группа работает = $A_3+A_4$, значит ток проходит через розово-зеленую группу $X_1 =(A_1+A_2) cdot (A_3+A_4)$.

Объединяем рассуждения и выписываем событие, соответствующее безотказной работе цепи:

$$
X=X_1+X_2 = (A_1+A_2) cdot (A_3+A_4) + A_5 cdot A_6 cdot A_7.
$$

Следующий шаг: выразить вероятность этого события. Во всех предыдущих примерах схема на первом уровне была последовательной, и событие выражалось как произведение. В этом случае схема на первом уровне параллельна, событие выглядит как сумма других событий, что немного усложняет выкладки. Для суммы событий можно использовать формулу (2) или (3), выбирая наиболее удобную в каждом конкретном случае.

В данном случае слагаемых всего два, поэтому возьмем формулу (2):

$$
P(X)= P left( (A_1+A_2) cdot (A_3+A_4) + A_5 cdot A_6 cdot A_7 right) = \
= P left( (A_1+A_2) cdot (A_3+A_4) right) + P left( A_5 cdot A_6 cdot A_7 right) – P left( (A_1+A_2) cdot (A_3+A_4) cdot A_5 cdot A_6 cdot A_7 right)
$$

Раскрываем все произведения по формуле (1):

$$
= P (A_1+A_2) cdot P(A_3+A_4) + P(A_5) cdot P(A_6) cdot P(A_7) – P (A_1+A_2) cdot P(A_3+A_4) cdot P(A_5) cdot P(A_6) cdot P(A_7) =
$$

По формуле (3) расписываем $P(A_1+A_2)=1-P(overline{A_1}) cdot P(overline{A_2}) = 1-q_1cdot q_2$ и $P(A_3+A_4)=1-P(overline{A_3}) cdot P(overline{A_4})= 1-q_3cdot q_4$.

Итого:

$$
P(X)= (1-q_1cdot q_2) cdot (1-q_3cdot q_4) + p_5 cdot p_6 cdot p_7 – \- (1-q_1cdot q_2) cdot (1-q_3cdot q_4) cdot p_5 cdot p_6 cdot p_7.
$$

Подставляем значения надежности элементов:

$$
P(X)= (1-0,2^2)^2 + 0,9^3 – (1-0,2^2)^2 cdot 0,9^3 approx 0,9788.
$$

Еще: другие уроки о решении задач по вероятности

На закуску: схема с мостиком

Для 99% учебных задач вам хватит той теории и примеров, что приведены выше: подробно изучите их и приступайте к своим примерам по аналогии. Но есть такие схемы, для которых нельзя выделить единую структуру на верхнем уровне – параллельную или последовательную, и весь алгоритм решения рушится.

схема функциональной цепи с мостиком

Речь идет о схемах смешанного типа, еще их часто называют схемами с мостиком (мостиковые схемы). Типичная схема имеет такой вид:

Видно, что как ни крути, схему нельзя отнести ни к последовательным, ни к параллельным. Элемент №5 (мостик) “портит” тип схемы. Если его убрать (разорвать этот участок цепи), получим обычную параллельную структуру, а если предположить, что через этот участок всегда идет ток – последовательную (конкретные схемы изобразим ниже).

Поэтому для решения задачи о вычислении надежности подобной электросхемы используют формулу полной вероятности в форме теоремы разложения (см. подробнее тут, стр. 118)

Надежность цепи с избыточностью равна произведению вероятности безотказной работы $i$-го элемента цепи на вероятность безотказной работы оставшейся цепи (места подключения $i$-го элемента замкнуты накоротко) плюс произведение вероятности отказа того же $i$-го элемента на вероятность безотказной работы оставшейся цеии (места подключения $i$-го элемента разомкнуты).

То есть, для выделенного на схеме элемента-мостика рассматриваем две гипотезы:
$H_1$ = (Элемент 5 не пропускает ток), $P(H_1)=1- p_5 = q_5$;
$H_2$ = (Элемент 5 пропускает ток), $P(H_2)=p_5$.

Далее вычисляем надежность схемы при условии верности каждой из гипотез. Для наглядности нарисуем обе схемы:

разложение цепи с мостиком на две

Рассмотрим левую схему, верную при гипотезе $H_1$, через нее проходит ток, если $X|H_1 = A_1cdot A_3+ A_2cdot A_4$, вероятность

$$
P(X|H_1) = P(A_1cdot A_3+ A_2cdot A_4)= P(A_1cdot A_3)+ P(A_2cdot A_4) – P(A_1cdot A_3 cdot A_2cdot A_4)=\
=p_1 cdot p_3 + p_2 cdot p_4 – p_1 cdot p_2 cdot p_3 cdot p_4.
$$

Рассмотрим правую схему, верную при гипотезе $H_2$, и выпишем для нее аналогично событие и вероятность прохода тока:

$$
X|H_2 = (A_1+A_2)cdot (A_3+A_4),\
P(X|H_2) =P( (A_1+A_2)cdot (A_3+A_4)) = P(A_1+A_2)cdot P(A_3+A_4)=\ = (1-P(overline{A_1}) cdot P(overline{A_2})) cdot (1-P(overline{A_3}) cdot P(overline{A_4})) = (1-q_1cdot q_2) cdot (1-q_3cdot q_4).
$$

Тогда по формуле полной вероятности, надежность схемы равна:

$$
P(X)=P(X|H_1)cdot P(H_1) + P(X|H_2)cdot P(H_2) = \
= q_5 (p_1 cdot p_3 + p_2 cdot p_4 – p_1 cdot p_2 cdot p_3 cdot p_4) + p_5 (1-q_1cdot q_2) cdot (1-q_3cdot q_4).
$$

Аналогичным образом можно разбирать более сложные схемы (в которые более одного мостика), применяя на каждом этапе формулу полной вероятности (как бы вкладывая одну в другую).

Лучшее спасибо – порекомендовать эту страницу

Полезные ссылки по ТВ

  • Онлайн калькуляторы
  • Онлайн учебник
  • Более 200 примеров
  • Решенные контрольные
  • Формулы и таблицы
  • Сдача тестов
  • Решение на заказ
  • Онлайн помощь

Решебник по вероятности

А здесь вы найдете разные задачи по теории вероятностей с полными решениями (вводите часть текста для поиска своей задачи):

На чтение 11 мин Просмотров 7 Опубликовано 11 апреля 2023 Обновлено 11 апреля 2023

На применении теорем теории вероятностей

5.2.1. Метод перебора гипотез

Пусть невосстанавливаемая система состоит из п элементов и имеет произвольную структуру. Предположим, что каждый элемент может находиться в двух состояниях: состоянии работоспособности и состоянии отказа. Пусть рi — вероятность работоспособного, а qi, — вероятность отказового состояния i-го элемента, рi + qi = 1. Тогда система может находиться в 2 n состояниях:

H0 —все и элементов работоспособны;

Hi — отказал i-й элемент, остальные работоспособны;

Предполагая, что отказы элементов события независимые, можно найти вероятность каждой гипотезы:

Вероятность безотказной работы системы определяется суммированием вероятностей тех гипотез, которые соответствуют работоспособным состояниям системы, т. е.

Последняя запись означает, что суммирование производится по всем гипотезам, соответствующим работоспособным состояниям системы.

В силу очень большого числа состояний системы метод прямого перебора гипотез является достаточно трудоемким и редко применяется на практике.

Обычно системы обладают свойством монотонности, которое заключается в том, что если Нα — состояние отказа системы и βͻα, то Нβ — также состояние отказа. Для монотонных систем после достижения некоторого состояния отказа Нα перебор гипотез с большим количеством индексов прекращается. Часто это приводит к существенному сокращению вычислений.

5.2.2. Метод, основанный на применении классических теорем теории вероятностей

Метод удобно применять для расчета надежности последовательных, параллельных, последовательно-параллельных и других систем в предположении взаимной независимости длительностей безотказной работы элементов системы. В этом случае, основываясь на теоремах сложения и умножения теории вероятностей, а также на формуле полной вероятности легко найти явные выражения для вероятности безотказной работы системы.

ПРИМЕР 5.6. Требуется оценить надежность систем, структурные схемы которых изображены на рис. 5.11. Вероятности безотказной работы элементов соответственно равны рi, i = 1,2,3,4.

Решение. Обозначим через Аi событие, состоящее в том, что i-й элемент исправен. Тогда — событие, состоящее в том, что i-й элемент отказал. Вероятности этих событий соответственно равны P(Ai) = pi, P( ) = qi , i = 1,2,3,4.

Для схемы на рис. 5.11, а вероятность отказа узла 1—2 равна Р( ), а вероятность отказа узла 3—4 равна Р( ). По теореме умножения вероятностей

Отсюда следует, что вероятности безотказной работы этих узлов соответственно равны

Вероятность безотказной работы системы равна произведению вероятностей этих узлов, т.е.

Рассмотрим схему на рис. 5.11,б. Вероятность безотказной работы узла 1—3 равна Р(А1А3) = р1р3, а вероятность безотказной работы узла 2—4 равна Р(А2А4) = р2p4. Вероятности отказов этих узлов равны соответственно 1-р1p3 и 1-р2р4, а вероятность отказа системы равна произведению вероятностей отказов этих узлов, т. е.

Вероятность безотказной работы системы определяется как вероятность дополнительного события Р=(1-Q), отсюда

Довольно часто при расчете надежности используется формула полной вероятности. Пусть события Hi, образуют полную группу попарно несовместных событий (гипотезы), а А — любое событие. Тогда имеет место формула полной вероятности

где Р(A/Hi) — вероятность события А, вычисленная при условии, что гипотеза Hi осуществилась.

ПРИМЕР 5.7. Требуется оценить надежность мостиковой системы, структурная схема которой изображена на рис. 5.12. Вероятности безотказной работы элементов соответственно равны рi, i = 1,2,3,4,5.

Решение. Пусть Н1 — гипотеза, состоящая в том, что элемент 3 является работоспособным, а Н2 — гипотеза, что элемент 3 отказал, Р(H1)=р3, Р(H2)=q3.

Определим вероятность безотказной работы системы при условии, что 3-й элемент работоспособен. В этом случае мостиковая схема имеет структуру раздельного резервирования, как показано на рис. 5.11,а, а поэтому

Определим теперь вероятность безотказной работы системы при условии, что 3-й элемент находится в состоянии отказа. При этом мостиковая схема имеет структуру общего резервирования, как показано на рис. 5.11, , а поэтому

По формуле полной вероятности

Следовательно, вероятность безотказной работы системы равна

Рассмотренный метод называется методом разложения относительно особого элемента.

5.2.3. Метод минимальных путей и минимальных сечений

Введем два необходимых понятия.

Минимальный путь — такой набор элементов в структуре, при котором система исправна, если исправны все элементы этого набора; отказ любого из элементов ведет к отказу системы.

Минимальное сечение — такой набор элементов в структуре, при котором система неисправна, если неисправны все элементы этого набора; исключение любого элемента из набора переводит систему в исправное состояние.

У систем с произвольной структурой может быть несколько минимальных путей и минимальных сечений. Последовательное соединение из п элементов имеет один минимальный путь и п минимальных сечений, проходящих через каждый элемент. Параллельное соединение из п элементов имеет п минимальных путей, проходящих через каждый элемент, и одно минималь­ное сечение.

Пусть А12. Аr — множество всех минимальных путей. Событие, состоящее в том, что все элементы пути Аi исправны, будем также обозначать Аi. Можно показать, что объединение событий Аi совпадает с множеством всех исправных состояний системы и поэтому для вероятности безотказной работы справедливо равенство

Пусть В12. ,Вs — множество всех минимальных сечений. Событие, со стоящее в том, что все элементы сечения Вi неисправны, обозначим также через Вi. Можно показать, что объединение событий Вi совпадает с множеством всех отказовых состояний системы и поэтому для вероятности отказа системы справедливо равенство

Каждая из вероятностей, стоящих в правой части (5.7) и (5.8), легко вычисляется. Однако если число путей или число сечений велико, то вычисление по этим формулам становится весьма сложной задачей.

ПРИМЕР 5.8. Методом минимальных путей и минимальных сечений требуется рассчитать надежность системы, структурная схема которой изображена на рис. 5.11.

Решение. Найдем минимальные пути: 1—3, 1—4, 2—3, 2—4. По формуле (5.7)

Найдем минимальные сечения: 1—2, 3—4. По формуле (5.8)

Нетрудно показать, что эти выражения равносильны выражению, полученному ранее:

Формулы (5.7) и (5.8), применяемые непосредственно для вычисления показателей надежности, все-таки достаточно громоздки и неудобны для расчетов. Тем не менее, на них базируются приближенные оценки вероятности безотказной работы.

Верхняя оценка вероятности безотказной работы определяется как вероятность безотказной работы параллельного соединения минимальных путей.

Верхняя оценка вероятности отказа системы определяется как вероятность отказа последовательного соединения минимальных сечений.

Отсюда получаются двусторонние оценки вероятности безотказной работы:

ПРИМЕР 5.9. Требуется оценить надежность мостиковой системы, структурная схема которой изображена на рис. 5.12.

Решение. Найдем все минимальные пут и соответствующие им вероятности:

Найдем все минимальные сечения и соответствующие им вероятности:

В соответствии с неравенствами (5.9) получим нижнюю и верхнюю оценки вероятности безотказной работы:

Если все элементы равнонадежны, то оценки приобретают вид:

Графическая иллюстрация этих оценок, когда р изменяется от 0 до 1 с шагом 0,1, приведена на рис. 5.13.

Источник

ПРИЛОЖЕНИЕ ДИСКРЕТНОЙ МАТЕМАТИКИ, ТЕОРИИ ВЕРОЯТНОСТЕЙ, МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

Задача 1. Определить вероятность надежного электроснабжения потребителя при последовательном (рисунок 1.1) и параллельном (рисунок 1.2) соединении элементов сети. Вероятность безотказной работы первого элемента p1=0,85, второго p2=0,9, третьего p3=0,95.

Решение: Вероятность надежной работы схемы (рисунок 1.1) определяется по теореме умножения вероятностей. Потребитель будет надежно получать питание, когда работает и элемент 1, и элемент 2, и элемент 3. События «надежная работа» и «отказ» являются противоположными и образуют полную группу событий.

Вероятность надежной работы схемы (рисунок 1.1)

Вероятность отказа схемы (рисунок 1)

Вероятность отказа схемы (рисунок 1.2) определяется также по теореме умножения вероятностей. Схема (рисунок 1.2) откажет тогда, когда откажет и элемент 1, и элемент 2, и элемент 3. Вероятность отказа первого элемента
q1 = 1 — p1, второго q2 = 1 — p2, третьего q3 = 1 — p3.

Рисунок 1.1- Вероятность отказа Рисунок 1.2- Вероятность отказа

Вероятность надёжной работы схемы (рисунок 2)

Задача 2. К распределительному устройству подключено три потребителя с номинальной мощностью 20, 15 и 5 кВт. Вероятность включенного состояния потребителей равна Р1 = 0,6, Р2 = 0,7; Р3 = 0,5. Определить вероятность того, что нагрузка на распределительном устройстве составит 40 кВт.

Решение. Так как включение потребителей есть независимые события, для решения используем формулу (1.8). Тогда: Р(40 кВт) = Р1Р2Р3 = 0,6×0,7×0,5 = 0,21.

Задача 3.Партия транзисторов, среди которых 10% дефекта, поступает на проверку. Схема проверки такова: вероятность обнаружения ошибки 0,95, если она есть; 0,03 – если ее нет. Найти вероятность того, что исправленный транзистор будет признан дефектным.

Эксперимент: наудачу выбирается транзистор.

Задача 4.В распределительном пункте (РП) установлено пять автоматических выключателей. Нормальная работа потребителей обеспечивается при их исправном состоянии. При монтаже РП выключатели выбирались из партии объемом в 1000 штук, в которой было 950 исправных выключателей и 50 не исправных. Найти вероятность исправной работы РП.

Задача 5. Две цепи электроснабжения работают параллельно на общую нагрузку (рис. 1.3). Вероятность аварийного простоя одной цепи , второй . Принимая аварийные состояния цепей независимыми, определить вероятность аварийного простоя двухцепной электропередачи для двух случаев: а) отказ электропередачи происходит при отказе одной из цепей (любой);

б) отказ электропередачи происходит при отказе только обеих цепей.

Решение. а) На основании теоремы сложения вероятностей (логическая схема «или»)

.

б) На основании теоремы умножения вероятностей (логическая схема «и»)

Дополнение. Вероятность безаварийной работы:

Задача 6. Питание потребителя осуществляется по одной цепи, состоящей из кабельной линии, трансформатора, выключателя (рис. 1.4.). Вероятность безотказной работы за время t для этих элементов: . Отказ любого элемента приводит к перерыву питания, причем отказы взаимно независимы. Найти вероятность безотказной работы передачи.

Решение. Обозначим: – безотказная работа линии, – трансформатора, – выключателя, А – всей системы. По теореме умножения для независимых событий

Дополнение, Вероятность отказа этой системы:

Задача 7. Силовые трансформаторы изготавливаются тремя заводами, причем вероятность того, что трансформатор выпущен на первом заводе равна 0,2, на втором – 0,3, на третьем – 0,5. Вероятности того, что при определённых условиях работы трансформатор сохранит работоспособность в течение 25 лет, для первого, второго и третьего заводов соответственно равны: 0,9; 0,92; 0,808. Чему равна вероятность того, что поступивший для монтажа трансформатор сохранит работоспособность в течение 25 лет?

Решение. Этот трансформатор может оказаться с первого завода (событие ), со второго ( ), с третьего Интересующее нас событие А имеет вероятность

Задача 8. Энергосистема ограничивает промышленное предприятие в потреблении электрической мощности. При этом в течение года возможны дефициты в 5, 10 и 15 МВт с вероятностями соответственно 0,001, 0,0004 и 0,0002. Определить математическое ожидание недоотпуска электроэнергии промышленному предприятию за год.

.

В году 8760 часов.

В цепь переменного тока напряжением U = 300 В, и частотой 50 Гц включена последовательно катушка с индуктивным сопротивлением
ХL =40 Ом и активным сопротивлением R= 30 Ом и конденсатор ёмкостью С = 400 мкФ. Определить ток, напряжение на катушке и конденсаторе, активную и реактивную мощности катушки и конденсатора и всей цепи.

1. Реактивное сопротивление конденсатора

Ом.

2. Комплексное сопротивление катушки

где zк — модуль комплексного сопротивления катушки, а j — аргумент, равный .

3. Комплексное сопротивление всей цепи

где модуль комплексного сопротивления цепи , а .

4. Ток цепи, определяемый по закону. Ома

=6,8e -j47 А, φ=47 0 .

5. Напряжения на участках цепи

активная мощность выделяется только на активном сопротивлении катушки R

полная мощность цепи (кажущаяся)

или В·А.

В сеть переменного тока напряжением U = 250 В включена цепь, состоящая из двух параллельных ветвей с сопротивлениями R1 = 25 Ом, R2 = 10 Ом и XL = 7 Ом.

Определить показания измерительных приборов, полную и реактивную мощности цепи,

1. Комплексное сопротивление второй ветви

2. Комплексное сопротивление всей цепи

Z = Ом.

I = А, φ = — 24 0 .

Ток первичной ветви I1 = А, φ1 = 0 0 .

Ток вторичной ветви I2 = А, φ2 = — 35 0 .

Амперметр в общей ветви покажет 28 А, в первой ветви показания равны 10 А, а во второй — 21 А.

4. Ваттметр покажет суммарную активную мощность цепи

P = 6910 Вт — показания ваттметра.

Реактивная мощность определяется только величиной XL и равна

Полная мощность цепи: В·А.

В трёхфазную четырехпроводную цепь с симметричным линейным напряжением UЛ = 220 В включены звездой сопротивлением RA = 6 Ом, RB = 7 Ом, RC = 9 Ом, XA = 7 Ом, XB = 6 Ом, XC = 11 Ом.

Определить фазные и линейные токи, ток нейтрального провода, мощности всей цепи и каждой фазы в отдельности.

1.Комплексные сопротивления фаз:

UФ= В,

3.Фазные токи ( в “звезде” они же линейные).

IA= А,

IB= А,

IC = А.

4.Мощности фаз и всей цепи:

S= В·А.

SA1= В·А — активно-емкостного характера;

SBl= В·А — активно-индуктивного характера;

SCl= В·А — активно-индуктивного характера.

В трехфазную трехпроводную цепь с симметричным линейным напряжением UЛ=120 В включены треугольником активные сопротивления RAB=5 Ом, RBC=9 Ом и RCA=12 Ом.

Определить фазные токи, активную мощность всей цепи и каждой фазы в отдельности.

1. Определим токи фаз, которые включены треугольником на линейные напряжения:

IAB= А,

IBC= А,

ICA= А.

2. Мощность всей цепи и в каждой фазе — чисто активная.

Источник

2.1 Средние вероятности состояния элемента

Под элементом
системы электроснабжения в расчете
надежности понимаются отдельные
электрические машины и аппараты:
генераторы, трансформаторы, выключатели,
отделители, короткозамыкатели,
разъединители, сборные шины, а также
присоединения.

При расчете
показателей надежности по средним
значениям вероятностей состояния
используются следующие статистические
данные:

  1. параметр потока
    отказов 
    (при простейшем потоке интенсивность
    отказов 
    = ),
    т.е. среднее количество отказов в единицу
    времени (обычно год), отнесенное к одному
    элементу [1/год]. Для линий электропередач
    параметр потока отказов относится к 1
    км линии [1/кмгод];

  2. среднее время
    восстановления (аварийного ремонта)
    tв
    [час/одно восстановление];

  3. средняя
    продолжительность преднамеренных
    отключений элемента (в основном для
    профилактических ремонтов оборудования)
    tп.

Ненадежность
элемента (средняя вероятность отказового
состояния) определяется средней
вероятностью его суммарного простоя
вследствие вынужденного отключения
из-за повреждений и преднамеренных
отключений для профилактики.

Вероятность
вынужденного простоя элемента и линии


(2.1)

(2.1.1.)

где:
L – длина линии, км

Вероятность
преднамеренного отключения, если время
преднамеренного отключения в течении
года tп:


(2.2)

Вероятность
суммарного простоя



(2.3)

Вероятность
рабочего состояния


(2.4)

2.2 Вероятности отказового и безотказового состояний схем с последовательным соединением элементов

Если расчетная
схема по надежности состоит из
последовательно соединенных элементов,
то она будет в рабочем состоянии тогда,
когда все n
–элементов будут находиться в рабочем
состоянии.

Вероятность отказа
схемы определяется как вероятность
отказа хотя бы одного элемента. Вероятность
этого события определяется с использованием
формулы для нахождения вероятности
суммы совместных событий


(2.5)

Для элементов
электрических систем характерными
являются соотношения, при которых qi<<1.
Поэтому при определении вероятности
отказового состояния системы из n
последовательно соединенных элементов
вторым, третьим и т.д. слагаемыми правой
части последнего равенства можно
пренебречь, как числами более высокого
порядка малости. Поэтому в практических
расчетах используют формулу


(2.6)

Если схема
последовательно соединенных элементов
по надежности соответствует принципиальной
электрической схеме соединения элементов,
то, учитывая, что в реальных условиях
профилактический ремонт элементов
последовательной цепи производится
одновременно, вероятность простоя цепи
следует определять по формуле


(2.7)

г

(2.9)

де: qпнб
– вероятность преднамеренного отключения
того из элементов, у которого
продолжительность такого состояния
наибольшая.

2.3
ВЕРОЯТНОСТИ ОТКАЗОВОГО И БЕЗОТКАЗОВОГО
СОСТОЯНИЯ СХЕМ С ПАРАЛЛЕЛЬНЫМ СОЕДИНЕНИЕМ
ЭЛЕМЕНТОВ

Рассмотрим схему,
состоящую из n
параллельных элементов при условии
независимости отказов каждого элемента
и пропускной способности каждого,
достаточной для обеспечения всей
мощности, необходимой потребителю.
Такая система будет в рабочем состоянии
при условии работы хотя бы одного
элемента. Вероятность рабочего состояния
схемы определяется с использованием
формулы для нахождения вероятности
суммы независимых совместных событий
– работы каждого элемента


(2.8)

Определение
вероятности работы системы с использованием
этой формулы весьма трудоемко, так как
необходимо вычислить и сложить (2n-1)
слагаемых. В результате следует учитывать
все слагаемые, так как их значения близки
к единице. Поэтому вероятность надежной
работы системы проще определить по
вероятностям отказового состояния
элементов.

Система будет в
отказовом состоянии при условии, если
все элементы откажут одновременно.
Вероятность такого состояния определяется
с использованием формулы для произведения
(совмещения) независимых событий-отказов
каждого элемента системы.


(2.9)

Вероятность
рабочего состояния такой системы
определяется как вероятность
противоположного события (отказа
системы):


(2.10)

Рассмотрим методику
определения вероятности отказового
состояния системы, состоящей из n
параллельно соединенных элементов с
учетом преднамеренных отключений
отдельных элементов. Причем, одновременно
преднамеренно может быть отключено не
более одного элемента и во время
аварийного восстановления преднамеренные
отключения не производятся.

Для определения
вероятности отказового состояния такой
системы необходимо рассмотреть, помимо
вероятности сложного события – отказа
всех элементов, также и вероятности n
гипотез, в каждой из которых рассматривается
вероятность отказа системы при
преднамеренном отключении одного
элемента qпi

Так как гипотезы
независимы вследствие независимости
элементов, то вероятность отказового
состояния системы определяется как
сумма вероятностей отказовых состояний
при каждой гипотезе


(2.11)

При определении
вероятностей отказовых состояний при
каждой гипотезе введен коэффициент кпj
< 1, учитывающий понижение вероятности
наложения аварийного отключения
оставшейся части схемы на преднамеренное
отключение i
-го элемента, так как возможно лишь
наложение аварии оставшейся части схемы
на преднамеренное отключение j
-го элемента и невозможно наложение
преднамеренного отключения на аварийное
восстановление оставшейся части схемы.
Оставшуюся часть схемы после исключения
преднамеренно отключаемого элемента
целесообразно при каждой гипотезе
представить как один эквивалентный
элемент со свойствами простейшего
потока отказов и восстановлений и с
эквивалентными параметрами qВ
и

В.
Эквивалентное время восстановления
оставшейся части схемы определяется в
соответствии с формулой (2.1):

Значения понижающего
коэффициента зависят от отношения
времени преднамеренного отключения j
-го элемента ко времени восстановления
эквивалентного элемента следующим
образом:


(2.12)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

1.2.6. Расчет вероятности безотказной работы прибора

Рассмотрим примеры, в которых требуется вычислить вероятностьь безотказной работы и вероятность отказа работы прибора, в состав которого входят несколько элементов и используются различные способы их соединения между собой.

Пример 1.14. Прибор состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна P1= 0,1, а второго – P2 = 0,2.

1) Вычислим вероятность события A, если элементы соединены Последовательно,

Решение: Обозначим через A1 Событие, которое заключается в том, что откажет элемент А1 = , и через A2 —

Тогда данный прибор не будет работать (событие А), если выйдет из строя Хотя бы Один из элементов (или первый, или второй, или оба не будут работать). Такое состояние прибора можно описать, используя Определение суммы событий, т. е. A=A1+A2 . Из теоремы о вероятности суммы двух независимых событий [ формула (***)] получаем

P (A) = p (A1+A2) = p (A1) + p (A2) – p (A1 A2) = p (A1) + p (A2) – p (A1) p (A2) =

= p1+p2 — p1 p2 = 0,1 +0,2 – 0,1*0,2 = 0,28.

Итак, вероятность того, что данный прибор Откажет Р (А) = 0,28.

Состояние прибора, когда он работает правильно, есть событие А — противоположное событию А, когда прибор откажет.

Тогда, используя свойства вероятности, можно найти Вероятность правильной работы А Данного прибора по формуле:

р ( ) = 1 – р (А) = 1 – 0,28 = 0,72.

2) Вычислим вероятность отказа прибора (событие А ), если элементы соединены параллельно:

Решение. Данный прибор откажет в том случае, если Откажут оба элемента Одновременно. Следовательно, отказ прибора в этом случае может быть представлен как Произведение Событий А1 и А2 , т. е. A=A1A2 . Так как элементы перестают работать Независимо друг от друга, то из независимости событий A1 и A2 получаем P(A) = P(A1) P(A2) = P1 P2 = 0,1 * 0,2 = 0,02.

Определение. События A1 A2 ¼ AN называют Взаимно независимыми, если для любой их части выполняется равенство

P() = p() p()¼P(), (1.5)

1<=i1<i2 ¼<im<=n , m=2, ¼,n.

Пример 1.15. Прибор состоит из трех последовательно соединенных и независимо работающих друг от друга элементов. Каждый из элементов может быть признан бракованным или стандартным:

Обозначим вероятность того, что первый элемент оказался бракованным,

Равной P1, второй элемент бракованный — P2, третий элемент бракованный — P3.

Прибор будем считать Бракованным, если хотя бы один из его элементов бракованный. Найти вероятность того, что прибор Стандартный.

Решение: Обозначим события

В данном случае прибор нормально работает в том случае, если все три элемента одновременно работают, т. е. все три элемента, входящие в прибор, стандартные. Тогда работу прибора можно описать как событие А, состоящее из Произведения трех Независимых Событий A=A1*A2*A3 , вероятность которого можно вычислить по формуле вероятности произведения независимых событий

/> />P(A) = P(A1)P(A2)P(A3) =(1 – P1) (1- P2) (1 – P3).

Вероятность отказа прибора (событие А ) в данном случае есть величина, равная вероятности события, противоположного событию А.

Р ( А) = 1 – Р (А).

Примечание. Рассмотренные примеры 1.13, 1.14 и 1.15 являются аналогом решения контрольной задачи №3 (первого пункта задания) из методических указаний для выполнения контрольных работ.

Рассмотрим некоторые свойства независимых событий.

Свойство7. Если A и B независимы, то и B Независимы.

Свойство 8. Если событие A не зависит от событий B1 и B2, а события B1 и B2 несовместны, тогда события A и B1+ B2 независимы.

Свойство 9. Если события A, A1 и A2 взаимно независимы, тогда события A и A1+ A2 независимы.

Вероятность работы каждого из элементов электрической цепи равны соответственно 1 = 0,95; 2 = 0,93; 3 = 0,9 и 4 = 0,85. Определить

Обозначим события: 1 − элемент номер 1 работает безотказно; 2 − элемент номер 2 работает безотказно; 3 − элемент номер 3 работает безотказно; 4 − элемент номер 4 работает безотказно; 1 ̅̅̅ − элемент номер 1 вышел из строя; 2 ̅̅̅ − элемент номер 2 вышел из строя; 3 ̅̅̅ − элемент номер 3 вышел из строя; 4 ̅̅̅ − элемент номер 4 вышел из строя. Часть схемы из двух последовательных элементов 1 и 2 исправна только тогда, когда исправны оба этих элемента: Часть схемы из двух параллельных элементов 1 и 2 исправна во всех случаях, кроме одновременной поломки всех элементов: Рассмотрим первую схему. Поскольку не указано, какая из заданных вероятностей к какому из элементов относится, то пронумеруем элементы схемы произвольно.

Вероятность работы каждого из элементов электрической цепи равны соответственно

Вероятность работы каждого из элементов электрической цепи равны соответственно

Похожие готовые решения по математической статистике:

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Как решать задачи о прохождении тока через электрические схемы

В предыдущих статьях мы разобрали популярные учебные задачи по теории вероятностей: задачи про подбрасывания игральных кубиков и монеток, задачи про стрелков и станки.

решаем задачи про электрические схемы

В этой статье мы рассмотрим задачи вида
«задана схема электрической цепи с надежностью элементов (или вероятностями выхода из строя), найти вероятность работы цепи (или вероятность разрыва цепи)».

Задачи могут иметь чуть разные формулировки, но принцип решения для них одинаков, и его мы изучим, чтобы суметь решать такие задачи со схемами любой сложности.

Базовые события, обозначения и формулы

Самое первое, с чего мы начнем — формализация задачи (и решение любой своей задачи рекомендую начинать с этого). А именно, мы введем основные события:

$X$ = (Цепь работает) = (Цепь пропускает ток) и противоположное ему:
$overline$ =(Цепь не пропускает ток) = (Произошел разрыв в цепи).

$A_i$ = (Элемент i работает, пропускает ток) и $overline$ =(Элемент i отказал, не пропускает ток), $i=1,2. n$.

Обычно в условии задачи известны вероятности работы элементов (надежности): $p(A_i)=p_i$ или вероятности отказа $p(overline)=q_i=1-p_i$, $i=1,2. n$.

Также напомним основные формулы (из темы действий с событиями, формулы сложения и умножения вероятностей), которые пригодятся в решении этого типа задач.

Для независимых в совокупности событий (а отказы/работа элементов цепи — именно такие):

$$ P(A cdot B) = P(A) cdot P(B); quad(1) $$ $$ P(A+B) = P(A)+P(B)-P(A)cdot P(B); quad(2) $$ $$ P(A_1+A_2+. +A_n)=1-P(overline)cdot P(overline)cdot . cdot P(overline). quad(3) $$

Последовательно или параллельно?

Еще немного времени посвятим теории, вспомним о том, как могут соединяться элементы в цепи.

Последовательное соединение

последовательное соединение элементов в цепи

Элементы цепи «нанизаны» на провод один за другим (следуют один за другим, отсюда и «последовательно»). Если откажет один любой — ток в цепи прервётся. Или, иначе говоря, цепь работает тогда и только тогда, когда ВСЕ элементы работают. В терминах теории вероятностей получаем произведение событий: $X=A_1 cdot A_2 cdot A_3$, а вероятность работы цепи равна

$$ P(X)=P(A_1 cdot A_2 cdot A_3)= P(A_1) cdot P(A_2) cdot P(A_3) =p_1 cdot p_2 cdot p_3. $$

Если в цепи последовательно соединены не три, а больше независимо работающих элементов, формула легко обобщается и получаем:

$$ P(X) = p_1 cdot p_2 cdot . cdot p_n; qquad P(overline)=1-p_1 cdot p_2 cdot . cdot p_n. quad(4) $$

Параллельное соединение

параллельное соединение элементов в цепи

Тут тоже сама схема дает нам подсказку, когда мы видим, что элементы в схеме расположены как бы на параллельных проводах, речь идет о параллельном соединении.

В этом случае если откажет, скажем, элемент 1, ток может пройти через 2. Если откажут 1 и 2, ток пройдет через 3. И только если ВСЕ элементы откажут, цепь разорвется.

Еще говорят, цепь работает, если работает хотя бы один элемент в ней, в терминах теории вероятностей — это сумма событий: $X=A_1+A_2+A_3$.

Используем формулу (3) чтобы записать вероятность работы такой цепи:

$$ P(A_1+A_2+A_3)=1-P(overline)cdot P(overline) cdot P(overline)=1-q_1 cdot q_2 cdot q_3. $$

И обобщим на случай $n$ параллельных элементов в цепи:

$$ P(X) = 1-q_1 cdot q_2 cdot . cdot q_n; qquad P(overline)=q_1 cdot q_2 cdot . cdot q_n. quad(5) $$

Важно запомнить правило

Последовательному соединению соответствует произведение событий,
параллельному соединению — сумма событий.

Усложняем схему цепи

И все это была присказка к настоящему решению задач. Конечно, даже если у вас простая контрольная, схема с «тремя лампочками подряд» вряд ли попадется. Давайте посмотрим на типовые электрические схемы, для которых надо находить надежность в задачах:

Примеры цепей в задачах на вероятность

Как для таких схем выписывать вероятности? Нам нужно научиться делать декомпозицию: выделять уровни схемы и определять тип соединения на каждом уровне.

Возьмем для примера левую верхнюю схему:

найти надежность цепи, 9 элементов

Работаем с первым уровнем схемы. Нужно мысленно выделить крупные части, которые между собой соединены одинаково (параллельно или последовательно). В данном случае видно три группы элементов, соединенных последовательно. Выделим для наглядности цветом:

цепь: выделили цветом группы

То есть тип схемы на первом уровне — последовательный:

скелет цепи: выделили цветом группы

Как мы уже знаем, если соединение последовательное, нужно перемножать события, то есть

$$ X=X_1 cdot X_2 cdot X_3, $$

$X_1$ — работает первая группа элементов,
$X_2$ — работает вторая группа элементов,
$X_3$ — работает третья группа элементов.

Теперь смотрим на каждую группу. В первой группе всего один элемент, то есть она работает, когда работает первый элемент цепи ($X_1=A_1$). Мы дошли до элемента, разбор этой группы закончен.

А вот дальше интереснее. Рассмотрим поближе вторую группу:

подробнее: группа 2

В ней сразу выделим цветом подгруппы элементов. Видно, что вторая группа имеет уже параллельную структуру из розовых и фиолетовых элементов (они «висят» на параллельных линиях, это второй уровень вложенности схемы). А вот внутри розовые соединены последовательно (розовая группа работает — $A_4 cdot A_5$), фиолетовые элементы также между собой последовательно (фиолетовая группа работает — $A_2 cdot A_3$). Это уже третий уровень вложенности и он заканчивается отдельными элементами, значит, разбор окончен.

Так как розовая и фиолетовая группа соединены параллельно, речь идет о сумме этих событий, то есть вторая группа работает если:

$$X_2 = A_2 cdot A_3 + A_4 cdot A_5.$$

Абсолютно аналогично разбирается третья подгруппа (она совпадает по структуре со второй):

$$X_3 = A_6 cdot A_7 + A_8 cdot A_9.$$

Сводим все в одну формулу и выпишем искомое событие (Цепь работает исправно):

$$ X=X_1 cdot X_2 cdot X_3 = A_1 cdot left( A_2 cdot A_3 + A_4 cdot A_5 right) cdot left( A_6 cdot A_7 + A_8 cdot A_9right). $$

Теперь переходим ко второму этапу решения задачи. Не забываем, что мы решаем задачу по теории вероятностей и надо определить вероятность того, что ток проходит в цепи. Будем использовать формулы (1)-(3).

Так как вероятность произведения для независимых событий равна произведению вероятностей, получим:

$$ P(X)= P left( A_1 cdot left( A_2 cdot A_3 + A_4 cdot A_5 right) cdot left( A_6 cdot A_7 + A_8 cdot A_9right) right) =\ = P (A_1) cdot P left ( A_2 cdot A_3 + A_4 cdot A_5 right ) cdot P left( A_6 cdot A_7 + A_8 cdot A_9right) = $$

Для множителей с суммой событий внутри используем формулу (2):

$$ = P (A_1) cdot left[ P(A_2 cdot A_3) + P(A_4 cdot A_5) — P(A_2 cdot A_3 cdot A_4 cdot A_5) right] cdot left[ P(A_6 cdot A_7) + P(A_8 cdot A_9) — P(A_6 cdot A_7 cdot A_8 cdot A_9)right] = $$

И снова раскрываем вероятности произведений:

$$ = P (A_1) cdot left[ P(A_2) cdot P(A_3) + P(A_4) cdot P(A_5) — P(A_2) cdot P(A_3) cdot P(A_4) cdot P(A_5) right] cdot left[ P(A_6) cdot P(A_7) + P(A_8) cdot P(A_9) — P(A_6) cdot P(A_7) cdot P(A_8) cdot P(A_9)right]. $$

Перейдем к более компактной записи, положив $p_i=P(A_i)$:

$$ P(X)= p_1 cdot left[ p_2 cdot p_3 + p_4 cdot p_5 — p_2 cdot p_3 cdot p_4 cdot p_5 right] cdot left[ p_6 cdot p_7 + p_8 cdot p_9 — p_6 cdot p_7 cdot p_8 cdot p_9right]. $$

Если заданы надежности отдельных элементов $p_i$, подставляя их в формулу, можно найти вероятность работы схемы.

Алгоритм разбора схемы

  • Выделяем в схеме основу: группы элементов, соединенные ТОЛЬКО последовательно или ТОЛЬКО параллельно между собой. Это верхний уровень. Записываем событие $X$ = (Цепь работает) как произведение или сумму соответственно.
  • Каждую полученную группу анализируем также: ищем в ней подгруппы, соединенные только последовательно или только параллельно. Записываем событие соответственно типу соединения.
  • Продолжаем до тех пор, пока не опустимся на уровень элементов (событий $A_i$).
  • Подставляем все выражения в исходную формулу, получаем итоговую запись события $X$.
  • Пользуясь формулами (1)-(3) выписываем вероятность события $P=P(X)$.
  • Подставляем числовые значения $p_i, q_i$ и находим численное значение надежности схемы $P$.
  • Если необходимо, находим вероятность отказа цепи $1-P$.

Примеры решений

Отработаем несколько раз этот алгоритм на примерах, чтобы он закрепился.

схема цепи для задачи 1 по теории вероятностей (Максимов)

Пример 1. Дана схема включения элементов. Вероятность безотказной работы каждого элемента в течение времени Т равна р. Элементы работают независимо и включены в цепь по приведенной схеме. Пусть событие $А_i$ означает безотказную работу за время Т элемента с номером $i$ ($i=1,2,3,…$), а событие $В$ – безотказную работу цепи. Требуется:
1) Написать формулу, выражающую событие $В$ через все события $А_i$.
2) Найти вероятность события $B$.
3) Вычислить $Р(В)$ при $р=0,6$.

Приступим к разбору схемы. Можно увидеть, что на первом уровне мы имеем три группы, соединенные последовательно: (1), (2,3) и (4,5,6) элементы. Выделим их цветом для наглядности:

разбор цепи на первом уровне

Значит, исходное событие можно представить в виде произведения трех событий $B=B_1 cdot B_2 cdot B_3$, где $B_i$ — работает $i$-aя группа элементов.

Первая группа элементов состоит из одного элемента, то есть $B_1=A_1$.

Вторая группа элементов состоит из двух элементов, соединенных параллельно (см. розовые), поэтому $B_2=A_2+A_3$.

разбор цепи на втором уровне

Третья группа элементов (см. зеленые) состоит из трех элементов, ее можно представить как параллельное соединение двух подгрупп: (4 и 5, соединены последовательно) и (6), поэтому $B_3=A_4 cdot A_5 + A_6$.

Подставляем все и получаем выражение для события $B$

$$ B=B_1 cdot B_2 cdot B_3 = A_1 cdot (A_2+A_3) cdot (A_4 cdot A_5 + A_6). $$

Теперь выразим вероятность безотказной работы цепи за время T. Сначала применим формулу (1), чтобы раскрыть произведение:

$$ P(B)=P left( A_1 cdot (A_2+A_3) cdot (A_4 cdot A_5 + A_6) right) = P(A_1) cdot P left( A_2+A_3 right) cdot P left( A_4 cdot A_5 + A_6 right) = $$

Раскроем вторую вероятность по формуле (3), а третью по формуле (2), получим:

$$= P(A_1) cdot left(1 — P(overline) cdot P(overline) right) cdot left( P(A_4) cdot P(A_5) + P(A_6) — P(A_4) cdot P(A_5) cdot P(A_6) right).$$

Подставляем $P(A_i)=p$ и получим:

$$ p(B)=pcdot(1-(1-p)cdot(1-p))cdot(pcdot p + p -p cdot p cdot p) = pcdotleft(1-(1-p)^2right)cdot left(p+p^2-p^3right). $$

Осталось только найти значение при $p=0,6$:

схема цепи для задачи 2 по теории вероятностей

$$ p(B)= 0,6cdotleft(1-(1-0,6)^2right)cdot left(0,6+0,6^2-0,6^3right) approx 0,375. $$

Пример 2. Найти вероятность обрыва цепи, если вероятность отказа каждого элемента равна 0,2, а отказы элементов – независимые события.

Пронумеруем элементы и сразу раскрасим схему, чтобы выделить ее структуру.

схема цепи с раскраской для задачи 2 по теории вероятностей

Это опять последовательная схема, но розовая группа состоит из двух элементов, соединенных параллельно, поэтому можем сразу выписать:

$$ X= A_1 cdot (A_2+A_3) cdot A_4 cdot A_5. $$

Найдем вероятность этого события (работы цепи):

$$ P(X)= P left( A_1 cdot (A_2+A_3) cdot A_4 cdot A_5 right)= P(A_1) cdot P(A_2+A_3) cdot P(A_4) cdot P(A_5)= \ = P(A_1) cdot left( 1- P(overline) cdot P(overline) right) cdot P(A_4) cdot P(A_5). $$

Вероятности отказа элементов цепи равна 0,2, вероятность работы элементов — 0,8, поэтому

$$ P(X)= 0,8 cdot left( 1- 0,2 cdot 0,2 right) cdot 0,8 cdot 0,8 = 0,492. $$

Но в задаче требовалось найти вероятность обрыва цепи, это противоположное событие:

$$ P(overline) = 1- P(X) = 1-0,492 = 0,508. $$

схема функциональной цепи для задачи 3

Пример 3. Найти вероятность безотказной работы функциональной цепи, состоящей из независимо работающих элементов, если вероятность надежной работы элементов равна $p_1=p_2=p_3=p_4=0,8$, $p_5=p_6=p_7=0,9$.

Приступим к решению, сразу раскрасив схему. В этот раз схема на первом уровне имеет параллельное соединение: верхняя розово-зеленая группа и нижняя желтая находятся на параллельных линиях. Поэтому $X=X_1+X_2$, где $X_1$ — работает розово-зеленая линия, $X_2$ — работает желтая.

схема функциональной цепи для задачи 3

Для желтой группы, состоящей из трех последовательно расположенных элементов, сразу выписываем $X_2=A_5 cdot A_6 cdot A_7$.

Теперь рассмотрим верхнюю группу. Она состоит из двух подгрупп, связанных последовательно: розовой и зеленой. При этом каждая из них состоит из двух параллельно соединенных элементов. Записываем: розовая группа работает = $A_1+A_2$, зеленая группа работает = $A_3+A_4$, значит ток проходит через розово-зеленую группу $X_1 =(A_1+A_2) cdot (A_3+A_4)$.

Объединяем рассуждения и выписываем событие, соответствующее безотказной работе цепи:

$$ X=X_1+X_2 = (A_1+A_2) cdot (A_3+A_4) + A_5 cdot A_6 cdot A_7. $$

Следующий шаг: выразить вероятность этого события. Во всех предыдущих примерах схема на первом уровне была последовательной, и событие выражалось как произведение. В этом случае схема на первом уровне параллельна, событие выглядит как сумма других событий, что немного усложняет выкладки. Для суммы событий можно использовать формулу (2) или (3), выбирая наиболее удобную в каждом конкретном случае.

В данном случае слагаемых всего два, поэтому возьмем формулу (2):

$$ P(X)= P left( (A_1+A_2) cdot (A_3+A_4) + A_5 cdot A_6 cdot A_7 right) = \ = P left( (A_1+A_2) cdot (A_3+A_4) right) + P left( A_5 cdot A_6 cdot A_7 right) — P left( (A_1+A_2) cdot (A_3+A_4) cdot A_5 cdot A_6 cdot A_7 right) $$

Раскрываем все произведения по формуле (1):

$$ = P (A_1+A_2) cdot P(A_3+A_4) + P(A_5) cdot P(A_6) cdot P(A_7) — P (A_1+A_2) cdot P(A_3+A_4) cdot P(A_5) cdot P(A_6) cdot P(A_7) = $$

По формуле (3) расписываем $P(A_1+A_2)=1-P(overline) cdot P(overline) = 1-q_1cdot q_2$ и $P(A_3+A_4)=1-P(overline) cdot P(overline)= 1-q_3cdot q_4$.

$$ P(X)= (1-q_1cdot q_2) cdot (1-q_3cdot q_4) + p_5 cdot p_6 cdot p_7 — \- (1-q_1cdot q_2) cdot (1-q_3cdot q_4) cdot p_5 cdot p_6 cdot p_7. $$

Подставляем значения надежности элементов:

$$ P(X)= (1-0,2^2)^2 + 0,9^3 — (1-0,2^2)^2 cdot 0,9^3 approx 0,9788. $$

На закуску: схема с мостиком

Для 99% учебных задач вам хватит той теории и примеров, что приведены выше: подробно изучите их и приступайте к своим примерам по аналогии. Но есть такие схемы, для которых нельзя выделить единую структуру на верхнем уровне — параллельную или последовательную, и весь алгоритм решения рушится.

схема функциональной цепи с мостиком

Речь идет о схемах смешанного типа, еще их часто называют схемами с мостиком (мостиковые схемы). Типичная схема имеет такой вид:

Видно, что как ни крути, схему нельзя отнести ни к последовательным, ни к параллельным. Элемент №5 (мостик) «портит» тип схемы. Если его убрать (разорвать этот участок цепи), получим обычную параллельную структуру, а если предположить, что через этот участок всегда идет ток — последовательную (конкретные схемы изобразим ниже).

Поэтому для решения задачи о вычислении надежности подобной электросхемы используют формулу полной вероятности в форме теоремы разложения (см. подробнее тут, стр. 118)

Надежность цепи с избыточностью равна произведению вероятности безотказной работы $i$-го элемента цепи на вероятность безотказной работы оставшейся цепи (места подключения $i$-го элемента замкнуты накоротко) плюс произведение вероятности отказа того же $i$-го элемента на вероятность безотказной работы оставшейся цеии (места подключения $i$-го элемента разомкнуты).

То есть, для выделенного на схеме элемента-мостика рассматриваем две гипотезы:
$H_1$ = (Элемент 5 не пропускает ток), $P(H_1)=1- p_5 = q_5$;
$H_2$ = (Элемент 5 пропускает ток), $P(H_2)=p_5$.

Далее вычисляем надежность схемы при условии верности каждой из гипотез. Для наглядности нарисуем обе схемы:

разложение цепи с мостиком на две

Рассмотрим левую схему, верную при гипотезе $H_1$, через нее проходит ток, если $X|H_1 = A_1cdot A_3+ A_2cdot A_4$, вероятность

$$ P(X|H_1) = P(A_1cdot A_3+ A_2cdot A_4)= P(A_1cdot A_3)+ P(A_2cdot A_4) — P(A_1cdot A_3 cdot A_2cdot A_4)=\ =p_1 cdot p_3 + p_2 cdot p_4 — p_1 cdot p_2 cdot p_3 cdot p_4. $$

Рассмотрим правую схему, верную при гипотезе $H_2$, и выпишем для нее аналогично событие и вероятность прохода тока:

$$ X|H_2 = (A_1+A_2)cdot (A_3+A_4),\ P(X|H_2) =P( (A_1+A_2)cdot (A_3+A_4)) = P(A_1+A_2)cdot P(A_3+A_4)=\ = (1-P(overline) cdot P(overline)) cdot (1-P(overline) cdot P(overline)) = (1-q_1cdot q_2) cdot (1-q_3cdot q_4). $$

Тогда по формуле полной вероятности, надежность схемы равна:

$$ P(X)=P(X|H_1)cdot P(H_1) + P(X|H_2)cdot P(H_2) = \ = q_5 (p_1 cdot p_3 + p_2 cdot p_4 — p_1 cdot p_2 cdot p_3 cdot p_4) + p_5 (1-q_1cdot q_2) cdot (1-q_3cdot q_4). $$

Аналогичным образом можно разбирать более сложные схемы (в которые более одного мостика), применяя на каждом этапе формулу полной вероятности (как бы вкладывая одну в другую).

Полезные ссылки по ТВ

Решебник по вероятности

А здесь вы найдете разные задачи по теории вероятностей с полными решениями (вводите часть текста для поиска своей задачи):

Рассмотрим примеры, в которых требуется вычислить вероятностьь безотказной работы и вероятность отказа работы прибора, в состав которого входят несколько элементов и используются различные способы их соединения между собой.

Пример 1.14. Прибор состоит из двух независимо работающих элементов. Вероятность отказа первого элемента равна P1= 0,1, а второго – P2 = 0,2.

Рассмотрим событие A = {прибор откажет работать}.

1) Вычислим вероятность события A, если элементы соединены Последовательно,

Решение: Обозначим через A1 Событие, которое заключается в том, что откажет элемент А1 = {откажет первый элемент}, и через A2 –

A2 = {откажет второй элемент}.

Тогда данный прибор не будет работать (событие А), если выйдет из строя Хотя бы Один из элементов (или первый, или второй, или оба не будут работать). Такое состояние прибора можно описать, используя Определение суммы событий, т. е. A=A1+A2 . Из теоремы о вероятности суммы двух независимых событий [ формула (***)] получаем

P (A) = p (A1+A2) = p (A1) + p (A2) – p (A1 A2) = p (A1) + p (A2) – p (A1) p (A2) =

= p1+p2 – p1 p2 = 0,1 +0,2 – 0,1*0,2 = 0,28.

Итак, вероятность того, что данный прибор Откажет Р (А) = 0,28.

Состояние прибора, когда он работает правильно, есть событие А – противоположное событию А, когда прибор откажет.

Тогда, используя свойства вероятности, можно найти Вероятность правильной работы А Данного прибора по формуле:

р ( ) = 1 – р (А) = 1 – 0,28 = 0,72.

2) Вычислим вероятность отказа прибора (событие А ), если элементы соединены параллельно:

Решение. Данный прибор откажет в том случае, если Откажут оба элемента Одновременно. Следовательно, отказ прибора в этом случае может быть представлен как Произведение Событий А1 и А2 , т. е. A=A1A2 . Так как элементы перестают работать Независимо друг от друга, то из независимости событий A1 и A2 получаем P(A) = P(A1) P(A2) = P1 P2 = 0,1 * 0,2 = 0,02.

Определение. События A1 A2 ¼ AN называют Взаимно независимыми, если для любой их части выполняется равенство

P() = p() p()¼P(), (1.5)

1<=i1<i2 ¼<im<=n , m=2, ¼,n.

Пример 1.15. Прибор состоит из трех последовательно соединенных и независимо работающих друг от друга элементов. Каждый из элементов может быть признан бракованным или стандартным:

Обозначим вероятность того, что первый элемент оказался бракованным,

Равной P1, второй элемент бракованный – P2, третий элемент бракованный – P3.

Прибор будем считать Бракованным, если хотя бы один из его элементов бракованный. Найти вероятность того, что прибор Стандартный.

Решение: Обозначим события

A1 = {первый элемент – стандартный},

A2 = {второй элемент – стандартный },

A3 = {третий элемент – стандартный }

A = {прибор стандартный }.

В данном случае прибор нормально работает в том случае, если все три элемента одновременно работают, т. е. все три элемента, входящие в прибор, стандартные. Тогда работу прибора можно описать как событие А, состоящее из Произведения трех Независимых Событий A=A1*A2*A3 , вероятность которого можно вычислить по формуле вероятности произведения независимых событий

P(A) = P(A1)P(A2)P(A3) =(1 – P1) (1- P2) (1 – P3).

Вероятность отказа прибора (событие А ) в данном случае есть величина, равная вероятности события, противоположного событию А.

Р ( А) = 1 – Р (А).

Примечание. Рассмотренные примеры 1.13, 1.14 и 1.15 являются аналогом решения контрольной задачи №3 (первого пункта задания) из методических указаний для выполнения контрольных работ.

Рассмотрим некоторые свойства независимых событий.

Свойство7. Если A и B независимы, то и B Независимы.

Свойство 8. Если событие A не зависит от событий B1 и B2, а события B1 и B2 несовместны, тогда события A и B1+ B2 независимы.

Свойство 9. Если события A, A1 и A2 взаимно независимы, тогда события A и A1+ A2 независимы.

Вопросы для самопроверки

1. В чем заключается геометрический подход к вычислению вероятности?

2. Чему равна вероятность суммы двух противоположных событий?

3. Перечислите основные свойства вероятности события.

4. Что такое независимые события?

< Предыдущая   Следующая >

Добавить комментарий