Зависимые и независимые случайные события.
Основные формулы сложения и умножения вероятностей
Понятия зависимости и независимости случайных событий. Условная вероятность. Формулы сложения и умножения вероятностей для зависимых и независимых случайных событий. Формула полной вероятности и формула Байеса.
Теоремы сложения вероятностей
Найдем вероятность суммы событий и (в предположении их совместности либо несовместности).
Теорема 2.1. Вероятность суммы конечного числа несовместных событий равна сумме их вероятностей:
Пример 1. Вероятность того, что в магазине будет продана пара мужской обуви 44-го размера, равна 0,12; 45-го — 0,04; 46-го и большего — 0,01. Найти вероятность того, что будет продана пара мужской обуви не меньше 44-го размера.
Решение. Искомое событие произойдет, если будет продана пара обуви 44-го размера (событие ) или 45-го (событие ), или не меньше 46-го (событие ), т. е. событие есть сумма событий . События , и несовместны. Поэтому согласно теореме о сумме вероятностей получаем
Пример 2. При условиях примера 1 найти вероятность того, что очередной будет продана пара обуви меньше 44-го размера.
Решение. События “очередной будет продана пара обуви меньше 44-го размера” и “будет продана пара обуви размера не меньше 44-го” противоположные. Поэтому по формуле (1.2) вероятность наступления искомого события
поскольку , как это было найдено в примере 1.
Теорема 2.1 сложения вероятностей справедлива только для несовместных событий. Использование ее для нахождения вероятности совместных событий может привести к неправильным, а иногда и абсурдным выводам, что наглядно видно на следующем примере. Пусть выполнение заказа в срок фирмой “Electra Ltd” оценивается вероятностью 0,7. Какова вероятность того, что из трех заказов фирма выполнит в срок хотя бы какой-нибудь один? События, состоящие в том, что фирма выполнит в срок первый, второй, третий заказы обозначим соответственно . Если для отыскания искомой вероятности применить теорему 2.1 сложения вероятностей, то получим . Вероятность события оказалась больше единицы, что невозможно. Это объясняется тем, что события являются совместными. Действительно, выполнение в срок первого заказа не исключает выполнения в срок двух других.
Сформулируем теорему сложения вероятностей в случае двух совместных событий (будет учитываться вероятность их совместного появления).
Теорема 2.2. Вероятность суммы двух совместных событий равна сумме вероятностей этих двух событий без вероятности их совместного появления:
Зависимые и независимые события. Условная вероятность
Различают события зависимые и независимые. Два события называются независимыми, если появление одного из них не изменяет вероятность появления другого. Например, если в цехе работают две автоматические линии, по условиям производства не взаимосвязанные, то остановки этих линий являются независимыми событиями.
Пример 3. Монета брошена два раза. Вероятность появления “герба” в первом испытании (событие ) не зависит от появления или не появления “герба” во втором испытании (событие ). В свою очередь, вероятность появления “герба” во втором испытании не зависит от результата первого испытания. Таким образом, события и независимые.
Несколько событий называются независимыми в совокупности, если любое из них не зависит от любого другого события и от любой комбинации остальных.
События называются зависимыми, если одно из них влияет на вероятность появления другого. Например, две производственные установки связаны единым технологическим циклом. Тогда вероятность выхода из строя одной из них зависит от того, в каком состоянии находится другая. Вероятность одного события , вычисленная в предположении осуществления другого события , называется условной вероятностью события и обозначается .
Условие независимости события от события записывают в виде , а условие его зависимости — в виде . Рассмотрим пример вычисления условной вероятности события.
Пример 4. В ящике находятся 5 резцов: два изношенных и три новых. Производится два последовательных извлечения резцов. Определить условную вероятность появления изношенного резца при втором извлечении при условии, что извлеченный в первый раз резец в ящик не возвращается.
Решение. Обозначим извлечение изношенного резца в первом случае, а — извлечение нового. Тогда . Поскольку извлеченный резец в ящик не возвращается, то изменяется соотношение между количествами изношенных и новых резцов. Следовательно, вероятность извлечения изношенного резца во втором случае зависит от того, какое событие осуществилось перед этим.
Обозначим событие, означающее извлечение изношенного резца во втором случае. Вероятности этого события могут быть такими:
Следовательно, вероятность события зависит от того, произошло или нет событие .
Формулы умножения вероятностей
Пусть события и независимые, причем вероятности этих событий известны. Найдем вероятность совмещения событий и .
Теорема 2.3. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:
Следствие 2.1. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:
Пример 5. Три ящика содержат по 10 деталей. В первом ящике — 8 стандартных деталей, во втором — 7, в третьем — 9. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.
Решение. Вероятность того, что из первого ящика взята стандартная деталь (событие ), . Вероятность того, что из второго ящика взята стандартная деталь (событие ), . Вероятность того, что из третьего ящика взята стандартная деталь (событие ), . Так как события , и независимые в совокупности, то искомая вероятность (по теореме умножения)
Пусть события и зависимые, причем вероятности и известны. Найдем вероятность произведения этих событий, т. е. вероятность того, что появится и событие , и событие .
Теорема 2.4. Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Следствие 2.2. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.
Пример 6. В урне находятся 5 белых шаров, 4 черных и 3 синих. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в урну. Найти вероятность того, что при первом испытании появится белый шар (событие ), при втором — черный (событие ) и при третьем — синий (событие ).
Решение. Вероятность появления белого шара при первом испытании . Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, т. е. условная вероятность . Вероятность появления синего шара при третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором — черный, . Искомая вероятность
Формула полной вероятности
Теорема 2.5. Если событие наступает только при условии появления одного из событий , образующих полную группу несовместных событий, то вероятность события равна сумме произведений вероятностей каждого из событий на соответствующую условную вероятность события :
(2.1)
При этом события называются гипотезами, а вероятности — априорными. Эта формула называется формулой полной вероятности.
Пример 7. На сборочный конвейер поступают детали с трех станков. Производительность станков не одинакова. На первом станке изготовляют 50% всех деталей, на втором — 30%, на третьем — 20%. Вероятность качественной сборки при использовании детали, изготовленной на первом, втором и третьем станке, соответственно 0,98, 0,95 и 0,8, Определить вероятность того, что узел, сходящий с конвейера, качественный.
Решение. Обозначим событие, означающее годность собранного узла; , и — события, означающие, что детали сделаны соответственно на первом, втором и третьем станке. Тогда
Искомая вероятность
Формула Байеса
Эта формула применяется при решении практических задач, когда событие , появляющееся совместно с каким-либо из событий , образующих полную группу событий, произошло и требуется провести количественную переоценку вероятностей гипотез . Априорные (до опыта) вероятности известны. Требуется вычислить апостериорные (после опыта) вероятности, т. е., по существу, нужно найти условные вероятности . Для гипотезы формула Байеса выглядит так:
Раскрывая в этом равенстве по формуле полной вероятности (2.1), получаем
Пример 8. При условиях примера 7 рассчитать вероятности того, что в сборку попала деталь, изготовленная соответственно на первом, втором и третьем станке, если узел, сходящий с конвейера, качественный.
Решение. Рассчитаем условные вероятности по формуле Байеса:
для первого станка
для второго станка
для третьего станка
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
И на какой формуле основывается огромный пласт науки об изучении данных
Приветствую Вас, уважаемые Читатели! В прошлой статье мы рассматривали три важных класса событий из теории вероятностей на самом простом и понятном примере – подбрасывании монетки.
Кратко напомню, что мы описали:
- несовместные события (исключающие появление друг друга) – например, выпадение Орла в одном испытании исключает выпадение Решки;
- независимые события (вероятность появления которых не зависит друг от друга) – например, при подбрасывании двух монеток одновременно событие выпадение двух Орлов сразу;
- совместные события (события не исключают друг друга) – опять-таки при подбрасывании двух монеток, но уже событие выпадения хотя бы одного Орла или Решки.
Судя по логике изложения, нам необходимо рассмотреть еще один класс событий – зависимые, чем сейчас и займемся.
Что такое зависимое событие
На самом деле характеристика “зависимости” двух событий определяется еще раньше в зависимости от их совместности или несовместности.
Например, подбросим монету два раза. Результат каждого по отдельности подбрасывания зависит от другого ? Очевидно нет. Давайте рассмотрим событие “выпадение Решки после выпадения Орла” и посчитаем его вероятность:
Конечно, сейчас это посчитано исходя из интуитивных предположений, но подтвердить свою логику можно, использовав классическое определение вероятности, как отношение числа благоприятных исходов к общему количеству исходов (строго говоря, предельное отношение, да и исходы должны быть равновероятны).
За два подбрасывания монетки мы можем получить следующие варианты:
Благоприятный исход (удовлетворяющий исходному условию) – один, всего элементарных событий – четыре. Ответ очевиден.
Здесь Читатель, знакомый с прошлым материалом, справедливо спросит:
“Получается, что мы вычислили вероятность по формуле для независимых событий, просто их перемножив?”
Ответ будет такой: я специально привёл искусственный пример, в котором изначальные события (Орёл и Решка) несовместны и их количество равно количеству бросков! В этой ситуации формулы расчёта не отличаются! .
Мы вроде бы вербально описали, что события зависимые, т.е. провели логическую цепочку от первого события ко второму, но различий никаких не получили, всё опять как для независимых
Пример настоящего зависимого события
То были события несовместные, а теперь рассмотрим совместные. Представим такой пример: монету бросают три раза, нужно найти вероятность того, что после первого выпавшего Орла, в третьем подбрасывании выпадет Решка. Распишем вероятные исходы:
Благоприятных исходов два, значит вероятность равна 0,25. Но что, если бы мы по старой памяти вычислили эту вероятность как произведение? Тогда, мы бы получили абсолютно неправильный ответ: 0,5*0,5*0,5 = 0,125!
Значит, для этих событий, как мы уже поняли, зависимых, требуется иная формула! От формулы умножения вероятностей независимых событий она отличается буквально одним символом:
Таким образом, вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже произошло. В нашем случае оба сомножителя равны 0,5, результат – 0,25, но ситуации бывают сложнее.
Записанная выше формула – это простите за сравнение, “пятый элемент” теории вероятностей, потому что с помощью простых рассуждений из неё можно вывести знаменитые формулы Байеса для условной вероятности. Но этим займемся позже. Спасибо за внимание!
- Ставьте “Нравится” и подписывайтесь на канал прямой сейчас, чтобы не пропустить следующие публикации.
- TELEGRAM и Facebook – там я публикую не только интересные статьи, но и математический юмор и многое другое.
Полезная страница? Сохрани или расскажи друзьям
Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной; если же налагаются и другие дополнительные условия, то вероятность события называют условной. Например, часто вычисляют вероятность события $B$ при дополнительном условии, что произошло событие $А$.
Условной вероятностью $P_A(B)=P(B|A)$ (два обозначения) называют вероятность события $В$, вычисленную в предположении, что событие $А$ уже наступило.
Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.
$$P(AB)=P(B)cdot P(A|B) = P(A) cdot P(B|A).$$
В частности, отсюда получаем формулы для условной вероятности:
$$P(A|B)=frac{P(AB)}{P(B)}, quad P(B|A)=frac{P(AB)}{P(A)}.$$
Примеры решений на условную вероятность
Пример. В урне находятся 3 белых шара и 2 черных. Из урны вынимается один шар, а затем второй. Событие В – появление белого шара при первом вынимании. Событие А – появление белого шара при втором вынимании.
Решение. Очевидно, что вероятность события А, если событие В произошло, будет
.
Вероятность события А при условии, что событие В не произошло, будет
.
Пример. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).
Решение. После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность .
Этот же результат можно получить по формуле
.
Действительно, вероятность появления белого шара при первом испытании
.
Найдем вероятность того, что в первом испытании появится черный шар, а во втором — белый. Общее число исходов — совместного появления двух шаров, безразлично какого цвета, равно числу размещений . Из этого числа исходов событию благоприятствуют исходов. Следовательно, .
Искомая условная вероятность
Результаты совпали.
Пример. В трамвайном парке имеются 15 трамваев маршрута №1 и 10 трамваев маршрута №2. Какова вероятность того, что вторым по счету на линию выйдет трамвай маршрута №1?
Решение. Пусть А – событие, состоящее в том, что на линию вышел трамвай маршрута №1, В – маршрута №2.
Рассмотрим все события, которые могут при этом быть (в условиях нашей задачи): . Из них нас будут интересовать только первое и третье, когда вторым выйдет трамвай маршрута №1.
Так как все эти события совместны, то:
;
;
отсюда искомая вероятность
Пример. Какова вероятность того, что 2 карты, вынутые из колоды в 36 карт, окажутся одной масти?
Решение. Сначала подсчитаем вероятность того, что две карты окажутся одной определенной масти (например «пики»). Пусть А – появление первой карты такой масти, В – появление второй карты той же масти. Событие В зависит от события А, т.к. его вероятность меняется от того, произошло или нет событие А. Поэтому придется воспользоваться теоремой умножения в ее общей форме:
,
где (после вынимания первой карты осталось 35 карт, из них той же масти, что и первая – 8).
Получаем
.
События, состоящие в том, что будут вынуты две карты масти «пики», масти «треф» и т.д., несовместны друг с другом. Следовательно, для нахождения вероятности их объединения воспользуемся теоремой сложения:
.
Полная вероятность и формула Байеса
- Зависимые события и условные вероятности
- Вероятность совместного появления событий
- Формула полной вероятности
- Формула Байеса
- Примеры
п.1. Зависимые события и условные вероятности
Чтобы вспомнить о сложении и умножении вероятностей и независимых событиях – см. §39 справочника для 9 класса.
Напомним, что два случайных события A и B называют независимыми, если наступление одного из них не изменяет вероятность наступления другого.
Например: при бросании монеты несколько раз каждый следующий бросок совершенно не зависит от предыдущих.
Два случайных события A и B называют зависимыми, если вероятность одного из них зависит от того, произошло или нет другое событие.
Вероятность события B, определенная при условии, что событие A произошло, называется условной вероятностью и обозначается (P(B|A)) или (P_A(B)).
Для условных вероятностей справедливы формулы: $$ P(A|B)=frac{P(Awedge B)}{P(B)}, P(B|A)=frac{P(Awedge B)}{P(A)} $$ где (P(Awedge B)) – вероятность совместного появления событий A и B.
Например:
Рассмотрим урну, в которой находится 3 белых и 3 черных шара.
Мы достаем шары, смотрим на их цвет и не возвращаем их на место. События в последовательности становятся зависимыми.
Пусть событие A=”в 1й раз достаем черный шар”,
Событие B=”во 2й раз достаем белый шар”
Событие C=”во 2й раз достаем черный шар”
После того, как произошло событие A, в урне остается 3 белых и 2 черных шара.
Тогда условная вероятность для события B при условии, что событие A произошло:
(P(B|A)=frac35)
Аналогично, условная вероятность для события C:
(P(B|A)=frac25)
п.2. Вероятность совместного появления событий
Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло: $$ P(Awedge B)=P(B)cdot P(A|B)=P(A)cdot P(B|A) $$ Это утверждение также называют теоремой умножения вероятностей.
Например:
Продолжая предыдущий пример, вероятность события ((Awedge B)) – 1й раз достали черный шар и 2й раз белый – равна: $$ P(Awedge B)=P(A)cdot P(B|A)=frac12cdot frac35=0,3 $$ Также, напомним:
Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий: $$ P(Awedge B)=P(A)cdot P(B) $$
Например:
Пусть в урне 3 белых и 3 черных шара. Мы достаем шары, смотрим на их цвет и возвращаем их на место. В последовательности наших действий все события будут независимыми. Каждый раз, вероятность достать белый или черный шар будет равна 1/2. Поэтому, в этом случае вероятность события ((Awedge B)) – 1й раз достали черный шар, а 2й раз белый – равна: $$ P(Awedge B)=P(A)cdot P(B)=frac12cdotfrac12=0,25 $$
п.3. Формула полной вероятности
Чтобы вспомнить о несовместных событиях и полной группе событий – см. §39 справочника для 9 класса.
Например:
При подбрасывании монеты события A=«получить орла» и B=«получить решку» – несовместные, т.к. одновременно произойти не могут.
В то же время, эти несовместные события A и B образуют пространство элементарных событий или полную группу (Omega=left{B;Bright}), т.к. ничего другого, кроме орла или решки, получить нельзя. Сумма вероятностей (P(A)+P(B)=frac12+frac12=1), как и положено для полной группы.
Если событие A может произойти только при выполнении одного из событий (B_1,B_2,…,B_k), которые образуют полную группу событий, то вероятность события A определяется по формуле полной вероятности: $$ P(A)=P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+…+P(B_k)P(A|B_k)=sum_{i=1}^k P(B_i)P(A|B_i) $$
Например:
В 11А и 11Б учится по 35 человек, а в 11В – 30 человек. Будем считать тех, у кого 4 и 5 баллов по алгебре и геометрии, «знатоками математики». Таких учеников в 11А – 10 человек, в 11Б – 7 человек, и в 11В – 3 человека.
Какова вероятность, что произвольно выбранный 11-классник окажется знатоком математики?
Пусть события A=«знаток математики», Bi=«ученик i-го класса», (i=overline{1,3})
Составим таблицу:
i | Класс | К-во учеников |
(P(B_i)) | К-во знатоков |
(P(A|B_i)) | (P(B_i)cdot P(A|B_i)) |
1 | 11A | 35 | 35/100=0,35 | 10 | 10/35=2/7 | 0,1 |
2 | 11Б | 35 | 35/100=0,35 | 7 | 7/35=1/5 | 0,07 |
3 | 11В | 30 | 30/100=0,3 | 10 | 3/30=1/10 | 0,03 |
Всего | 100 | 1 | 20 | × | 0,2 |
Получаем полную вероятность (P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,2)
В данном случае ответ можно получить и проще: 20 знатоков на 100 человек дает (P(A)=0,2).
п.4. Формула Байеса
По данному выше определению полной вероятности событие A случается, если происходит одно из событий полной группы (left{B_iright}).
Допустим, что событие A случилось. А какова вероятность, что при этом произошло конкретное событие (B_1inleft{B_iright})? Т.е., нас интересует условная вероятность (P(B_1|A)).
По теореме об умножении вероятностей: $$ P(Awedge B_1)=P(B_1)cdot P(A|B_1)=P(A)cdot P(B_1|A) $$ Откуда: $$ P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)} $$ То же самое справедливо для любого события (B_pinleft{B_iright}). Предположение о том, что случилось событие (B_p), называют гипотезой.
Если событие A может произойти только при выполнении одного из событий полной группы (left{B_iright}) и событие A случилось, то вероятность гипотезы, что при этом случилось событие (B_pinleft{B_iright}), определяется формулой Байеса: $$ P(B_p|A)=frac{P(B_p)cdot P(A|B_p)}{P(A)}=frac{P(B_p)cdot P(A|B_p)}{sum_{i=1}^k P(B_i)P(A|B_i)} $$ Вероятность (P(B_p)) называют априорной вероятностью.
Вероятность (P(B_p|A)) называют апостериорной вероятностью. Случившееся событие A может поменять априорную (предварительную) оценку вероятности события (B_p).
Например:
Продолжим задачу с 11-классниками. Какова вероятность того, что произвольно взятый знаток математики учится в 11Б?
Наши события: A=«знаток математики», B2=«ученик 11Б класса».
Событие A «случилось» – у нас имеется знаток, а событие B2 – это гипотеза про 11Б.
И ответом на поставленный вопрос является вероятность (P(B_2|A)).
Из нашей таблицы: $$ P(B_2)cdot P(A|B_2)=0,07; P(A)=0,2 $$ Получаем: $$ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{0,07}{0,2}=0,35 $$ Т.е. 11Б дает 35% всех знатоков математики в этой школе.
Если сравнить апостериорную вероятность (P(B_2|A)=0,35) с априорной вероятностью (P(B_2)=0,35), они равны. Событие A не повлияло на оценку вклада 11Б в интеллектуальный багаж школы, он находится на среднем уровне.
Теперь найдем вероятность того, что произвольно взятый знаток математики учится в 11А: begin{gather*} P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)}=frac{0,1}{0,2}=0,5\ P(B_1|A)gt P(B_1) end{gather*} Вклад 11А по факту (апостериорная вероятность 0,5) оказывается большим, чем ожидалось по количеству учеников (априорная вероятность 0,35). 50% знатоков всей школы – из этого класса.
Наконец, найдем вероятность того, что произвольно взятый знаток математики учится в 11В: begin{gather*} P(B_3|A)=frac{P(B_3)cdot P(A|B_3)}{P(A)}=frac{0,03}{0,2}=0,15\ P(B_3|A)lt P(B_3) end{gather*} Вклад 11В по факту (апостериорная вероятность 0,15) оказывается меньшим, чем ожидалось по количеству учеников (априорная вероятность 0,3). Только 15% знатоков всей школы – из этого класса.
п.5. Примеры
Пример 1. Двигатель работает в трех режимах: нормальном (65% времени), форсированном (25% времени) и холостом. Вероятность поломки в каждом из режимов соответственно равна (p_1=0,1; p_2=0,8; p_3=0,05).
а) найдите вероятность поломки двигателя во время работы;
б) двигатель сломался. Какова вероятность, что он в этот момент работал в форсированном режиме?
а) Пусть событие A=«поломка двигателя», Bi – «работа в i-м режиме», (i=overline{1,3})
Необходимо найти полную вероятность (P(A)).
Составим таблицу:
i | Режим | Часть времени (P(B_i)) |
Вероятность поломки (P(A|B_i)) |
(P(B_i)cdot P(A|B_i)) |
1 | Нормальный | 0,65 | 0,1 | 0,065 |
2 | Форсированный | 0,25 | 0,8 | 0,2 |
3 | Холостой | 0,1 | 0,05 | 0,005 |
Всего | 1 | × | 0,27 |
Вероятность поломки (полная вероятность): $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,27 $$
б) Событие A=«поломка двигателя» произошло. Гипотеза B2 – «работа в форсированном режиме» при фактической поломке имеет вероятность: $$ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{0,2}{0,27}=frac{20}{27}approx 0,741 $$ Апостериорная вероятность (P(B_2|A)approx 0,741) больше априорной вероятности (P(B_2)=0,25).
Ответ: a) 0,27; б) (frac{20}{27}approx 0,741)
Пример 2. В состязании лучников участвуют три стрелка. Вероятность попадания в мишень для каждого из них равна 0,3; 0,5 и 0,7. Один из стрелков стреляет и не попадает. Какова вероятность, что это был:
а) первый стрелок;
б) второй стрелок;
в) третий стрелок;
Пусть событие A=«промах», Bi – «выстрел i-го стрелка», (i=overline{1,3})
Т.к. стрелять мог любой из стрелков (P(B_i)=frac13) для каждого из них.
Чтобы найти вероятность промаха, нужно от 1 отнять вероятность попадания.
Составим таблицу:
i | (P(B_i)) | Вероятность промаха (P(A|B_i)) |
(P(B_i)cdot P(A|B_i)) |
1 | (frac13) | 1-0,3=0,7 | (frac13cdot 0,7=frac{7}{30}) |
2 | (frac13) | 1-0,5=0,5 | (frac13cdot 0,5=frac{1}{6}) |
3 | (frac13) | 1-0,7=0,3 | (frac13cdot 0,3=frac{1}{10}) |
∑ | 1 | × | 0,5 |
Полная вероятность: $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=frac{7}{30}+frac16+frac{1}{10}=0,5 $$ Промах произошел. Находим апостериорные вероятности для каждого стрелка: begin{gather*} P(B_1|A)=frac{P(B_1)cdot P(A|B_1)}{P(A)}=frac{7/30}{0,5}=frac{7}{15}approx 0,467\ P(B_2|A)=frac{P(B_2)cdot P(A|B_2)}{P(A)}=frac{1/6}{0,5}=frac{2}{3}approx 0,333\ P(B_3|A)=frac{P(B_3)cdot P(A|B_3)}{P(A)}=frac{1/10}{0,5}=frac{1}{5}=0,2\ end{gather*} С точки зрения практической, можно сказать, что «вероятнее всего», это был первый стрелок.
Ответ: a) (frac{7}{15}); б) (frac{1}{3}); в) (frac{1}{5})
Пример 3. Три фрилансера на площадке выполняют заказы в отношении по количеству 3:4:3. Доля успешно выполненных заказов для каждого из них составляет 98%, 95% и 90%.
а) найдите вероятность успешного выполнения заказа на площадке;
б) найдите вероятность неуспеха на площадке;
в) кто из фрилансеров, вероятнее всего, виноват в неуспешной работе?
Пусть событие A=«успех», Bi – «работа i-го фрилансера», (i=overline{1,3})
Составим таблицу успешной деятельности:
i | (P(B_i)) | Вероятность успеха (P(A|B_i)) |
(P(B_i)cdot P(A|B_i)) |
1 | 0,3 | 0,98 | 0,294 |
2 | 0,4 | 0,95 | 0,38 |
3 | 0,3 | 0,9 | 0,27 |
∑ | 1 | × | 0,944 |
Вероятность успешного выполнения (полная вероятность): $$ P(A)=sum_{i=1}^3 P(B_i)cdot P(A|B_i)=0,944 $$ б) Вероятность неуспеха (противоположное событие): $$ P(overline{A})=1-P(A)=1-0,944=0,056 $$ в) Составим таблицу неуспешной деятельности:
i | (P(B_i)) | Вероятность неуспеха (P(overline{A}|B_i)) |
(P(B_i)cdot P(overline{A}|B_i)) |
1 | 0,3 | 1-0,98=0,02 | 0,006 |
2 | 0,4 | 1-0,95=0,05 | 0,02 |
3 | 0,3 | 1-0,9=0,1 | 0,03 |
∑ | 1 | × | 0,056 |
Апостериорные вероятности для каждого из фрилансеров: begin{gather*} P(B_1|overline{A})=frac{P(B_1)cdot P(overline{A}|B_1)}{P(overline{A})}=frac{0,006}{0,056}=frac{3}{28}approx 0,107\ P(B_2|overline{A})=frac{P(B_2)cdot P(overline{A}|B_2)}{P(overline{A})}=frac{0,02}{0,056}=frac{5}{14}approx 0,357\ P(B_3|overline{A})=frac{P(B_3)cdot P(overline{A}|B_3)}{P(overline{A})}=frac{0,03}{0,056}=frac{15}{28}approx 0,536 end{gather*} Наибольшая вероятность неуспеха – у третьего фрилансера.
Ответ: а) 0,944; б) 0,056; в) третий фрилансер.
Пример 4. Докажите, что если полная вероятность события A равна $$ P(A)=sum_{i=1}^k P(B_i)cdot P(A|B_i) $$ то вероятность противоположного события равна (P(overline{A})=1-P(A)).
По условию событие A происходит только при выполнении одного из событий полной группы (left{B_iright}. i=overline{i,k}). Соответственно, противоположное событие (overline{A}) также происходит при выполнении одного из событий (B_i). При этом условная вероятность для противоположного события: $$ P(overline{A}|B_i)=1-P(A|B_i) $$ Заметим также, что для полной группы сумма вероятностей равна 1: begin{gather*} sum_{i=1}^k P(B_i)=1 end{gather*} Получаем: begin{gather*} P(overline{A})=sum_{i=1}^k P(B_i)cdot P(overline{A}|B_i)=sum_{i=1}^k P(B_i)cdot (1-P(A|B_i))=\ =sum_{i=1}^k P(B_i)-sum_{i=1}^k P(B_i)cdot P(A|B_i)=1-P(A) end{gather*} Что и требовалось доказать.
Алгебра и начала математического анализа, 11 класс
Урок №34. Условная вероятность. Независимость событий.
Перечень вопросов, рассматриваемых в теме:
– Условная вероятность
– Совместные и несовместные события
– Схема решения задач на вычисление условной вероятности события;
– Задачи на определение независимости событий.
Глоссарий по теме
Совместные события – события, одновременное появление которых возможно.
Несовместные события – события, одновременное появление которых невозможно.
События являются независимыми, если вероятность наступления любого из них не зависит от появления остальных событий рассматриваемого множества событий.
Событие В называется зависимым, если вероятность P(B) зависит от появления или непоявления события А. Вероятность события В, вычисленная в предположении того, что событие А уже произошло, называется условной вероятностью наступления события В и обозначается PA(B).
Условная вероятность – вероятность наступления одного события при условии, что другое событие уже произошло.
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014. с. 186-194.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/.
Открытый банк заданий ЕГЭ ФИПИ, Элементы комбинаторики, статистики и теории вероятностей, базовый уровень. Элементы комбинаторики, статистики и теории вероятностей. Базовый уровень. http://ege.fipi.ru/.
Теоретический материал для самостоятельного изучения
Иногда нам требуется выяснить вероятность совместного появления зависимых событий. Самый простой пример – найти вероятность получить выигрышную комбинацию в азартной карточной игре, где вероятность выпадения каждой новой карты зависит от того, какие карты уже лежат на столе.
Рассмотрим примерную задачу:
Из колоды карт извлекают четыре карты. Первые две оказались семёрками. Какова вероятность, что одна или обе оставшиеся карты окажутся семёрками? (колода содержит 36 карт)
1. 1/561
2. 65/561
3. 1/105
4. 17/518
Теоретическая часть
События называются совместными, если появление одного из них не исключает появления другого в одном и том же испытании.
Пример совместных событий: выпадение чётного числа и выпадение числа, кратного трём, при броске игрального кубика. Когда выпадает шесть, реализуются сразу оба события.
События называются несовместными, если появление одного из них исключает появление другого в одном и том же испытании.
Пример несовместных событий: выпадение чётного числа и выпадение нечётного числа при броске игрального кубика.
Теорема о сумме двух событий:
Вероятность суммы любых двух событий А и В равна сумме вероятностей этих событий без вероятности их совместного осуществления: Р(А+В) = Р(А)+Р(В)-Р(АВ)
Рассмотрим пример.
В лотерее выпущено 10 000 билетов, из них: 10 выигрышей по 200 рублей, 100 выигрышей по 100 рублей, 500 выигрышей по 50 рублей и 1000 выигрышей по 10 рублей. Какова вероятность того, что человек, купивший билет, выиграет не менее 50 рублей?
Решение: Введем для удобства обозначение событий А – «человек выиграл 50 рублей», В – «человек выиграл 100 рублей», С – «человек выиграл 200 рублей», D – «человек выиграл не менее 50 рублей». Событие D означает, что выигрыш может составлять 50 и более рублей, то есть 50, 100 или 200 рублей: М=А+В+С. События А, В, С – попарно несовместны.
Воспользуемся теоремой: Р(М)=Р(А)+Р(В)+Р(С)=0,061.
Задача.
Дана вероятность исходного события. Чему равна вероятность противоположного события?
Вероятность исходного события А обозначим Р(А). Вероятность противоположного события Р(Ᾱ).
Решение:
События А и Ᾱ образуют полную группу событий, вероятность которой равна 1.
Тогда вероятность противоположного события находится по формуле:
P(Ᾱ)=1-P(A)
- События являются независимыми, если вероятность наступления любого из них не зависит от появления остальных событий рассматриваемого множества событий.
Например, монета брошена два раза.
A – выпала «Решка»
B – выпал «Орёл»
Вероятность появления «Орла» во втором испытании не зависит от результата первого испытания.
Теорема умножения вероятностей независимых событий: вероятность совместного появления независимых событий A и B равна произведению вероятностей этих событий:
Р(АВ)=Р(А)·Р(В)
Рассмотрим пример.
Задача.
Подбрасываются две монеты. Найдите вероятность выпадения двух орлов.
Решение:
Введем обозначение событий:
A1– на 1-й монете выпадет орёл;
A2– на 2-й монете выпадет орёл.
Событие “выпадение двух орлов” заключается в том, что на 1-й монете появится орёл и на 2-й монете появится орёл, следовательно, это произведение событий A1A2. Вероятность выпадения орла на одной монете не зависит от результата броска другой монеты, следовательно, события A1 и A2 независимы. По теореме умножения вероятностей независимых событий получим:
P(A1A2) = P(A1)· P(A2) = 1/2 · 1/2 = 1/4.
- Событие B называется зависимым, если вероятность P(B) зависит от появления или непоявления события А. Вероятность события B, вычисленная в предположении того, что событие А уже произошло, называется условной вероятностью наступления события В и обозначается PA(B).
Отыскать вероятность совместного появления зависимых событий помогает теорема умножения вероятностей зависимых событий: вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже произошло: P(AB) = P(A)·PA(B).
Связь теории вероятностей с теорией множеств.
В математике принято устанавливать связи между различными разделами. Связь между теорией вероятностей и теорией множеств устанавливается следующим образом: события отождествляются с множествами. В таком случае понятию исход будет эквивалентно понятие элемент множества. При таком подходе выберите из списка, какому понятию из теории множеств соответствует данное понятие из теории вероятностей:
– Невозможное событие (подмножество, бесконечное множество, пустое множество, пересечение множеств, объединение множеств, разность множеств, декартово произведение множеств)
– Сумма событий (подмножество, бесконечное множество, пустое множество, пересечение множеств, объединение множеств, разность множеств, декартово произведение множеств)
– Произведение событий (подмножество, бесконечное множество, пустое множество, пересечение множеств, объединение множеств, разность множеств, декартово произведение множеств)
Примеры и разбор решения заданий тренировочного модуля
1. В урне 6 черных, 5 красных и 4 белых шара. Последовательно извлекают три шара без возврата. Найдите вероятность того, что первый шар окажется черным, второй – красным и третий – белым.
Решение.
А – первый шар окажется черным
В – второй шар красный
С – третий шар белый
.
Ответ: 4/91.
2. Колю отпускают гулять при условии сделанных уроков с вероятностью 0,8. Папа выдает ему деньги на мороженое с вероятностью 0,6. С какой вероятностью Коля пойдет гулять без мороженого?
Решение.
A – папа выдал Коле денег на мороженое
B – Колю отпустили гулять
Вероятность того, что Коля пойдёт гулять, есть в условии задачи P(B) = 0,8. Вероятность, что папа не выдаст ему деньги на мороженое, равна P(Ᾱ) = 1 – P(A) = 1 – 0,6 = 0,4. Вероятность одновременного осуществления двух независимых событий – произведение их вероятностей P(ᾹB) = P(Ᾱ)·P(B) = 0,8·0,4 = 0,32.
Ответ: 0,32.