В предыдущей статье мы рассмотрели задачи с экспериментами, исходы которых могут наступить с одинаковой вероятностью. Однако в жизни намного чаще встречаются эксперименты, не соответствующие этому требованию.
Эксперимент, исходы которого имеют разную вероятность называется экспериментом с не равновероятными исходами (или, для краткости, не равновероятным экспериментом).
Тут, пожалуй, стоит сделать пометку «ваш Капитан Очевидность».
Примеры таких экспериментов:
– проверка лотерейного билета: очевидно, что выигрыш намного менее вероятен, чем проигрыш (если только вы не организатор лотереи);
– встретите ли вы завтра утром Путина или нет;
– будет ли дождь в ближайший понедельник…
И так далее, примеров великое множество.
И для всех таких ситуаций формула (P(A)=)(frac{n}{N}) НЕ РАБОТАЕТ! Для работы с такими экспериментами используются операции над событиями. Мы изучим три такие операции: нахождение обратного события, умножение событий и сложение событий.
Понятие обратного события и его вероятность
Событие, которое наступает, когда НЕ наступает событие (A), называется обратным событию (A) (обозначается (overline A) ).
Например:
– если событие (A) – «при подбрасывании монеты выпал орел», то событие (overline A) – «при подбрасывании монеты выпала решка (то есть НЕ орел)»
– если событие (A) – «завтра утром будет дождь», то событие (overline A) – «завтра утром будет что угодно, кроме дождя (солнце, снег, тайфун, солнечное затмение, восхождение Кровавой Луны…)»
– если событие (A) – «учительница поставила вам за ответ пять», то событие (overline A)– «учительница поставила вам четыре, или три, или два, или кол» (или выгнала с урока, или у нее случился сердечный приступ от вашего ответа, или она вообще не заметила, что вы выходили к доске, или сделала еще что-то, кроме «поставила пять»).
Наглядно события (A) и (overline A) можно представить следующей картинкой:
То есть, события (A) и (overline A) по определению включают в себя ВСЕ возможные исходы эксперимента (математики говорят «образуют полную группу исходов»). А это значит, что в любом эксперименте одно из этих событий наступит обязательно! Иными словами, суммарная вероятность их наступления равна (100%): (P(A)+P()(overline A)()=1). Отсюда получаем формулу для вычисления вероятности обратного события:
(P( overline A)=1-P(A)) , где (P(A)) – вероятность события (A)
(P( overline A )) – вероятность события (overline A) обратного событию (A).
Пример (ЕГЭ). Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем (36,8 °С), равна (0,81). Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется (36,8 °С) или выше.
Решение: Эксперимент тут – измерение температуры тела здорового человека, а исходами будут результаты измерения. Понятно, что какую-то температуру градусник покажет в любом случае, т.е. вероятности всех исходов дают в сумме единицу.
Также понятно, что события «температура ниже (36,8 °С)» и «температура равна или выше (36,8 °С)» – взаимно обратны (если произошло одно из них, то гарантировано не произошло другое, и наоборот).
Исходы, подходящие событию «температура ниже чем (36,8 °С)» имеют суммарную вероятность (0,81). Ну и как же найти суммарную вероятность исходов «температура равна или выше чем (36,8 °С)»???
До этого, конечно, безумно сложно догадаться, но решение таково:
(P(overline A )=1-0,81=0,19)
Ответ: (0,19).
Событие (A·B). Умножение вероятностей событий
Прежде чем двигаться дальше, нам понадобится вспомнить понятие совместных и не совместных событий.
События называются совместными, если они могут наступить одновременно (в рамках одного эксперимента или наблюдения) и несовместными, если не могут.
Например, события «вытащенная вслепую из колоды карта имеет масть черви» и «вытащенная карта – “черная”» – несовместны.
А вот события «вытащенная вслепую из колоды карта имеет масть черви» и «вытащенная карта – валет» – вполне совместны (ведь можно вытащить червового валета).
Событием (A·B) называются такое событие, которое происходит только если произошло и (A), и (B).
Например, если событие (A) «на кубике выпало четное число», а событие (B) «на кубике выпало более двух очков», то событие (A·B) произойдет, если выпадет (4) или (6) очков.
Кстати, червовый валет в примере выше – это тоже событие (A·B).
Наглядно событие (A·B) можно представить так:
Вероятность (A·B) вычисляется по следующей формуле:
(P(A·B)=P(A)·P(B)), где (P(A)) – вероятность события (А)
(P(B)) – вероятность события (B)
причем (A) и (B) – совместные события!
Обратите внимание на этот нюанс – формула справедлива только для совместных событий. А теперь те, что читал внимательно, ответьте – чему равна вероятность (A·B), если (A) и (B) – несовместны? Не спешите, подумайте. Правильный ответ – ниже (после примера).
Пример (ЕГЭ). В магазине три продавца. Каждый из них занят с клиентом с вероятностью (0,3). Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга).
Решение: Пусть событие (A) – «занят первый продавец», (B) – «занят второй продавец», (C) – «занят третий продавец». Нам нужно чтоб были заняты они все, то есть, чтобы выполнилось одновременно и (A), и (B), и (C). Иными словами, нас интересует событие (A·B·C). Вычисляем вероятность, используя формулу:
(P(A·B·C)=P(A)·P(B)·P(C)=0,3·0,3·0,3=0,027)
Ответ: (0,027)
Теперь ответ на вопрос, заданный выше: если события (A) и (B) несовместны, то вероятность события (A·B) равно нулю.
Если (A) и (B) – несовместны, то (P(A·B )=0)
Почему так? Событие (A·B) наступит ТОЛЬКО если и (A), и (B) произойдут вместе. Но ведь события несовместны, то есть по определению не могут произойти вместе! Значит, (A·B) – невозможное событие, и вероятность его наступления равна нулю. Графически это можно представить следующим образом:
Наглядное пояснение на примере: допустим, событие (A) – «при броске кубика выпало (5) очков», (В) – «при броске выпало четное число». Ну и как может произойти (A·B)? Для этого надо чтоб выпала четная пятерка. Так не бывает, то есть вероятность равна нулю.
Событие (A+B). Сложение вероятностей событий
Событием (A+B) называется такое событие, которое происходит если произошло хотя бы одно из событий (A) и (B) (то есть, произошло или (A), или (B), или они оба вместе).
Например, если событие (A) «на кубике выпало четное число», а событие (B) «на кубике выпало более двух очков», то событие (A+B) произойдет, если выпадет (2), (3), (4), (5) или (6) очков.
Наглядно событие (A+B) можно представить так:
Вероятность (A+B) вычисляется по следующей формуле:
(P(A+B)=P(A)+P(B)-P(A·B)), где (P(A)) – вероятность события (А)
(P(B)) – вероятность события (B)
причем (A) и (B) – совместные события!
Замечание! Обычно в этом месте у учеников возникает непонимание – почему вычитается (P(A·B)), ведь оно входит в заштрихованную область? Чтобы это понять, давайте мысленно «пронумеруем» области на схеме, вот так:
А теперь подумайте: нам надо взять все исходы, подходящие хотя бы одному событию, то есть, взять области (I),(II) и (III) по одному разу. Однако если мы просто сложим все исходы (A) и все исходы (B) – мы возьмем область (II) два раза (ведь она входит и в (A), и в (B)! Именно поэтому мы убираем одну лишнюю область (II), вычитая (P(A·B)).
Отметим также, что необходимость вычитать (P(A·B)) есть только у совместных событий (для которых и приведена схема и формула выше). Для несовместных все проще – у них нет общих исходов, а значит на схеме области не пересекаются…:
…а в формуле будет только два слагаемых:
(P(A+B)=P(A)+P(B)), где (P(A)) – вероятность события (A)
(P(B)) – вероятность события (B)
причем (A) и (B) – не совместные события!
Пример (ЕГЭ). На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных. Вероятность того, что это будет вопрос по теме «Вписанная окружность», равна (0,2). Вероятность того, что это будет вопрос по теме «Параллелограмм», равна (0,15). Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.
Решение: Обозначим события:
(A) – «школьнику достался вопрос по теме вписанная окружность»,
(B) – «школьнику достался вопрос по теме параллелограмм».
Тогда событие «школьнику достанется вопрос по одной из этих двух тем» будет суммой событий (A) и (B) (потому что нам подойдут они оба – или (A), или (B)). Причем заметим, что «вопросов, которые одновременно относятся к этим двум темам, нет», то есть, школьник не может вытащить билет сразу с двумя темами. Значит (A) и (B) вместе произойти не могут, иначе говоря, они несовместны. Зная всё это, получаем ответ:
(P(A+B)=P(A)+P(B)=0,2+0,15=0,35)
Ответ: (0,35)
Примеры, рассмотренные в данной статье могли показаться вам не слишком трудными. Однако разобраться в них важно, поскольку они – основа для решения более сложных задач.
Всем привет! Этой статьёй я продолжаю особый курс, в котором разбираю задания из ЕГЭ по математике и другим предметам. Погнали!
Первым вариантом задания №4 профильной математики “НАЧАЛА теории вероятностей” являются “классическое определение вероятности”.
1) самый простой номер
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8 °С, равна 0,81. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8 °С или выше.
Решение:
Максимальная вероятность события – 1. Если не нужных нам событий 0,81 из 1, то нужных событий…
1 – 0,81 = 0,19
Это и есть ответ.
Ответ: 0,19.
2) самый сложный
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Решение:
Выделим главную информацию.
В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.
Вероятность того, что кофе останется в 1 автомате…
1 – 0,3 = 0,7
Также вероятность того, что кофе останется во 2 автомате…
1 – 0,3 = 0,7
А вероятность того, что кофе останется в 1 или во 2 автомате равна…
1 − 0,12 = 0,88
По теореме о сложении вероятностей, вероятность суммы совместных событий вычисляется по формуле:
P(A+B)=P(A)+P(B)-P(A*B), где
Р(А)-вероятность того, что кофе останется в 1 автомате
Р(В)-вероятность того, что кофе останется в 2 автомате
Р(А*В)-вероятность того, что кофе останется в обоих автоматах
Подставляем в формулу значения…
0,88 = 0,7 + 0,7 – Р(А+В)
Р(А+В) = 0,52
Это и есть искомое.
Ответ: 0,52.
Примечание:
Другие варианты этого задания я разберу в следующих статьях.
Оставшиеся вопросы задавайте в комментариях!
Вероятность того, что в случайный момент времени температура тела здорового человека окажется ниже чем 36,8°С, равна 0,83. Найдите вероятность того, что в случайный момент времени у здорового человека температура окажется 36,8° или выше.
Решение:
Вероятность, что температура окажется 36,8°С или выше – противоположная вероятность тому, что она ниже чем 36,8°С.
Полная вероятность всегда равна 1. Тогда вероятность, что температура окажется 36,8°С или выше:
1 – 0,83 = 0,17;
Ответ: 0,17.
Есть три секунды времени? Для меня важно твоё мнение!
Насколько понятно решение?
Средняя оценка: 5 / 5. Количество оценок: 2
Оценок пока нет. Поставь оценку первым.
Новости о решённых вариантах ЕГЭ и ОГЭ на сайте ↙️
Вступай в группу vk.com 😉
Расскажи, что не так? Я исправлю в ближайшее время!
В отзыве оставь любой контакт для связи, если хочешь, что бы я тебе ответил.
Нормальным называют распределение вероятностей непрерывной случайной величины
, плотность которого имеет вид:
где
–
математическое ожидание,
–
среднее квадратическое отклонение
.
Вероятность того, что
примет
значение, принадлежащее интервалу
:
где
– функция Лапласа:
Вероятность того, что абсолютная
величина отклонения меньше положительного числа
:
В частности, при
справедливо
равенство:
Асимметрия, эксцесс,
мода и медиана нормального распределения соответственно равны:
, где
Правило трех сигм
Преобразуем формулу:
Положив
. В итоге получим
если
, и, следовательно,
, то
то есть вероятность того, что
отклонение по абсолютной величине будет меньше утроенного среднего квадратического отклонение, равна 0,9973.
Другими словами, вероятность того,
что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна
0,0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие
события исходя из принципа невозможности маловероятных
событий можно считать практически невозможными. В этом и состоит
сущность правила трех сигм: если случайная величина распределена нормально, то
абсолютная величина ее отклонения от математического ожидания не превосходит
утроенного среднего квадратического отклонения.
На практике правило трех сигм
применяют так: если распределение изучаемой случайной величины неизвестно, но
условие, указанное в приведенном правиле, выполняется, то есть основание
предполагать, что изучаемая величина распределена нормально; в противном случае
она не распределена нормально.
Смежные темы решебника:
- Таблица значений функции Лапласа
- Непрерывная случайная величина
- Показательный закон распределения случайной величины
- Равномерный закон распределения случайной величины
Пример 2
Ошибка
высотометра распределена нормально с математическим ожиданием 20 мм и средним
квадратичным отклонением 10 мм.
а) Найти
вероятность того, что отклонение ошибки от среднего ее значения не превзойдет 5
мм по абсолютной величине.
б) Какова
вероятность, что из 4 измерений два попадут в указанный интервал, а 2 – не
превысят 15 мм?
в)
Сформулируйте правило трех сигм для данной случайной величины и изобразите
схематично функции плотности вероятностей и распределения.
Решение
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
а) Вероятность того, что случайная величина, распределенная по
нормальному закону, отклонится от среднего не более чем на величину
:
В нашем
случае получаем:
б) Найдем
вероятность того, что отклонение ошибки от среднего значения не превзойдет 15
мм:
Пусть событие
– ошибки 2
измерений не превзойдут 5 мм и ошибки 2 измерений не превзойдут 0,8664 мм
– ошибка не
превзошла 5 мм;
– ошибка не
превзошла 15 мм
в)
Для заданной нормальной величины получаем следующее правило трех сигм:
Ошибка высотометра будет лежать в интервале:
Функция плотности вероятностей:
График плотности распределения нормально распределенной случайной величины
Функция распределения:
График функции
распределения нормально распределенной случайной величины
Задача 1
Среднее
количество осадков за июнь 19 см. Среднеквадратическое отклонение количества
осадков 5 см. Предполагая, что количество осадков нормально-распределенная
случайная величина найти вероятность того, что будет не менее 13 см осадков.
Какой уровень превзойдет количество осадков с вероятностью 0,95?
Задача 2
Найти
закон распределения среднего арифметического девяти измерений нормальной
случайной величины с параметрами m=1.0 σ=3.0. Чему равна вероятность того, что
модуль разности между средним арифметическим и математическим ожиданием
превысит 0,5?
Указание:
воспользоваться таблицами нормального распределения (функции Лапласа).
Задача 3
Отклонение
напряжения в сети переменного тока описывается нормальным законом
распределения. Дисперсия составляет 20 В. Какова вероятность при изменении
выйти за пределы требуемых 10% (22 В).
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 4
Автомат
штампует детали. Контролируется длина детали Х, которая распределена нормально
с математическим ожиданием (проектная длинна), равная 50 мм. Фактическая длина
изготовленных деталей не менее 32 и не более 68 мм. Найти вероятность того, что
длина наудачу взятой детали: а) больше 55 мм; б) меньше 40 мм.
Задача 5
Случайная
величина X распределена нормально с математическим ожиданием a=10и средним
квадратическим отклонением σ=5. Найти
интервал, симметричный относительно математического ожидания, в котором с
вероятностью 0,9973 попадает величина Х в результате испытания.
Задача 6
Заданы
математическое ожидание ax=19 и среднее квадратическое отклонение σ=4
нормально распределенной случайной величины X. Найти: 1) вероятность
того, что X примет значение, принадлежащее интервалу (α=15;
β=19); 2) вероятность того, что абсолютная величина отклонения значения
величины от математического ожидания окажется меньше δ=18.
Задача 7
Диаметр
выпускаемой детали – случайная величина, распределенная по нормальному закону с
математическим ожиданием и дисперсией, равными соответственно 10 см и 0,16 см2.
Найти вероятность того, что две взятые наудачу детали имеют отклонение от
математического ожидания по абсолютной величине не более 0,16 см.
Задача 8
Ошибка
прогноза температуры воздуха есть случайная величина с m=0,σ=2℃. Найти вероятность
того, что в течение недели ошибка прогноза трижды превысит по абсолютной
величине 4℃.
Задача 9
Непрерывная
случайная величина X распределена по нормальному
закону: X∈N(a,σ).
а) Написать
плотность распределения вероятностей и функцию распределения.
б) Найти
вероятность того, что в результате испытания случайная величина примет значение
из интервала (α,β).
в) Определить
приближенно минимальное и максимальное значения случайной величины X.
г) Найти
интервал, симметричный относительно математического ожидания a, в котором с
вероятностью 0,98 будут заключены значения X.
a=5; σ=1.3;
α=4; β=6
Задача 10
Производится измерение вала без
систематических ошибок. Случайные ошибки измерения X
подчинены нормальному закону с σx=10. Найти вероятность того, что измерение будет
произведено с ошибкой, превышающей по абсолютной величине 15 мм.
Задача 11
Высота
стебля озимой пшеницы – случайная величина, распределенная по нормальному закону
с параметрами a = 75 см, σ = 1 см. Найти вероятность того, что высота стебля:
а) окажется от 72 до 80 см; б) отклонится от среднего не более чем на 0,5 см.
Задача 12
Деталь,
изготовленная автоматом, считается годной, если отклонение контролируемого
размера от номинала не превышает 10 мм. Точность изготовления деталей
характеризуется средним квадратическим отклонением, при данной технологии
равным 5 мм.
а)
Считая, что отклонение размера детали от номинала есть нормально распределенная
случайная величина, найти долю годных деталей, изготовляемых автоматом.
б) Какой
должна быть точность изготовления, чтобы процент годных деталей повысился до
98?
в)
Написать выражение для функции плотности вероятности и распределения случайной
величины.
Задача 13
Диаметр
детали, изготовленной цехом, является случайной величиной, распределенной по
нормальному закону. Дисперсия ее равна 0,0001 см, а математическое ожидание –
2,5 см. Найдите границы, симметричные относительно математического ожидания, в
которых с вероятностью 0,9973 заключен диаметр наудачу взятой детали. Какова
вероятность того, что в серии из 1000 испытаний размер диаметра двух деталей
выйдет за найденные границы?
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 14
Предприятие
производит детали, размер которых распределен по нормальному закону с
математическим ожиданием 20 см и стандартным отклонением 2 см. Деталь будет
забракована, если ее размер отклонится от среднего (математического ожидания)
более, чем на 2 стандартных отклонения. Наугад выбрали две детали. Какова вероятность
того, что хотя бы одна из них будет забракована?
Задача 15
Диаметры
деталей распределены по нормальному закону. Среднее значение диаметра равно d=14 мм
, среднее квадратическое
отклонение σ=2 мм
. Найти вероятность того,
что диаметр наудачу взятой детали будет больше α=15 мм и не меньше β=19 мм; вероятность того, что диаметр детали
отклонится от стандартной длины не более, чем на Δ=1,5 мм.
Задача 16
В
электропечи установлена термопара, показывающая температуру с некоторой
ошибкой, распределенной по нормальному закону с нулевым математическим
ожиданием и средним квадратическим отклонением σ=10℃. В момент когда термопара
покажет температуру не ниже 600℃, печь автоматически отключается. Найти
вероятность того, что печь отключается при температуре не превышающей 540℃ (то
есть ошибка будет не меньше 30℃).
Задача 17
Длина
детали представляет собой нормальную случайную величину с математическим
ожиданием 40 мм и среднеквадратическим отклонением 3 мм. Найти:
а)
Вероятность того, что длина взятой наугад детали будет больше 34 мм и меньше 43
мм;
б)
Вероятность того, что длина взятой наугад детали отклонится от ее
математического ожидания не более, чем на 1,5 мм.
Задача 18
Случайное
отклонение размера детали от номинала распределены нормально. Математическое
ожидание размера детали равно 200 мм, среднее квадратическое отклонение равно
0,25 мм, стандартами считаются детали, размер которых заключен между 199,5 мм и
200,5 мм. Из-за нарушения технологии точность изготовления деталей уменьшилась
и характеризуется средним квадратическим отклонением 0,4 мм. На сколько
повысился процент бракованных деталей?
Задача 19
Случайная
величина X~N(1,22). Найти P{2
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
Задача 20
Заряд пороха для охотничьего ружья
должен составлять 2,3 г. Заряд отвешивается на весах, имеющих ошибку
взвешивания, распределенную по нормальному закону со средним квадратическим
отклонением, равным 0,2 г. Определить вероятность повреждения ружья, если максимально
допустимый вес заряда составляет 2,8 г.
Задача 21
Заряд
охотничьего пороха отвешивается на весах, имеющих среднеквадратическую ошибку
взвешивания 150 мг. Номинальный вес порохового заряда 2,3 г. Определить
вероятность повреждения ружья, если максимально допустимый вес порохового
заряда 2,5 г.
Задача 21
Найти
вероятность попадания снарядов в интервал (α1=10.7; α2=11.2).
Если случайная величина X распределена по
нормальному закону с параметрами m=11;
σ=0.2.
Задача 22
Плотность
вероятности распределения случайной величины имеет вид
Найти
вероятность того, что из 3 независимых случайных величин, распределенных по
данному закону, 3 окажутся на интервале (-∞;5).
Задача 23
Непрерывная
случайная величина имеет нормальное распределение. Её математическое ожидание
равно 12, среднее квадратичное отклонение равно 2. Найти вероятность того, что
в результате испытания случайная величина примет значение в интервале (8,14)
Задача 24
Вероятность
попадания нормально распределенной случайной величины с математическим
ожиданием m=4 в интервал (3;5) равна 0,6. Найти дисперсию данной случайной
величины.
Задача 25
В
нормально распределенной совокупности 17% значений случайной величины X
меньше 13% и 47% значений случайной величины X
больше 19%. Найти параметры этой совокупности.
Задача 26
Студенты
мужского пола образовательного учреждения были обследованы на предмет
физических характеристик и обнаружили, что средний рост составляет 182 см, со
стандартным отклонением 6 см. Предполагая нормальное распределение для роста,
найдите вероятность того, что конкретный студент-мужчина имеет рост более 185
см.
Глава 1. ПОНЯТИЕ ВЕРОЯТНОСТИ СОБЫТИЯ.
Классическое определение вероятности
Итак, что же такое вероятность события? Думаю, в
повседневной практике вы нередко говорите фразы: «100%, что я приду»,
«Процентов 70%, что меня не будет». Именно в эти моменты вы уже оперируете
понятием «вероятность».
Вероятность принято обозначать латинской буквой «р».
Это безразмерная величина, у нее нет единицы измерения. Как же ее найти?
Если мы рассмотрим выше приведенные примеры, то для
того, чтобы определить вероятность, нам необходимо данные в процентах разделить
на 100%.
Пример
1: Процент брака при производстве стекла составляет 3%. Какова
вероятность купить бракованное стекло?
Решение: р
Ответ: 0,03
Соответственно, меньше, чем 0% быть не может, и
больше, чем 100% быть не может. Значит, вероятность находится в пределе . То есть, если вы в примере
получили значение вероятности, выходящей из этой области значений, ищите ошибку
в вычислениях или ходе мыслей.
При этом р=0 в том случае, если событие не может
наступить ни при каких условиях. Например, вероятность события «Луна через 10
секунд упадет на Землю» равна 0. Потому что даже если рассматривать событие
«Луна упадет на Землю» как потенциально возможное, то ограничение по времени
предполагает, что уже в данные секунды были бы такие значительные катаклизмы,
которые не позволили бы нам спокойно сидеть и читать этот текст.
Р=1, если событие состоится при любых условиях.
Например, если вы в классе с парты уроните ручку, она с вероятностью р=1
упадет, а не взлетит или окажется в состоянии невесомости.
В большинстве задач, которые вы решали ранее, в том
числе, в ГИА, вычисление вероятности сводилось к нахождению значения по
классической формуле вероятности:
бл р общ
где Nбл – это количество
исходов, благоприятных заданным условиям, а Nобщ –
общее количество возможных исходов.
Пример 2:
Найти количество выпускников Красноярского края, сдавших в 2012 году ЕГЭ по
математике выше, чем на 24 балла, если в Красноярском крае ЕГЭ по математике
сдавали 19709 человек, из них менее 24 баллов набрали 2230 человек.
Решение:
Что в этой задаче является чем? Общее количество человек, принимавших участие
в тестировании, составляет 19709 человек. В условиях задачи нас спрашивают, а
сколько человек написали выше, чем на 24 балла? Значит, количество
благоприятных исходов равно 19709-2230=17479. Это и есть количество
благоприятных исходов (то есть, благоприятных условию задачи).
Ответ:17479
Не удивляйтесь, нам в этой задаче не пришлось искать
вероятность. Да-да, и такие задачи в ЕГЭ встречаются, будьте внимательны!.
В большинстве же случаев необходимо найти именно
вероятность. Посмотрим на примере, как это делать.
Пример 3: Родительский
комитет закупил 40 паззлов для подарков детям на окончание учебного года, из
них 14 с видами природы и 26 с историческими достопримечательностями. Подарки
распределяются случайным образом. Найдите вероятность того, что Пете
достанется паззл с видом природы.
Решение: Давайте
определимся, сколько же у нас паззлов с видами природы? По условиям задачи их
14. Это и есть Nбл! Первое число нашли в тексте,
поищем второе. Сколько же всего было паззлов? 40. Что мы нашли? Nобщ.
= 40. Тогда найдем вероятность по классической формуле вероятности:
𝑁бл 14
р
= = =
0,35
𝑁общ 40
Ответ: 0,35
Задания для закрепления 1. В
фирме такси в данный момент свободно 20 машин: 10 черных, 2 желтых и 8 зеленых.
По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице.
Найдите вероятность того, что к ней приедет зеленое такси.
2.
На тарелке 16 пирожков: 7 с рыбой, 5 с вареньем и 4 с вишней.
Юля наугад выбирает один пирожок. Найдите вероятность того, что он окажется с
вишней.
3.
В фирме такси в наличии 50 легковых автомобилей; 27 из них
чѐрные с жѐлтыми надписями на бортах, остальные — жѐлтые с чѐрными надписями.
Найдите вероятность того, что на случайный вызов приедет машина жѐлтого цвета с
чѐрными надписями.
Большинство проблем в заданиях на вероятность связано
отнюдь не с незнанием формулы, а с неумением читать. Ну серьезно, ребята, куда
вы спешите, решая первую часть? Не бегите вперед батьки в пекло, ваша
поспешность может дорогого стоить. Так обидно терять баллы из-за коварной
частички «не» (или «на» вместо «из») в вопросе, которую вы «по
невнимательности» пропустили. Не спешите, прошу вас! Поучимся читать 😉 ?
Пример
4: На экзамен вынесено 60 вопросов, Андрей не выучил 3 из них.
Найдите вероятность того, что ему попадется выученный вопрос.
Решение: Так,
помните, что главное? Главное, понять, что от нас хотят. Сколько вопросов
всего было на экзамене? 60. Хорошо, вот мы и наши Nобщ=60. Идем
дальше. Что нам еще дано? Андрей не выучил 3 из них. Значит, все-таки
что-то знает! И это не может не радовать, по крайней мере, преподавателя J.
А сколько вопросов Андрей выучил? Все остальные, кроме этих трех! А
сколько их, остальных?
60-3=57.
Мы
нашли Nбл=57. Отлично! Теперь остаться найти вероятность по
классической формуле:
𝑁бл 57
р
= = = 0 95
𝑁общ
Как вы думаете,
какую ошибку чаще всего совершают в этом задании? Конечно! Вместо того, чтобы
прочитать условия, автоматически подставляют те цифры, которые «выхватывают»
в тексте. И получают ответ с точностью до наоборот! Р=0,05. Очень обидно…
Ответ: 0,95
Задания для закрепления
5.
В среднем из 1000 садовых насосов, поступивших в
продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для
контроля насос не подтекает.
6.
В сборнике билетов по биологии всего 55 билетов, в 11 из
них встречается вопрос по ботанике. Найдите вероятность того, что в случайно
выбранном на экзамене билете школьнику достанется вопрос по ботанике.
7.
В сборнике билетов по математике всего 25 билетов, в 10 из
них встречается вопрос по неравенствам. Найдите вероятность того, что в
случайно выбранном на экзамене билете школьнику не достанется вопроса по
неравенствам.
8*. Внимание,
коварная задачка! Фабрика выпускает сумки. В среднем на 100
качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите
вероятность того, что купленная сумка окажется качественной. Результат
округлите до сотых.
«Порядок определяется жеребьевкой»
ВАЖНО! Если в условии задачи
сказано, что порядок определяется жребием, жеребьевкой, в случайном порядке, то
нам совершенно не важно, каким там по счету должен выступать спортсмен или
профессор. Просто «забываем» эту информацию, как лишнюю, добавленную «чтобы
запутать».
«М. будет выступать шестым» – случайное событие, и оно
равновероятное относительно другого порядка выступлений. Расшифрую последнюю
фразу: вероятность того, что этот конкретный человек окажется шестым по счету
не отличается от вероятности того, что он же будет начинать эту конференцию или
соревнования. А раз вероятности этих событий одинаковые, события называются равновероятными.
А находим вероятность мы по той же классической формуле. Кажется сложным?
Решать проще!
Пример 5. В
чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США,
остальные — из Китая. Порядок, в котором выступают гимнастки, определяется жребием.
Найдите вероятность того, что спортсменка, выступающая пятой, окажется
из Китая.
Решение:
В условии задачи есть «волшебное» слово «жребий», ура! Значит, мы забываем о
порядке выступления. Важно лишь то, что спортсменка должна быть из Китая. А
сколько китайцев принимают участие в соревнованиях? Читаем: «остальные – из
Китая». Таааак. Решение будет чуть длиннее, чем казалось на первый взгляд.
Оказывается, число спортсменов из Китая не дано явно в условии задачи! Но.
Но! Нам дана ВСЯ информация, чтобы это число найти. Сколько там всего
спортсменов? 20? Это и есть наше Nобщ=20. Вычтем число спортсменов из
других стран (а сколько их? 8 и 7. Всего 15 не нужных нам). Nбл=20-15=5.
Ура! Подставляем в формулу:
𝑁
р
𝑁общ 20
Ответ: 0,25
Задания для закрепления
9. На семинар приехали 3 ученых из Норвегии, 3
из России и 4 из Испании. Порядок докладов определяется жеребьѐвкой.
Найдите вероятность того, что восьмым окажется доклад ученого из России.
10*. Внимание, коварная
задачка! На семинар приехали 4 ученых из Франции, 2 из Болгарии и 2 из
Франции. Порядок докладов определяется жеребьевкой. Найдите вероятность
того, что восьмым окажется доклад ученого из Франции.
Иногда попадаются задачи с чуть более сложными
вычислениями, где, опять же, надо внимательно-внимательно читать. Разберем на
следующем примере:
Пример 6. Научная
конференция проводится в 5 дней. Всего запланировано 75 докладов — первые три
дня по 17 докладов, остальные распределены поровну между четвертым и пятым
днями. Порядок докладов определяется жеребьѐвкой. Какова вероятность,
что доклад профессора М. окажется запланированным на последний день
конференции?
Решение: Опять мы видим столь приятное
нам слово «жеребьевка».
Осталось понять, откуда брать цифры для вычислений.
Читаем первую фразу
«Всего
запланировано 75 докладов». Вот и наше Nобщ=75. Теперь надо найти Nбл.
Что там нам дальше сказано? Планируется целых 5 дней конференции! Так. В
первые три дня – по 17 докладов. Значит, сколько всего докладов прочитается в
эти дни? 17*3=51 доклад. А что с остальными? «Остальные распределены поровну
между четвертым и пятым днями». Остальные – значит, надо понять, а сколько
докладов-то остается на эти два дня? Если уже состоится 51 выступление,
останется 75-51=24. 24 доклада поровну на 2 дня. Поровну, значит, и в
четвертый, и в пятый день будет по 24:2=12 докладов.
Для наглядности занесем данные в таблицу:
День |
I |
II |
III |
IV |
V |
Все го |
Число докладов |
1 7 |
17 |
17 |
12 |
12 |
75 |
Вот и нашлось Nбл=12.Подставляем найденные
значения в формулу:
𝑁бл 12
р
= 0 16
𝑁общ
Ответ: 0,16
Задания для закрепления
11.
Конкурс исполнителей проводится в 5 дней. Всего заявлено 80
выступлений — по одному от каждой страны. В первый день 8 выступлений,
остальные распределены поровну между оставшимися днями. Порядок выступлений
определяется жеребьѐвкой. Какова вероятность, что выступление представителя
России состоится в третий день конкурса?
12.
На
олимпиаде в вузе участников рассаживают по трѐм аудиториям. В первых двух по
120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При
подсчѐте выяснилось, что всего было 250 участников. Найдите вероятность того,
что случайно выбранный участник писал олимпиаду в запасной аудитории.
Частота события
Чтобы найти
вероятность, как мы помним, нужно количество благоприятных исходов разделить на
общее количество исходов. Точно так же находится и частота события,
задания на которую так же есть в прототипах. В чем же отличие? Вероятность –
это прогнозируемая величина, а частота – констатация состоявшегося факта.
Пример 7. В некотором городе из 5000
появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения
девочек в этом городе. Результат округлите до тысячных.
Решение: Определим данные для расчета:
Nобщ – это общее количество младенцев, в нашем случае, Nобщ=5000. Nбл
– это количество рождающихся девочек. Так как в условии задачи дано
количество мальчиков, надо найти количество девочек, вычтя число мальчиков из
общего числа младенцев. Nбл=5000-2512=2488. Теперь найдем саму
частоту:
Частота=
Ответ: 0,498
Вы научились находить и частоту события. Теперь
научимся находить разницу между частотой и вероятностью одного и того же
события.
Пример 8. Вероятность того, что новый
DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045.
В некотором городе из 1000 проданных DVD-проигрывателей в течение года в
гарантийную мастерскую поступила 51 штука. На сколько отличается частота
события «гарантийный ремонт» от его вероятности в этом городе?
Решение:
Мы уже знаем, что частота события находится по той же формуле. Что нам
известно? Что из 1000 проигрывателей 51 пришлось ремонтировать. Значит,
частота этого события равна 51:1000=0,051. А чему равна вероятность? 0,045?
Что это значит? Значит, в этом отдельно взятом городе событие «гарантийный
ремонт» происходит чаще, чем предполагалось. Найдем разницу?=0,051-0,045=0,006.
Значит, на 6 проигрывателей больше прогнозируемого попало в ремонт. При этом,
учтите, что нам НЕ важен знак разности, а лишь ее абсолютное значение.
Ответ: 0,006
Задание для закрепления 13. В
некотором городе из 2000 появившихся на свет младенцев 1237 мальчиков. Найдите
частоту рождения девочек в этом городе. Результат округлите до тысячных.
«Спрятанные» и «лишние» условия в заданиях
Вы еще не забыли, что задачи надо внимательно читать?
Бывает так, что в задаче числа прописаны необычно, в виде текста. И с такими
заданиями тоже надо научиться справляться J.
Пример 9:
В кармане у Миши было четыре конфеты — «Грильяж», «Белочка», «Коровка» и
«Ласточка», а также ключи от квартиры. Вынимая ключи, Миша случайно выронил
из кармана одну конфету. Найдите вероятность того, что потерялась конфета
«Грильяж».
Решение: Итак,
читаем и вникаем. Нас спрашивают о конфетах. Сколько конфет было в кармане у
Миши? 4. Значит, Nобщ=4. Сколько было конфет с названием «Грильяж»?
Всего 1. Значит, Nбл=1. Считаем по формуле:
𝑁бл 1
р
= = =
0,25
𝑁общ 4
Ответ: 0,25
Но бывают и более сложные задания. Из которых труднее
вычленить условия.
Пример 10:
В группе туристов 5 человек. С помощью жребия они выбирают двух человек,
которые должны идти в село за продуктами. Турист А. хотел бы сходить в
магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдѐт в
магазин?
Решение: В
условиях этой задачи очень легко запутаться. При чем здесь турист А.? Зачем
нам говорят о том, что он хочет сходить в магазин? Нужна ли нам эта
информация? Давайте размышлять. Помните, что было в задачах про семинары? Про
доклад профессора М., который должен быть пятым, седьмым и т.д. Нужна ли нам
была эта информация? Нет. Все подчиняются жеребьевке. Значит, и А.
подчиняется. Значит, есть 2 свободных места для пяти человек. Два нужных А.
места. Соответственно, Nбл=2, а Nобщ=5. Рассчитываем по формуле:
𝑁бл 2
р
= = = 0,4
𝑁общ 5
Ответ: 0,4
Или еще один пример:
Пример 11: На
борту самолѐта 12 мест рядом с запасными выходами и 18 мест за перегородками,
разделяющими салоны. Остальные места неудобны для пассажира высокого роста.
Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при
случайном выборе места пассажиру В. достанется удобное место, если всего в
самолѐте 300 мест.
Решение: Почему
данная задача оказалась в этом разделе? В чем же тут лишняя информация?
Размышляем вместе. Какая разница, где находятся удобные места? Разницы
никакой. Главное, что они удобные. А сколько их, удобных? 12+18=30 мест.
Итак, мы нашли Nбл=30. А сколько всего мест в самолете? 300. Nобщ=300.
Осталась мелочь: рассчитать вероятность.
𝑁бл 30
р
= = = 0 1
𝑁общ
Ответ: 0,1
Задания для закрепления 14.
Вика включает телевизор. Телевизор включается на случайном канале. В это время
по четырнадцати каналам из тридцати пяти показывают рекламу. Найдите
вероятность того, что Вика попадет на канал, где реклама не идет.
15.
Люба
включает телевизор. Телевизор включается на случайном канале. В это время по
шести каналам из сорока восьми показывают документальные фильмы. Найдите
вероятность того, что Люба попадет на канал, где документальные фильмы не идут.
16.
Вася, Петя, Коля и Лѐша бросили жребий — кому начинать игру.
Найдите вероятность того, что начинать игру должен будет Петя.
17.
В кармане у Коли было четыре конфеты — «Грильяж», «Ласточка»,
«Взлѐтная» и «Василѐк», а так же ключи от квартиры. Вынимая ключи, Коля
случайно выронил из кармана одну конфету. Найдите вероятность того, что
потерялась конфета «Ласточка».
18.
В группе туристов 30 человек. Их вертолѐтом в несколько
приѐмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в
котором вертолѐт перевозит туристов, случаен. Найдите вероятность того, что
турист П. полетит первым рейсом вертолѐта.
19.
В чемпионате мира участвуют 16 команд. С помощью жребия их
нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку
лежат карточки с номерами групп:
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4,
4, 4, 4.
Капитаны команд тянут по одной карточке. Какова
вероятность того, что команда России окажется во второй группе?
Задачи на четность и делимость
Понемножку повышаем сложность заданий, вы еще не
устали? Тогда в путь!. Теперь нам надо вспомнить, что такое четные числа, что
такое «число делится на 2,3,5,9» и т.д. И еще вспомнить, что двузначных чисел
90 (от 10 до 99 включая), а трехзначных 900 (с 100 до 999 включительно). Эта
информация нам нужна в ряде заданий в качестве Nобщ. Итак, разбираемся в
примерах.
Пример 12: На клавиатуре телефона
10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет
чѐтной?
Решение: Разбираемся по шагам. Что же
такое «четное» число? То, которое делится нацело на 2. То есть, 2,4,6,8 и
т.д. Но вот коварный вопрос: а 0 – это четное или нечетное число? Или его
нельзя отнести ни к тем, ни к другим? Правильный ответ: ноль – четное число! Таааак.
Хорошо. А сколько тогда вообще цифр на телефоне? Всего 10 цифр. Это наше Nобщ=10.
А какие из них четные? 0,2,4,6,8. Всего 5 цифр. Значит, Nбл=5.
Подставляем в классическую формулу:
𝑁бл 5
р
= = = 0 5
𝑁общ
Ответ: 0,5
Пример13: Из множества натуральных
чисел от 25 до 39 наудачу выбирают одно число. Какова вероятность того, что
оно делится на 5?
Решение: Считаем, сколько же чисел
«спряталось» от 25 до 39. Можно даже на пальцах, не помешает. Можно выписать
их все на листочек. И обвести все те, которые делятся на 5. А как это понять?
Вспомним признак делимости: «Число делится на 5, если оно оканчивается или на
0, или на 5.
Сколько получилось чисел на листочке? Nобщ=15. А
сколько обвели? 25, 30, 35. Всего 3 числа. Nбл=3.
𝑁бл 3
р
= = =
0,2
𝑁общ 15
0,2
Ответ:
Задания для закрепления
20.
В 3 подъезде
дома квартиры с 41 по 60 включительно. Гость набрал на домофоне номер одной из
этих квартир. Найдите вероятность того, что он позвонил в квартиру с четным
номером.
21.
На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность
того, что случайно нажатая цифра будет больше 2, но меньше 7?
22.
Какова вероятность того, что случайно выбранное натуральное
число от 10 до 19 делится на три?
23.
Какова вероятность, что случайно выбранное двузначное число
делится на 5?
Задачи с перебором вариантов Задания с монетами и
матчами.
Оооо, столько нелюбимые
ребятами задачи с монетами, кубиками и прочим! Решать их можно несколькими
способами, но мы выберем самый… наглядный, что ли. Метод перебора вариантов. Но
в данном методе нужно быть предельно внимательным, чтобы не упустить ни одного
варианта! А то расчеты окажутся неверными.
Пример 14: В случайном эксперименте
симметричную монету бросают дважды. Найдите вероятность того, что орел
выпадет ровно один раз.
Решение: Давайте рассмотрим все
возможные комбинации падения монеты. Зачем нам дано условие «симметричная»?
Оно говорит о том, что вероятности выпадения орла и решки одинаковые. Мы не
учитываем случаи
«монета упала на ребро», «монета потерялась», «монету
забрали инопланетяне». Считаем, что вероятность выпадения орла равна 0,5 и
вероятность выпадения решки аналогична. Отлично, строим табличку переборов.
Начинаем с предположения, что первым выпало орел, например (можете начинать
и с решки).
ОО и ОР
Хорошо. Теперь смотрим, какие варианты с решкой.
РР и РО.
Сколько всего
вариантов? 4. Это и есть Nобщ=4. Сколько из них удовлетворяет условию
«орел выпал ровно 1 раз»? 2 варианта. Значит, Nбл=2. Подставляем в
формулу:
𝑁бл 2
р
= = = 0,5
𝑁общ 4
Ответ: 0,5
Задания для закрепления 24.
В случайном эксперименте симметричную монету бросают дважды. Найдите
вероятность того, что в первый раз выпадает орѐл, а во второй — решка.
25.
В случайном эксперименте симметричную монету бросают трижды.
Найдите вероятность того, что выпадет хотя бы две решки.
Аналогичным способом решаются и задачи на матчи
(жребий определяет, какая команда будет начинать игру). Нужно тоже перебрать
варианты:
26.
Перед началом
футбольного матча судья бросает монетку, чтобы определить, какая из команд
начнѐт игру с мячом. Команда «Физик» играет три матча с разными командами.
Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два
раза.
Задачи на кубики (игральные кости)
Ох, уж эти кубики!
Сколько слез было пролито над этими задачками!. А все потому, что в условие
каждой из них приходится вникать, понимая, что же в этот раз от нас хотят
составители.
В этих задачках
встречается редкий вопрос, мы о нем говорили в самом начале: найти не саму
вероятность, а лишь число благоприятных исходов. Но мы так привыкли подставлять
Nбл в формулу, что совершенно не представляем, что именно это значение и может
быть ответом!
Пример 15: Игральный кубик бросают
дважды. Сколько элементарных исходов опыта благоприятствуют событию: «А =
сумма очков равна 5»?
Решение: Рассмотрим все возможные варианты
выпадения двух различных кубиков, которые дают нам в результате 5 очков. Мы
знаем, что у кубика 6 различных значений: от 1 до 6. Пусть и кубики будут
разными: белый и черный. Тогда рассмотрим различные варианты бросков кубика,
удовлетворяющие условию «сумма очков равна 5»
Б
Ч
1
4
4
1
2
3
3
2
У нас получилось 4 различных случая, которые удовлетворяют
условию. А значит, количество благоприятных исходов Nбл=4.
Ответ: 4
Хорошо, с благоприятными исходами разобрались, теперь
можно понемножку усложнять. Опираясь на принцип перебора, который только что
разобрали, решим следующий пример:
Пример 16: Таня Решение: Т 2 6 5 3 4 |
Итак, получилось Отсюда вероятность р= Ответ: 0,4 |
В рассмотренных примерах мы могли выписать все
возможные исходы, и это было нашим Nобщ. Но так бывает далеко не всегда, тут
надо очень точно понимать, когда перебирать слишком трудоемко. Что же делать с
таким типом задач?
Пример
17: Кубик бросили дважды. Найдите вероятность того, что в сумме
выпало 8 очков. Результат округлите до сотых.
Решение:
С виду задача похожа на предыдущий пример. Но это не совсем так. Чтобы найти
общее количество исходов, нам необходимо рассмотреть все возможные случаи
выпадения двух кубиков. Забегая вперед, скажу: для двух кубиков Nобщ=36,
для трех кубиков – Nобщ=216. А вот число благоприятных исходов как раз мы
и нашли в примере 16, расписав все возможные исходы, в которых сумма равна 8.
Их оказалось 5. Значит, вероятность равна:
р=
Но такой ответ
невозможно записать в бланк! Внимательно читаем условия: необходимо ответ
округлить до сотых. Что же это значит? Смотрим на третью цифру после запятой.
Если она больше 5, то округляем в бОльшую сторону. Если меньше или равна 5 –
то в меньшую. Особое внимание следует уделить случаю, в котором третий знак
равен 5. В таком случае необходимо смотреть на 4й знак после запятой. И
округлить либо до 6, либо до 5. В общем, в нашем случае-то все просто. Третий
знак равен 8, значит, при округлении мы получим ответ р=0,14.
Ответ: 0,14
Уф, с двумя кубиками справились! Хотя тут было
непросто. С тремя будет еще интереснее!
Пример 18. Решение: 6 5 1 |
6 4 2 6 3 3 С цифрой 6 закончили. Теперь внимательно следим за тем, чтобы в 5 5 2 5 4 3 4 4 4 Всего получилось 6 комбинаций. Но ведь мы еще можем переставлять Если все 3 Используя это правило, найдем количество благоприятных Nбл=6+6+3+3+6+1=25 Вероятность р= После Ответ: 0,12. |
Задания
для закрепления
27.
Игральный кубик бросают дважды. Сколько элементарных исходов
опыта благоприятствуют событию: «А = сумма очков равна 7»?
28.
Игральный кубик бросают дважды. Сколько элементарных исходов
опыта благоприятствуют событию «А = сумма очков равна 9»?
29.
Лена и Саша играют
в кости. Они бросают кость по одному разу. Выигравает тот, кто выбросил больше
очков. Ничья, если очков поровну. Лена выкинула 3 очка. Затем кубик бросает
Саша. Найдите вероятность того, что Саша выиграет.
30.
Найдите вероятность того, что при броске игрального кубика
выпадет нечетное число.
31.
Найдите вероятность того, что при броске двух кубиков на
обоих выпадет число, большее 3 (подсказка: перебирайте только благоприятные
варианты. Nобщ=36).
32.
В случайном эксперименте бросают две игральные кости. Найдите
вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.
33.
В случайном эксперименте бросают три игральные кости. Найдите
вероятность того, что в сумме выпадет 6 очков. Результат округлите до сотых.
Сложный перебор вариантов
Бывает и так, что в задании с ходу не разобраться, что
нужно перебирать варианты. Да и в принципе не понятно, с какого бока приступать
к ее выполнению! Одна из таких задач, с которой традиционно возникают
сложности, рассмотрена в примере ниже.
Пример 19.
На рок-фестивале выступают группы — по одной от каждой из заявленных стран.
Порядок выступления определяется жребием. Какова вероятность того, что группа
из Дании будет выступать после группы из Швеции и после группы из Норвегии?
Результат округлите до сотых.
Решение: Нам
не дано количество стран. Нам ничего не дано, по сути, в числовом виде! Но.
Но названия стран-то даны. Обозначим их заглавными буквами: Д, Ш, Н. И
рассмотрим все варианты расстановки в списке выступающих (вне зависимости от
того, какими по счету они будут выступать)
ДШН ШДН
НШД
ДНШ ШНД
НДШ
Всего
получилось 6 вариантов перестановок этих групп. Значит, Nобщ=6. А
сколько из этих случаев удовлетворяют условию «Дания после…» обеих стран? Те,
в которых буква «Д» стоит на последнем месте. Таких случаев Nбл=2.
Рассчитываем вероятность по формуле:
𝑁бл 2
р
= 0 33 3
𝑁общ
Теперь
необходимо округлить до сотых. Мы рассматривали в примерах выше, как это
делается. р≈0, 33
Ответ: 0,33 (и во всех таких заданиях
ответ ровно такой же)
В данном примере перебирать нужно было всего 6
вариантов. Но их бывает ЗНАЧИТЕЛЬНО больше. Например, задача по монеты в
карманах. Она может решаться и другими способами, но перебором нагляднее и
чуточку проще.
Пример 20.
В кармане у Пети было 2 монеты по 5 рублей и 4 монеты по 10 рублей. Петя, не
глядя, переложил какие-то 3 монеты в другой карман. Найдите вероятность того,
что пятирублевые монеты лежат теперь в разных карманах.
Решение: Итак,
у нас в наличии 2 кармана. И в каждом кармане оказалось по 3 монеты. Давайте их
пронумеруем. Пусть монеты по 10 рублей будут с номерами 1,2,3,4, а 5-рублевые
монетки – под номерами 5 и 6. Рассмотрим все случаи, не учитывая перестановку
цифр местами. Действительно, нам, по сути, без разницы, в каком порядке монетки
попали в карман.
123
134 145 156
124
135 146
125
136
126
234
245 256
235
246
236
345 356
456
346
Всего получилось
20 вариантов. Значит, Nобщ=20. Теперь нам предстоят более сложные
рассуждения. Необходимо, чтобы 5-рублейвые монеты лежали в разных карманах.
Что это значит? Монетки наши с номерами 5 и 6. Значит, нам нужно, чтобы в
кармане оказалась одна из монеток и не оказалось второй. То есть, в комбинации
цифр должна встречаться цифра 5, но не встречаться цифра 6, или наоборот.
Выделим все такие случаи:
123
134 145 156
124
135 146
125
136
126
234
245 256
235
246
236
345 356
456
346
Получилось 12
случаев (сразу, для сведения, отмечаем, что оставшиеся 8 – это случаи, когда
монеты попали в один карман. Нам эта информация пригодится для другой
задачи). Рассчитаем вероятность по формуле:
Ответ: 0,6
Задания для закрепления 34. В
кармане у Пети было 4 монеты по рублю и 2 монеты по два рубля. Петя, не глядя,
переложил какие-то 3 монеты в другой кар15анн. Найдите
вероятность того, что обе двухрублѐвые монеты лежат в одном кармане.
Глава 2. ЗАКОНЫ ВЕРОЯТНОСТИ
Несовместные события и закон сложения
Для того чтобы перейти к рассмотрению более сложных
заданий, необходимо ввести новые понятия: независимые события и несовместные
события.
События являются несовместными, если появление
одного события исключает появление другого. Предположим, вы подошли к остановке,
от которой только что отъехал автобус, номер которого вы не заметили. Если это
отъехал автобус №1, то это никак не мог быть автобус №2 одновременно. В
применении к прототипам ЕГЭ: если Вы вытянули билет, в котором только 1 вопрос,
касающийся бактерий, то этот же вопрос никак не может коснуться грибов,
например. То есть, события «вытянуть билет с вопросом о грибах» и «вытянуть
билет с вопросом о бактериях» являются несовместными, ибо появление одного из
этих событий исключает появление другого.
Вот с этими самыми несовместными событиями дело как
раз обстоит очень просто. Если нам надо найти вероятность наступления ИЛИ
одного, ИЛИ другого несовместного события, то мы просто складываем вероятности
данных событий:
р=р1+р2
Несовместные события образуют полную группу событий,
суммарная вероятность которой равна 1.
Пример 21.
На экзамене по геометрии школьнику достаѐтся один вопрос из списка
экзаменационных вопросов. Вероятность того, что это вопрос на тему «Внешние
углы», равна 0,35. Вероятность того, что это вопрос на тему «Вписанная
окружность», равна 0,2. Вопросов, которые одновременно относятся к этим двум
темам, нет. Найдите вероятность того, что на экзамене школьнику достанется
вопрос по одной из этих двух тем.
Решение:
нам необходимо, чтобы школьнику достался вопрос ИЛИ на тему «Вписанная
окружность», ИЛИ на тему «Внешние углы». Так как эти события не могут
наступить одновременно, вероятность мы находим по формуле:
р=р1+р2=0,35+0,2=0,55.
Да, так просто.
Да, самое главное было понять, что от нас хотят. А от нас хотят наступления
одного из (ИЛИ первого, ИЛИ второго) событий. А значит, мы просто складываем
вероятности.
Ответ: 0,55
ВАЖНО! Вероятность НЕ наступления события. Раз
уж мы научились складывать вероятности, необходимо понять, что сумма
вероятностей группы несовместных событий равна 1. Что это значит? Это значит, к
примеру, что если вероятность купить бракованное стекло в примере 1 была 0,03,
то вероятность купить НЕ бракованное стекло равна р=1-0,03=0,97.
Пример
22. Вероятность того, что на тесте по математике учащийся У. верно
решит больше 12 задач, равна 0,78. Вероятность того, что У. верно решит
больше 11 задач, равна 0,88. Найдите вероятность того, что У. верно решит
ровно 12 задач.
Решение:
Так как У. не может одновременно решить в контрольной 12 и 15, скажем,
заданий, то рассмотрим полную группу событий. Напоминаю, что суммарная
вероятность равна 1.
Ребенок решит менее 12 задач |
Ребенок решит ровно 12 задач |
Ребенок более 12 задач |
решит |
Что такое «менее 12»? Это НЕ более 11 задач, по Вероятность |
0,78 |
||
1-0,12-078=0,1 |
Но, по сути, это же
значение мы получим в результате вычитания р=0,88-0,78, что несколько
упростит процесс понимания.
Ответ: 0,1
Этот случай был достаточно простым. А если в таблицу
придется внести больше данных? Рассмотрим в примере ниже.
Пример23:
При изготовлении подшипников диаметром 65 мм вероятность того, что диаметр
будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,981. Найдите
вероятность того, что случайный подшипник будет иметь диаметр меньше, чем
64,99 мм, или больше, чем 65,01 мм.
Решение:
Способ1. В условиях задачи сказано, что вероятность отличия диаметра
подшипника НЕ больше, чем на 0,01 мм равна 0,981. Значит, вероятность отличия
на 0,01 мм или больше? Противоположная. То есть, р=1-0,981=0,019. Способ 2.
Другой вариант решения предусматривает занесение данных в таблицу.
<64.99 |
64.99-65.01 |
>65.01 |
р1 |
0.981 |
р2 |
В сумме
вероятность дает 1. р1+0,981+р2=1. Отлично, тогда рассчитаем
р1+р2=1-0,981=0,019. Ответ: 0,019
Задания для закрепления
35.
На экзамене по
геометрии школьнику достаѐтся один вопрос из списка экзаменационных вопросов.
Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2.
Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15.
Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите
вероятность того, что на экзамене школьнику достанется вопрос по одной из этих
двух тем.
36.
Вероятность того, что в случайный момент времени температура
тела здорового человека окажется ниже чем 36,8 °С, равна 0,81. Найдите
вероятность того, что в случайный момент времени у здорового человека
температура окажется 36,8 °С или выше.
37.
Вероятность того, что новый электрический чайник прослужит
больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет,
равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет, но
больше года.
38.
Вероятность того, что на тесте по биологии учащийся О. верно
решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше
10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11
задач.
39.
Из районного центра в деревню ежедневно ходит автобус.
Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров,
равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56.
Найдите вероятность того, что число пассажиров будет от 15 до 19.
40.
При изготовлении подшипников диаметром 67 мм вероятность
того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм,
равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь
диаметр меньше чем 66,99 мм или больше чем 67,01 мм.
Независимые события и закон умножения
А что же тогда независимые события? Логично, что если
появление одного события не исключает появление другого, но и не повышает
вероятность появления, то эти события независимы. Например, событие А «Катя
дошла до школы» и событие В «Катя купила тетрадь» вполне себе могут иметь
место в один и тот же день, пусть и в разное время. От того, дошла ли до школы
Катя, не зависит, купит ли она тетрадь. Ну, или нам недостаточно условий, чтобы
эту зависимость провести. Будем считать эти события независимыми. В
применение к прототипам ЕГЭ независимыми событиями можно считать получение
высоких баллов по разным предметам ЕГЭ. Пусть без математики физику, например,
хорошо не напишешь, но в рамках теории вероятности будем считать получение
оценок по разным предметам событиями независимыми.
Здесь можно было бы ввести и формулу для независимых
событий, но, как показала практика, ученики начинают путаться в этих формулах.
Поэтому к обсуждению вероятности наступления одного из двух независимых событий
мы вернемся в главе 6.
Закон умножения (закон и) (для независимых событий)
А что же делать, если нам необходимо найти вероятность
наступления И одного события, И другого? Правильно! Логично их перемножить, раз
уж функцию сложения мы использовали в прошлом разделе.
Следовательно, вероятность наступления И первого, И
второго, И третьего независимых события находится по формуле:
р=р1*р2*р3
Пример 24:
В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,6.
Найдите вероятность того, что в случайный момент времени все три продавца
заняты одновременно (считайте, что клиенты заходят независимо друг от друга).
Решение: Так как события независимы, а нам
необходимо найти вероятность того, что будет занят И первый продавец, И
второй, И третий, вероятность найдем по формуле:
р=р1*р2*р3=0,6*0,6*0,6=0,216
Ответ: 0,216
Пример 25:
Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы
определить, какая из команд начнѐт игру с мячом. Команда «Ротор» по очереди
играет с командами «Протор», «Стартер» и «Монтѐр». Найдите вероятность того,
что «Ротор» будет начинать только первую и вторую игры.
Решение: «Ротор» сыграет 3 игры.
Вероятность, что жребий будет в пользу «Ротора», равна р= . Тогда вероятность
того, что жребий выиграет
НЕ «Ротор» равна р=1- . Для
того, чтобы выполнились условия задачи, нам необходимо, чтобы «Ротор» начал И
первую, И вторую игры, И НЕ начал
третью игру. р=
Ответ: 0,125
Задания для закрепления
41.
Если гроссмейстер А. играет белыми, то он выигрывает у
гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает
у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во
второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба
раза.
42.
По
отзывам покупателей Иван Иванович оценил надѐжность двух интернет-магазинов.
Вероятность того, что нужный товар доставят из магазина А, равна 0,8.
Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван
Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины
работают независимо друг от друга, найдите вероятность того, что ни один
магазин не доставит товар.
43.
Вероятность того, что батарейка бракованная, равна 0,06.
Покупатель в магазине выбирает случайную упаковку, в которой две таких
батарейки. Найдите вероятность того, что обе батарейки окажутся исправными.
44.
В магазине три продавца. Каждый из них занят с клиентом с
вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все
три продавца заняты одновременно (считайте, что клиенты заходят независимо друг
от друга).
45.
Биатлонист пять раз стреляет по мишеням. Вероятность
попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что
биатлонист первые три раза попал в мишени, а последние два промахнулся.
Результат округлите до сотых.
46.
Перед началом волейбольного матча капитаны команд тянут
честный жребий, чтобы определить, какая из команд начнѐт игру с мячом. Команда
«Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите
вероятность того, что «Статор» будет начинать только первую и последнюю игры.
47.
На рисунке изображѐн лабиринт. Паук заползает в лабиринт в
точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом
разветвлении паук выбирает один из путей, по которому ещѐ не полз. Считая, что
выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук
придѐт к выходу .
Ни один, хотя бы один, ровно 1
О чем пойдет речь в
данном разделе. В теории вероятности части встречаются задачи, касающиеся
событий с определенной вероятностью. И в условиях задачи просят найти: «ровно
1», «ровно 2», «хотя бы 1», «хотя бы 2»,
«ни разу» и т.д. Как же понять, что
нам нужно сделать со всем этим добром?
Рассмотрим на примере
биатлониста, стреляющего по мишеням. Пусть этот спортсмен будет достаточно
опытным, и вероятность попадания в мишень при каждом выстреле составит 0,8. И
пусть выстрелов будет 5.
А теперь рассмотрим все случаи:
Случай 1. Спортсмен попадет 5
раз.
Решение: Мы уже знаем,
что для того, чтобы найти вероятность наступления И одного, И другого события,
их вероятности необходимо перемножить.
р=0,8*0,8*0,8*0,8*0,8=0,32768
Случай 2. Спортсмен попадет
ровно 4 раза.
Решение: В данном случае тоже все просто, 4 раза он
попадет и один раз НЕ попадет.
р=0,8*0,8*0,8*0,8*0,2=0,08192
Случай 3. Спортсмен попадет не
менее 3х раз.
Решение: а вот тут
начинается самое интересное. Условию, чтобы спортсмен попал не менее трех раз,
удовлетворяют исходы: «попал 3 раза», «попал 4 раза», «попал 5 раз».
Вероятности последних исходов мы нашли, теперь найдем вероятность попадания
ровно 3 раза:
р=0,8*0,8*0,8*0,2*0,2=0,02048
И что же нам со всем
этим делать? Можно заметить, что если спортсмен попал ровно 3 раза из 5, он
никак вместе с этим не может попасть 5 раз из 5, а значит, события у нас
несовместные. Спортсмен может попасть ИЛИ 3 раза, ИЛИ 4, ИЛИ 5, а значит,
итоговая вероятность равна: р=0,02048+0,08192+0,32768=0,43008. Случай 4:
Биатлонист не попадет ни разу
Решение: Вероятность НЕ попадания равна р=1-0,8=0,2. А
значит, он должен НЕ попасть и первый, и второй, и третий, и четвертый, и пятый
раз.
р=0,2*0,2*0,2*0,2*0,2=0,00032
Случай 5. Спортсмен попадет в
мишень хотя бы один раз.
Решение: вот оно, наше
«хотя бы»! Хотя бы один раз – это все случаи, кроме «не попадет ни разу», а
значит, вероятность равна р=1-0,00032=0,99968
Подведем итоги: р(Хотя бы 1)=1 – р(ни один).
Примеры на этот раздел будут чуть
ниже, после следующей темы.
Сочетания законов «и» и законов «или»
В новых прототипах
появилось достаточно много подобных заданий, в которых необходимо применить
понимание и одного, и другого закона. Рассмотрим пример в общем виде, чтобы
потом уже закрепить на конкретных прототипах:
Пример 26:
Офис закупает канцелярию для сотрудников трех различных фирм. Причем,
продукция первой фирмы составляет 40% всех поставок, а остальных двух –
поровну. Чаще всего приходится закупать пишущие ручки. Опытным путем
выяснилось, что 2% ручек второй фирмы – бракованные. Процент брака в первой и
третьей фирме составляет 1% и 3% соответственно. Сотрудник М. с утра взял
ручку из новой поставки канцелярии. Найдите вероятность того, что она будет
исправна.
Решение:
Все аналогичные задачи решаются построением таблицы. Но прежде выполним
дополнительные вычисления. Найдем, сколько процентов от поставок составляет
продукция 2 и 3 фирмы. (100%-40%):2=60%:2=30%.
1 фирма |
2 фирма |
3 фирма |
Общее кол-во |
|
Какую часть от всего составляет? |
40% (р=0,4) |
30% (р=0,3) |
30% (р=0,3) |
100% (р=1) |
Процент брака |
1% (р=0,01) |
2% (р=0,02) |
3% (р=0,03) |
Х |
Как теперь рассчитать вероятность взять БРАКОВАННУЮ
ручку?
Р=0,4*0,01 + 0,3*0,02 + 0,3*0,03 = 0,019.
Тогда вероятность взять ИСПРАВНУЮ ручку равна:
Р=1-0,019=0,981
Ответ: 0,981
Задания для закрепления
48.
В магазине
стоят два платѐжных автомата. Каждый из них может быть неисправен с
вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что
хотя бы один автомат исправен.
49.
Помещение освещается фонарѐм с двумя лампами. Вероятность
перегорания лампы в течение года равна 0,3. Найдите вероятность того, что в
течение года хотя бы одна лампа не перегорит.
50.
Две фабрики выпускают одинаковые стекла для автомобильных
фар. Первая фабрика выпускает 45% этих стекол, вторая — 55%. Первая фабрика выпускает
3% бракованных стекол, а вторая — 1%. Найдите вероятность того, что случайно
купленное в магазине стекло окажется бракованным.
51.
Ковбой Джон попадает в муху на стене с вероятностью 0,9, если
стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного
револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10
револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху,
наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите
вероятность того, что Джон промахнѐтся.
52.
Автоматическая линия изготавливает батарейки. Вероятность
того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая
батарейка проходит систему контроля. Вероятность того, что система забракует
неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке
забракует исправную батарейку, равна 0,01. Найдите вероятность того, что
случайно выбранная батарейка будет забракована системой контроля.
53.
Всем
пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет
гепатит, то результат анализа называется положительным. У больных
гепатитом пациентов анализ даѐт положительный результат с вероятностью 0,9.
Если пациент не болен гепатитом, то анализ может дать ложный положительный
результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с
подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того,
что результат анализа у пациента, поступившего в клинику с подозрением на
гепатит, будет положительным.
54.
Агрофирма закупает куриные яйца в двух домашних хозяйствах.
40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства —
20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите
вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого
хозяйства.
Подсказка:
в этой задаче необходимо в таблице сделать дополнительный столбец – общее.
Обозначим за х искомую вероятность купить яйцо из первого хозяйства. Тогда
вероятность купить яйцо из второго равна 1-х. Составим уравнение.
0,4*х + 0,2*(1-х) =
1*0,35
Когда количество участников уменьшается (условная
вероятность)
Как показала практика,
больше всего затруднений вызывают задания, в которых необходимо учесть, что
количество исходов уменьшилось после какого-либо события. Когда выбирают
дежурных в классе по двое, не можем же мы одного и того же человека учесть
дважды! Как решать подобные задания, показано в примерах:
Пример 27. Перед началом первого тура
чемпионата по настольному теннису участников разбивают на игровые пары
случайным образом с помощью жребия. Всего в чемпионате участвует 26
спортсменов, среди которых 13 участников из России, в том числе Владимир
Егоров. Найдите вероятность того, что в первом туре Владимир Егоров будет
играть с каким-либо спортсменом из России?
Решение: Владимир Егоров не может же играть
сам с собой, его мы уже учли. А сколько тогда осталось спортсменов,
удовлетворяющих условию:
«участник из России»? правильно, Nбл=13-1=12. А всего
участников сколько? Не считая Владимира Егорова, Nобщ=26-1=25. Отсюда
вероятность равна:
Р=
Ответ: 0,48
Пример 28: В классе 7 мальчиков и 14
девочек. 1 сентября случайным образом определяют дежурных на 2 сентября.
Какова вероятность, что это будут Миша и Тимур?
Решение: Всего в классе 7+14=21
человек. И Миша, и Тимур – мальчики. Вероятность того, что выберут одного из
мальчиков, равна . А вот когда начнут выбирать второго дежурного,
окажется, что мальчиков уже стало
6 3 меньше, то есть, .
Соответственно, вероятность, что выберут И Мишу, И Тимура, равна произведению
вероятностей: р=
Ответ: 0,1
Пример 29: В классе 9 учащихся, среди них Решение: Для начала рассмотрим, на |
осталось не 3, а 2, а во-вторых, и учеников-то в Р= . Так, вероятность появления этих товарищей в первой группе ВАЖНО! Эту задачу можно решить проще! р Ответ:0,25 |
Задания для закрепления
55.
Перед началом
первого тура чемпионата по бадминтону участников разбивают на игровые пары
случайным образом с помощью жребия. Всего в чемпионате участвует 26
бадминтонистов, среди которых 10 участников из России, в том числе Руслан
Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с
каким-либо бадминтонистом из России?
56.
В классе 26 человек, среди них два близнеца — Андрей и
Сергей. Класс случайным образом делят на две группы по 13 человек в каждой.
Найдите вероятность того, что Андрей и Сергей окажутся в одной группе.
57.
В классе 21 учащийся, среди них два друга — Вадим и Олег.
Класс случайным образом разбивают на 3 равные группы. Найдите вероятность того,
что Вадим и Олег окажутся в одной группе.
58.
В классе учится 21 человек. Среди них две подруги: Аня и
Нина. Класс случайным образом делят на 7 групп, по 3 человека в каждой. Найти
вероятность того. что Аня и Нина окажутся в одной группе.
Задачи повышенной сложности
Разбор заданий
Пример 30: Чтобы
поступить в институт на специальность «Лингвистика», абитуриент должен набрать
на ЕГЭ не менее 70 баллов по каждому из трѐх предметов — математика, русский
язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно
набрать не менее 70 баллов по каждому из трѐх предметов — математика, русский
язык и обществознание.
Вероятность того, что
абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому
языку — 0,8, по иностранному языку — 0,7 и по обществознанию — 0,5.
Найдите вероятность того, что З. сможет поступить хотя
бы на одну из двух упомянутых специальностей.
Решение: Для того, чтобы
поступить хотя бы на одну из этих двух специальностей, абитуриент должен
набрать баллы И по математике, И по русскому языку, И (ИЛИ по иностранному
языку, ИЛИ по обществознанию). Чтобы не путать вас вычислениями, найдем по
шагам.
Как
рассчитать вероятность получить нужные баллы по иностранному или
обществознанию? Давайте рассуждать. Что такое получить баллы ХОТЯ БЫ по одному
из этих двух предметов? Мы это уже научились делать.
Напомню: р(Хотя бы 1)=1 – р(ни
один).
Применим этот принцип и
для нашей задачи:
Вероятность того, что
З. не сдаст иностранный язык равна р1=1-
0,7=0,3. Вероятность
того, что З. не сдаст обществознание р2=1-0,5=0,5.
Тогда искомая вероятность р3 того, что
З. сдаст хотя бы один из этих двух экзаменов равна: р3=1-р1*р2= 1 – 0,3*0,5 =
1-0,15= 0,85
Значит,
итоговая вероятность равна: р = р(мат)*р(р.язык)*р3=0,6*0,8*0,85=0,408
Ответ: 0,408
Пример 31: На фабрике керамической посуды 10%
произведѐнных тарелок имеют дефект. При контроле качества продукции выявляется
80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите
вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов.
Результат округлите до сотых.
Решение:
В чем коварность этого задания? Обычно неправильно находят Nобщ.
Решим эту задачку не в общем виде, предположим, что фабрика выпустила именно
100 тарелок. Теперь давайте внимательно читать условия по строчкам. «10%
произведенных тарелок имеют дефект». Значит, в нашем случае, 10 тарелок
оказались бракованными. Но какие именно, этого мы еще не знаем. На контроле
выявятся 80% брака из этих 10 тарелок, соответственно, выяснится, что 8
тарелок – бракованные. Их, конечно, в продажу не пустят. Но 2 тарелки
просочатся в магазины. И тогда, получается, всего в продажу из нашей партии
поступят 100-8=92 тарелки, и из них не будут иметь дефектов
90.
Рассчитаем вероятность по формуле: бл
Ответ: 0,98
Пример 32. В
торговом центре два одинаковых автомата продают кофе. Вероятность того, что к
концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе
закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу
дня кофе останется в обоих автоматах.
Решение:
Это задание решается непросто. Действительно, если бы эти события были
независимыми, то вероятность того, что кофе закончится в обоих автоматах была
бы результатом перемножения вероятности того, что кофе закончится в одном из. Но
мы видим, что это не так (0,3*0,3 ≠ 0,12). Значит, все то, что мы узнали
выше, нам здесь не поможет, нужен какой-то другой метод. Не буду вас томить
сложными объяснениями и объяснять, почему решается именно так, расскажу просто
механизм решения конкретно этого задания.
Сначала
мы находим вероятность наступления двух совместных событий (это понятие мы не
вводили) «Кофе закончится в обоих автоматах». Эта вероятность равна сумме
вероятностей наступления этих событий без вероятности их совместного наступления:
р1=0,3+0,3-0,12=0,48
А
потом находим искомую вероятность р (кофе останется в обоих автоматах) как
противоположное событие: р=1-р1=1-0,48=0,52
Ответ: 0,52
Пример 33: В Волшебной стране бывает два типа
погоды: хорошая и отличная, причѐм погода, установившись утром, держится
неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет
такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая.
Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.
Решение: Составим схему
всех возможных событий и укажем вероятность наступления данного события.
Вероятность того, что произойдет И первое, И второе, И третье – результат
умножения вероятность отдельных событий. Вероятность того, что нас устроит один
из вариантов, равна сумме получившихся вероятностей.
3
июля 4 июля 5 июля 6 июля
Отл р1=0,8*0,8*0,2
Хор
Хор
Хор
+
Отл р2=0,8*0,2*0,8
Отл
Хор Хор
+
Отл р3=0,2*0,2*0,2
Хор
Отл
Хор +
Отл
р4=0,2*0,8*0,8
Отл
Хор
р=р1+р2+р3+р4=0,392
Ответ: 0, 392
Пример 34: Чтобы пройти в следующий круг
соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх.
Если команда выигрывает, она получает 3 очка, в случае ничьей — 1 очко, если
проигрывает — 0 очков. Найдите вероятность того, что команде удастся выйти в
следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и
проигрыша одинаковы и равны 0,4.
Решение: Команда может
получить не меньше 4 очков в двух играх тремя способами: 3+1, 1+3, 3+3. Эти
события несовместны, вероятность их суммы равна сумме их вероятностей. Каждое
из этих событий представляет собой произведение двух независимых событий —
результата в первой и во второй игре. Отсюда имеем:
Ответ: 0,32.
Пример 35: При артиллерийской стрельбе
автоматическая система делает выстрел по цели. Если цель не уничтожена, то
система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не
будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле
равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для
того, чтобы вероятность уничтожения цели была не менее 0,98?
Решение: В решении этой
задачи пойдем очевидным путем – «стрелять» будем до тех пор, пока вероятность
попадания не станет удовлетворять условию.
Вероятность попадания
при первом выстреле равна: р1=0,4 < 0,98
Конечно, нам необходимо делать второй
выстрел. А при каком условии мы стреляем повторно? Если первый раз НЕ попали.
Вероятность НЕ попасть первый раз равна 1-0,4=0,6. Получается, что второй
выстрел попадет в цель, если первый выстрел закончится промахом И второй –
попаданием. р2=0,6*0,6=0,36. Соответственно, вероятность того, что попадание
состоится ИЛИ при первом ИЛИ при втором выстреле равна: р3 = р1+р2 = 0,4+0,36=0,76
< 0,98. Заданная точность не достигнута. Стреляем третий раз. Опять же,
понимаем, что выстрел производится потому, что первые 2 раза был промах. р4 =
0,6*0,4*0,6=0,144. р5=0,4+0,36+0,144=0,904 < 0,98.
Делаем четвертый
выстрел: р6=0,6*0,4*0,4*0,6=0,0576, р7=0,904+0,0576=0,9616 < 0,98. Опять
мало! Стреляем пятый раз! р8=0,6*0,4*0,4*0,4*0,6=0,02304,
р9=0,9616+0,02304=0,98464. Ура! При пятом выстреле достигли нужной точности!
Нам потребовалось 5 выстрелов.
Ответ: 5
Закрепляем материал:
59.
Чтобы поступить в институт на специальность «Лингвистика»,
абитуриент должен набрать на ЕГЭ не менее 69 баллов по каждому из трѐх
предметов — математика, русский язык и иностранный язык. Чтобы поступить на на
специальность «Коммерция», нужно набрать не менее 69 баллов по каждому из трѐх
предметов — математика, русский язык и обществознание.
60.
Вероятность того, что абитуриент А. получит не менее 69
баллов по математике, равна 0,6, по русскому языку — 0,6, по иностранному языку
— 0,6 и по обществознанию — 0,9.
Найдите вероятность того, что А. сможет поступить на
одну из двух упомянутых специальностей.
61.
В торговом центре два одинаковых автомата продают кофе.
Вероятность того, что к концу дня в автомате закончится кофе, равна 0,35.
Вероятность того, что кофе закончится в обоих автоматах, равна 0,15. Найдите
вероятность того, что к концу дня кофе останется в обоих автоматах.
62.
Чтобы
пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы
7 очков в двух играх. Если команда выигрывает, она получает 6 очков, в случае
ничьей — 1 очко, если проигрывает — 0 очков. Найдите вероятность того, что
команде удастся выйти в следующий круг соревнований. Считайте, что в каждой
игре вероятности выигрыша и проигрыша одинаковы и равны 0,3.