Как найти вероятность выполнения неравенства

Теорема
«закона больших чисел», Центральная
предельная теорема. Интегральная теорема
Лапласа как частный вид центральной
предельной теоремы.

Практическое
занятие включает рассмотрение примеров
на использование теорем Чебышева и
Бернулли, а также интегральной теоремы
Лапласа.

Вопросы

  1. В
    чем состоит свойство устойчивости
    массовых случайных явлений?

  2. Дайте
    общую характеристику закона больших
    чисел и центральной предельной теоремы
    как фундаментальных составляющих
    совокупности предельных теорем теории
    вероятностей.

  3. Изложите
    содержание теоремы Чебышева и теоремы
    Бернулли.

  4. Дайте
    формулировку центральной предельной
    теоремы (теоремы Ляпунова).

  5. Почему
    интегральную теорему Лапласа можно
    считать частным видом центральной
    предельной теоремы?

  6. Изложите
    содержание интегральной теоремы
    Лапласа.

Примеры

Пример
1
. При каком
числе называемых испытаний вероятность
выполнения неравенства
превысит,
если вероятность появления события в
отдельном испытании?

Решение.
По условию задачи
,,
поэтому;
требуется определитьс помощью неравенства теоремы Бернулли

.

Условие
равносильно неравенству,
откудапри подстановке значений,ив последнее неравенство находим.

Следовательно,
требуемое неравенство выполняется при
числе независимых испытаний, начиная
с 132.

Пример
2.
Известно,
что дисперсия каждой из последовательности
независимых случайных величин не
превышает 4. Определить число таких
величин, при котором вероятность
отклонения средней арифметической
случайной величины от средней
арифметической их математических
ожиданий не более чем на
превысит.

Решение.
Неравенство теоремы Чебышева

где

– независимые случайные величины, имеющие
конечные математические ожиданияи дисперсии,
ограниченные одним и тем же числом;– любое положительное число, приипринимает вид

.

Из
условия следует, что
,
откуда,
или.

Итак,
.

Пример
3.
Дана
последовательность независимых случайных
величин
каждаяиз которых может принимать значения:,0,соответственно с вероятностями,,.
Можно ли к этим величинам применить
теорему Чебышева?

Решение.
Чтобы дать ответ на поставленный вопрос,
необходимо проверить ограниченность
дисперсий данных случайных величин
одной и той же постоянной С (остальные
условия теоремы Чебышева выполняются:
независимость случайных величин и
достаточно большое их число).

Для
этого сначала найдем их математические
ожидания:

.

Математические
ожидания их квадратов:

.

Так
как
,
то дисперсии всех случайных величинодинаковы, они ограничены одним числом.
Следовательно, к данным случайным
величинам можно применить теорему
Чебышева.

Пример
4.
Вероятность
появления положительного результата
в каждом из
опытов равна.
Сколько опытов нужно провести, чтобы с
вероятностьюможно было ожидать, что не менее 150 опытов
дадут положительный результат?

Решение.
Воспользуемся формулой интегральной
теоремы Лапласа

.

В
соответствии с условием задачи
,,,(значениенужно определить) данная формула
принимает вид,
или

Очевидно,
что
,
поэтому.
Поскольку функция Лапласа – возрастающая
и,
то можно положить.

Следовательно,
,.

По
таблице значений приведенной функции
Лапласа находим
.
Тогда, учитывая нечетность функции
Лапласа, получаем.

Решая
это уравнение, как квадратное относительно
,
находим,.

Задачи

1.
Вероятность
положительного исхода отдельного
испытания
.
Оценить вероятность того, что при 1000
независимых испытаний отклонение
частоты положительных исходов от
вероятности при отдельном испытании
по модулю будет меньше 0,05.

2.
Сколько следует провести независимых
испытаний, чтобы вероятность выполнения
неравенства
превысила 0,78, если вероятность появления
данного события в отдельном испытании?

3.
Вероятность появления события в каждом
из независимых испытаний равна 0,8.
Сколько нужно провести испытаний, чтобы
с вероятностью 0,9 можно было ожидать,
что событие А появится не менее 75 раз?

4.
Производство дает 1% брака . Найти
вероятность того, что из взятых на
исследование 1100 изделий бракованных
будет не более 17.

Тема
6

Распределение
функции случайного аргумента.

Закон
распределения монотонной функции одного
случайного аргумента

Практическое
занятие включает:


определение закона распределения
функции случайного аргумента;


определение плотности распределения
монотонной функции одного случайного
аргумента.

Вопросы

  1. Понятие
    функции одного случайного аргумента.

  2. Запишите
    формулу плотности распределения
    монотонной функции одного случайного
    аргумента.

Примеры

Пример
1.
Дискретная
случайная величина
задана законом распределения :

1

3

5

0,4

0,1

0,5

Найти
закон распределения случайной величины
.

Решение.
Найдем возможные значения величины
.
Имеем:;;.
Для того, чтобыдостаточно, чтобы величинаприняла значения.
Но вероятность событияпо условию равна 0,4; следовательно и
вероятность событиятакже равна 0,4.

Аналогично
получим вероятности остальных возможных
значений
:

;

.

Тогда
искомый закон распределения
:

3

9

15

0,4

0,1

0,5

Пример
2.
Дискретная
случайная величина
задана законом распределения

-2

-1

0

1

2

0,1

0,2

0,15

0,25

0,3

Найти
закон распределения и МО случайной
величины
.

Решение.
– новая СВ, которая с теми же вероятностями,
что и СВ,
принимает значения, равные квадратам
ее значений.

Квадраты
СВ
равны: 4, 1, 0, 1, 4, т.е. величинапринимает значения,,.

Закон
распределения СВ
можно записать в виде:

0

1

4

0,15

0,45

0,4

Вероятность
0,45 для значения
получена по теореме сложения вероятностей,
с которыми СВпринимает значения,.
Аналогично получена вероятность 0,4 для
значения.

Согласно
формуле
находим МО функции:

.

Пример
3.
Дискретные
независимые случайные величины заданы
законами распределения:

5

6

7

8

0,4

0,6

0,8

0,2

Составить
закон распределения случайной величины
.

Решение.
Возможные значения величины
есть суммы каждого возможного значениясо всеми возможными значениями:

,
,,.

Найдем
вероятности этих возможных значений.
Для того чтобы
,
достаточно, чтобы величинаприняла значениеи величина– значение.
Вероятности этих возможных значений
соответственно равны 0,4 и 0,8. Величиныинезависимы; следовательно, вероятность
их совместного появления (т.е. вероятность
события)
по теореме умножения равна.

Аналогично находим:

,

,

.

Величина
принимает три разных значения 12, 13, 14.
Поскольку события ()
и ()
несовместны, то

.

Таким
образом величина
имеет закон распределения

12

13

14

0,32

0,56

0,12

Отметим, что 0,32+0,56+0,12=1, как и должно быть.

Пример
4.
Дискретная
случайная величина
имеет закон распределения.

0

1

2

3

0,1

0,3

0,4

0,2

Найти
закон распределения СВ
.

Решение.
Найдем значение функции
.

При
получаем соответственно числа.
Следовательно, возможными значениями
случайной величиныявляются числа,,.

Вероятности этих значений:

;
;

.

Таким
образом, закон распределения СВ
имеет вид:

0

1

2

0,2

0,5

0,3

Пример
5.
Случайная величина
задана плотностью распределения

Найти
плотность распределения функции
.

Решение.
На отрезке возможных значений случайной
величины
функция– монотонно возрастающая. Обратная ей
функциятакже монотонно возрастает на отрезке
[1; 4] – области возможных значений
случайной величины.
Находим производную обратной функции

.

Применяя
формулу
,
находим

Пример
6.
Случайная величина
задана плотностью распределения

Найти
плотность распределения
.

Решение.
Поскольку функция
является дифференцируемой и строго
монотонной, то можно применить формулу
для,
использованную в предыдущем примере.

Найдем
функцию
,
обратную функции:.

Тогда
(1)

Производная
обратной функции из
:

(2)

Подставляя
выражения (1) и (2) в формулу для определения
,
получим искомую плотность распределения
функции:

.

Пример
7.
Непрерывная
случайная величина
задана плотностью распределенияв интервале (0;),
вне этого интервала.
Найти математическое ожидание функции.

Решение.
Воспользуемся формулой

.

Тогда

Задачи

1.
Дискретная случайная величина
задана законом распределения.

-1

-2

1

2

0,3

0,1

0,2

0,4

Найти
,
если.

2.
Дискретная СВ
задана законом распределения

1

2

3

4

5

0,1

0,2

0,4

0,2

0,1

Записать закон
распределения СВ
.

3. Дискретные
независимые случайные величины
изаданы законами распределения

-1

-2

5

7

0,3

0,7

0,6

0,4

Составить закон
распределения случайной величины
.

4. Дискретная СВ
задана законом распределения

0,2

0,7

0,1

Найти закон
распределения СВ

5. Случайная
величина
распределена равномерно в интервале
(0;).
Найти плотность распределенияслучайной величины.

6. Непрерывная
случайная величина
задана плотностью распределенияв интервале (0; 2); вне этого интервала.
Найти МО функции.

Соседние файлы в папке теория вероятностей,математическая статистика и случайные процессы

  • #

    20.04.201519.48 Mб24теория вероятностей,математическая статистика 1ч.DOC

  • #
  • #
  • #

Содержание:

Величина называется случайной, если она принимает свои значения в зависимости от исходов некоторого испытания (опыта), причем для каждого элементарного исхода она имеет единственное значение. Случайная величина называется дискретной (в узком смысле), если множество всех возможных значений ее конечно.

Геометрически множество всех возможных значений дискретной случайной величины представляет конечную систему точек числовой оси.

Пусть X — дискретная случайная величина, возможными и единственно возможными значениями которой являются числа Случайные величины - определение и вычисление с примерами решения

Обозначим через

Случайные величины - определение и вычисление с примерами решения

вероятности этих значений (т. е. Случайные величины - определение и вычисление с примерами решения есть вероятность события, состоящего в том, что X принимает значение Случайные величины - определение и вычисление с примерами решения).

События Случайные величины - определение и вычисление с примерами решения, очевидно, образуют полную группу событий, поэтому

Случайные величины - определение и вычисление с примерами решения

Определение: Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.

В простейших случаях закон распределения дискретной случайной величины X удобно задавать таблицей:

Случайные величины - определение и вычисление с примерами решения

Здесь первая строка таблицы содержит все возможные значения случайной величины, а вторая — их вероятности.

Заметим, что таблицу значений дискретной случайной величины X, если это целесообразно, формально всегда можно пополнить конечным набором любых чисел, считая их значениями X с вероятностями, равными нулю.

Пример:

В денежной лотерее разыгрывается 1 выигрыш в 1000 руб., 10 выигрышей по 100 руб. и 100 выигрышей по 1 руб. при общем числе билетов 10 000. Найти закон распределения случайного выигрыша X для владельца одного лотерейного билета.

Решение:

Здесь возможные значения для X есть

Случайные величины - определение и вычисление с примерами решения Вероятности их соответственно будут

Случайные величины - определение и вычисление с примерами решения Закон распределения для выигрыша X может быть задан таблицей:

Случайные величины - определение и вычисление с примерами решения

Число появлений т события А при Случайные величины - определение и вычисление с примерами решения независимых испытаниях можно рассматривать как случайную величину X со значениями Случайные величины - определение и вычисление с примерами решения Закон распределения этой величины дается биномиальной формулой

Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения {биномиальное распределение).

В частности, если р мало и п велико, причем Случайные величины - определение и вычисление с примерами решения — ограниченная величина, заключенная между двумя фиксированными положительными числами, то приближенно справедливо распределение Пуассона

Случайные величины - определение и вычисление с примерами решения

Определение случайной величины

Определение 29. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.

Случайные величины (СВ) обозначаются большими буквами X, Y…

Примеры СВ: X – число попаданий при трех выстрелах, Y – абсцисса точки попадания при выстреле.

Случайные величины характеризуются своими возможными значениями, которые обозначаются маленькими буквами, соответствующими случайной величине: х,у…

Например, случайная величина X – число попаданий при трех выстрелах характеризуется следующими возможными значениями: Случайные величины - определение и вычисление с примерами решения.

Определение 30. Случайные величины, принимающие только отдаленные друг от друга возможные значения, которые можно заранее перечислить, называются дискретными случайными величинами (ДСВ).

Примеры ДСВ. 1) В приведенном выше примере СВ X. 2) Случайная величина Z- число вызовов скорой помощи за сутки. Ее возможные значения Случайные величины - определение и вычисление с примерами решения.

Определение 31. Случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток (который иногда имеет резко выраженные границы, а чаще – расплывчатые, неопределенные), называются непрерывными случайными величинами (НСВ).

Примеры НСВ. 1) В приведенном выше примере СНВ Y – абсцисса точки попадания при выстреле. Ее возможные значения заполняют некоторый промежуток Случайные величины - определение и вычисление с примерами решения. 2) СНВ В – ошибка взвешивания тела на весах. Ее возможные значения заполняют некоторый промежуток Случайные величины - определение и вычисление с примерами решения.

Замечание. В классической теории вероятностей рассматриваются события, в современной теории вероятностей – случайные величины.

Определение 32. Случайная величина X называется характеристической случайной величиной события А.

Примеры перехода от событий к случайным величинам

1). Рассмотрим событие А, которое в результате опыта происходит или нет. Введем в рассмотрение случайную величину X такую, что если А происходит, то Х= 1, если А не происходит, то Х=0. Следовательно, Х – дискретная случайная величина с возможными значениями Случайные величины - определение и вычисление с примерами решения.

Если происходит ряд таких опытов, то общее число появлений события А равно сумме характеристических случайных величин X события А во всех опытах.

2). Пусть в действительности точка М совпадает с началом координат – точкой О. При измерении координат точки М были допущены ошибки. Событие А = {Ошибка в положении точки М не превзойдет заданного значения r}. Пусть X, Y – случайные ошибки при измерении координат точки. Это непрерывные случайные величины, так как их возможные значения непрерывно заполняют некоторые промежутки. Событие А равносильно попаданию точки M(X,Y) в пределы круга радиуса r с центром в точке О. Т.е. для выполнения события А случайные величины должны удовлетворять неравенству: Случайные величины - определение и вычисление с примерами решения. Вероятность события А равна вероятности выполнения неравенства, которая может быть определена, если известны свойства X, Y.

Законы распределения случайных величин

Для описания случайной величины (т.е. для возможности сказать, как часто следует ожидать появления тех или других возможных значений случайной величины в результате повторения опыта в одних и тех же условиях) необходимо знать закон распределения вероятностей случайной величины.

Определение 33. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Рассмотрим дискретную случайную величину (ДСВ) Xс возможными значениями Случайные величины - определение и вычисление с примерами решения. Каждое из этих значений возможно, но не достоверно, и X может принять каждое из них с некоторой вероятностью.

В результате опыта величина X примет одно из этих значений, т.е. произойдет одно из полной группы несовместных событий: X = Случайные величины - определение и вычисление с примерами решения или X = Случайные величины - определение и вычисление с примерами решения или … X = Случайные величины - определение и вычисление с примерами решения.

Обозначим Случайные величины - определение и вычисление с примерами решения. Т.к. несовместные события образуют полную группу, то

Случайные величины - определение и вычисление с примерами решения – сумма вероятностей всех возможных значений ДСВ.

Эта суммарная вероятность каким-то образом распределена между отдельными значениями ДСВ. Задать это распределение, т.е. указать, какой вероятностью обладает каждое из событий, значит установить закон распределения СВ.

Говорят, что СВ подчинена данному закону распределения.

Формы закона распределения ДСВ

1. Простейшей формой задания закона распределения является таблица, называемая рядом распределения ДСВ.

Случайные величины - определение и вычисление с примерами решения

Для элементов нижней строки должно выполняться условие: Случайные величины - определение и вычисление с примерами решения.

2. Формой задания закона распределения является многоугольник распределения – фигура, получаемая при графическом изображении ряда распределения.

Возможные значения откладываются по оси {Ох). Вероятности возможных значений откладываются по оси (Оу).

Механическая интерпретация ряда распределения ДСВ: Распределение единичной массы в нескольких изолированных точках по оси (Ох). (В отдельных точках Случайные величины - определение и вычисление с примерами решения Случайные величины - определение и вычисление с примерами решения сосредоточены соответственно массы Случайные величины - определение и вычисление с примерами решения, сумма которых равна 1.)

Случайные величины - определение и вычисление с примерами решения

Пример №1

Рассмотрим опыт, в котором может появиться или не появиться событие А. Р(А) = 0,3. Рассмотрим случайную величину X – число появлений события А в данном опыте, т.е. возможные значения данной величины: Случайные величины - определение и вычисление с примерами решения = 0 (А не появится), Случайные величины - определение и вычисление с примерами решения = 1 (А появится). Построить ряд распределения и многоугольник распределения случайной величины X.

Решение.

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения    Случайные величины - определение и вычисление с примерами решения

Проверка: Случайные величины - определение и вычисление с примерами решения.
 

Пример №2

Стрелок производит 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. За каждое попадание стрелку засчитывастся 5 очков. Построить ряд и многоугольник распределения числа выбитых очков.

Решение.

ДСВ X – число выбитых очков. Вероятность попадания (успеха) равна р = 0,4, вероятность промаха (неудачи) равна q = 1 – 0,4 = 0,6. Количество испытаний n = 3.

Возможные значения X: Случайные величины - определение и вычисление с примерами решения = 0 (0 очков), Случайные величины - определение и вычисление с примерами решения = 1 (5 очков), Случайные величины - определение и вычисление с примерами решения = 2 (10 очков), Случайные величины - определение и вычисление с примерами решения = 3 (15 очков).

По формуле Бернулли Случайные величины - определение и вычисление с примерами решения найдем вероятности этих возможных значений:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Ряд распределения имеет вид:

Случайные величины - определение и вычисление с примерами решения

Проверка: Случайные величины - определение и вычисление с примерами решения.

Многоугольник распределения:

Случайные величины - определение и вычисление с примерами решения

Замечание. Ряд распределения является удобной формой представления закона распределения для ДСВ с конечным числом возможных значений. Однако эта характеристика не универсальна, так как ряд или многоугольник нельзя построить для непрерывной случайной величины (НСВ). Действительно, НСВ имеет бесчисленное множество возможных значений, которые сплошь заполняют некоторый промежуток, и перечислить их в какой-нибудь таблице нельзя.

Кроме того (это будет доказано позднее) каждое отдельное значение НСВ обычно не обладает никакой отличной от нуля вероятностью. Следовательно, для НСВ не существует ряда распределения в том смысле, в каком он существует для ДСВ.

Однако различные области возможных значений НСВ все же не являются одинаково вероятными, и для НСВ существует «распределение вероятностей», хотя и не в том смысле, как для ДСВ.

В силу этого, желательно иметь такую характеристику распределения вероятностей, которая была бы применима для самых разнообразных случайных величин.

Пример №3

Вероятности того, что студент сдаст экзамены в сессию по математическому анализу и органической химии соответственно равны 0,7 и 0,8. Составить закон  распределения случайной величины Х − числа экзаменов, которые сдаст студент.
 

Решение. Рассматриваемая случайная величина X в результате экзамена может принять одно из следующих значений: Случайные величины - определение и вычисление с примерами решения

Найдем вероятности этих значений. Обозначим события:

Случайные величины - определение и вычисление с примерами решения – студент сдаст экзамен по математическому анализу;

Случайные величины - определение и вычисление с примерами решения– студент не сдаст экзамен по математическому анализу;  

Случайные величины - определение и вычисление с примерами решения– студент сдаст экзамен по органической химии;

Случайные величины - определение и вычисление с примерами решения – студент не сдаст экзамен по органической химии.
По условию:

Случайные величины - определение и вычисление с примерами решения

Тогда:

Случайные величины - определение и вычисление с примерами решения

Итак, закон распределения случайной величины  Х  задается таблицей:

Случайные величины - определение и вычисление с примерами решения

Контроль: 0,06+0,38+0,56=1.

Пример №4

Дискретная случайная величина Х задана законом распределения: 

 Случайные величины - определение и вычисление с примерами решения

Найти Случайные величины - определение и вычисление с примерами решения функцию распределения F(x) и построить её график, а также Случайные величины - определение и вычисление с примерами решения
Решение: Так как сумма вероятностей возможных значений случайной величины  Х  равна 1, то Случайные величины - определение и вычисление с примерами решения
Найдем функцию распределения Случайные величины - определение и вычисление с примерами решения
Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.
Если Случайные величины - определение и вычисление с примерами решения то F(х)=0, так как на промежутке (− ∞; х) нет ни одного значения данной случайной величины;

Если Случайные величины - определение и вычисление с примерами решения то F(х) = Р(Х = −1) = 0,1, так как в промежуток (−∞; х) попадает только одно значение Случайные величины - определение и вычисление с примерами решения = −1;

Если Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения так как в промежуток  (−∞; х) попадают два значения Случайные величины - определение и вычисление с примерами решения

Если Случайные величины - определение и вычисление с примерами решения то Случайные величины - определение и вычисление с примерами решения так как в промежуток (−∞; х) попадают три значения Случайные величины - определение и вычисление с примерами решения

1=−1, x2=0 и x3=1;

Если Случайные величины - определение и вычисление с примерами решения то Случайные величины - определение и вычисление с примерами решения

=0,1+0,1+0,3+0,2=0,7, так как  в промежуток (−∞; х) попадают четыре значения Случайные величины - определение и вычисление с примерами решения

Если Случайные величины - определение и вычисление с примерами решения то F(х)=Р(Х = −1)+Р(Х = 0)+Р(Х = 1)+Р(Х = 2)+Р(Х = 3) =

=0,1+0,1+0,3+0,2+0,3=1, так как в промежуток (−∞; х) попадают пять значений Случайные величины - определение и вычисление с примерами решения
Итак,
 Случайные величины - определение и вычисление с примерами решения

Изобразим функцию F(x) графически (рис. 4.3):

Случайные величины - определение и вычисление с примерами решения

Найдем числовые характеристики случайной величины:

Случайные величины - определение и вычисление с примерами решения

Пример №5

Составить закон распределения случайной величины Х − числа выпадений пятерки при трех бросаниях игральной кости. Вычислить Случайные величины - определение и вычисление с примерами решения этой величины.
 

Решение: Испытание состоит в одном бросании игральной кости. Так как кость бросается 3 раза, то число испытаний n = 3.
Вероятность события А − “выпадение пятёрки” в каждом испытании одна и та же и равна 1/6, т.е. Случайные величины - определение и вычисление с примерами решения где    Случайные величины - определение и вычисление с примерами решения − “выпадения не пятёрки”.
Случайная величина  Х может принимать значения: 0;1;2;3.
Вероятность каждого из возможных значений Х найдём по формуле Бернулли: 

Случайные величины - определение и вычисление с примерами решения

Таким образом закон распределения случайной величины Х имеет вид:

Случайные величины - определение и вычисление с примерами решения

Контроль: 125/216+75/216+15/216+1/216=1.
Найдем числовые характеристики случайной величины Х:

Случайные величины - определение и вычисление с примерами решения

Пример №6

Станок-автомат штампует детали. Вероятность того, что изготовленная деталь окажется бракованной равна 0,002. Найти вероятность того, что среди 1000 отобранных деталей окажется:

а) 5 бракованных;

б) хотя бы одна бракованная.
Решение: Число n = 1000 велико, вероятность изготовления бракованной детали р = 0,002 мала, и рассматриваемые события (деталь окажется бракованной) независимы, поэтому имеет место формула Пуассона:

Случайные величины - определение и вычисление с примерами решения

Найдем  Случайные величины - определение и вычисление с примерами решения=np=1000·0,002=2.

а)  Найдем вероятность того, что будет 5 бракованных деталей среди отобранных (m = 5):
Случайные величины - определение и вычисление с примерами решения
б) Найдем вероятность того, что будет хотя бы одна бракованная деталь среди отобранных.
Событие А − “хотя бы одна из отобранных деталей бракованная” является противоположным событиюСлучайные величины - определение и вычисление с примерами решения– “все отобранные детали не бракованные”. Следовательно, Случайные величины - определение и вычисление с примерами решенияОтсюда искомая вероятность равна: 

Случайные величины - определение и вычисление с примерами решения

Математическое ожидание

Определение: Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных ее значений на их вероятности.

Если Случайные величины - определение и вычисление с примерами решения есть (полный) набор всех значений дискретной случайной величины Случайные величины - определение и вычисление с примерами решения — соответствующие им вероятности, то, обозначая буквой М математическое ожидание, будем иметь

Случайные величины - определение и вычисление с примерами решения

где

Случайные величины - определение и вычисление с примерами решения

Очевидно, математическое ожидание случайной величины X не изменится, если таблицу значений ее пополнить конечным числом любых чисел, считая, что вероятности этих чисел равны нулю.

Математическое ожидание М (X) случайной величины есть величина постоянная и поэтому представляет числовую характеристику случайной величины X.

Пример №7

Найти математическое ожидание выигрыша X.

Решение:

Пользуясь помещенной там таблицей, имеем

Случайные величины - определение и вычисление с примерами решения

Как нетрудно сообразить, М(Х) = 21 коп. есть «справедливая» цена билета.

Замечание 1. Отдельные слагаемые Случайные величины - определение и вычисление с примерами решения суммы (1) представляют собой математические ожидания случайных величин Случайные величины - определение и вычисление с примерами решения, возможными значениями которых являются Случайные величины - определение и вычисление с примерами решения с вероятностями соответственно Случайные величины - определение и вычисление с примерами решения.

Замечание 2. Пусть Случайные величины - определение и вычисление с примерами решения —соответственно наименьшие и наибольшие возможные значения случайной величины X. Имеем

Случайные величины - определение и вычисление с примерами решения

Таким образом,

Случайные величины - определение и вычисление с примерами решения

Таким образом, математическое ожидание случайной величины является некоторым ее средним значением.

Замечание 3. Математическое ожидание числа появлений события А при одном испытании совпадает с вероятностью этого события Р(А) = р.

Действительно, пусть X — число появлений события А в данном испытании. Случайная величина X может принимать два значения: Случайные величины - определение и вычисление с примерами решения (событие А наступило) с вероятностью Случайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решения (событие А не наступило) с вероятностью Случайные величины - определение и вычисление с примерами решения

Поэтому

Случайные величины - определение и вычисление с примерами решения

Основные свойства математического ожидания

Укажем важнейшие свойства математического ожидания. Доказательства будут проведены для дискретных случайных величин. Однако соответствующие теоремы справедливы также и для непрерывных случайных величин, поэтому при формулировках этих теорем мы не будем упоминать, что рассматриваемые случайные величины дискретны.

Нам понадобится выяснить смысл арифметических операций Случайные величины - определение и вычисление с примерами решения и т. п., где X и У — дискретные случайные величины. Нетрудно дать соответствующие определения.

Например, под суммой X + У понимается случайная величина Z, значениями которой являются допустимые суммы Случайные величины - определение и вычисление с примерами решения — все возможные значения соответственно случайных величин X и У, причем соответствующие вероятности равны

Случайные величины - определение и вычисление с примерами решения

Если какая-нибудь из комбинаций Случайные величины - определение и вычисление с примерами решения невозможна, то условно полагают Случайные величины - определение и вычисление с примерами решения; это не отразится на математическом ожидании суммы.

Аналогично определяются остальные выражения.

Различают также независимые и зависимые случайные величины. Две случайные величины считаются независимыми, если возможные значения и закон распределения каждой из них один и тот же при любом выборе допустимых значений другой. В противном случае они называются зависимыми. Несколько случайных величин называются взаимно независимыми, если возможные значения и законы распределения любой из них не зависят от того, какие возможные значения приняли остальные случайные величины.

Теорема: Математическое ожидание постоянной величины равно этой постоянной, т. е. если С — постоянная величина, то

Случайные величины - определение и вычисление с примерами решения

Доказательство: Постоянную величину С можно рассматривать как случайную дискретную величину, принимающую лишь одно возможное значение С с вероятностью р = 1. Поэтому

Случайные величины - определение и вычисление с примерами решения

Теорема: Математическое ожидание суммы двух (или нескольких) случайных величин равно сумме математических ожиданий этих величин, т. е. если X и У — случайные величины, то

Случайные величины - определение и вычисление с примерами решения

и т. п.

Доказательство: 1) Пусть случайная величина X принимает значения Случайные величины - определение и вычисление с примерами решения с вероятностями Случайные величины - определение и вычисление с примерами решения а случайная величина У принимает значения Случайные величины - определение и вычисление с примерами решения с вероятностями Случайные величины - определение и вычисление с примерами решения 1, 2, …, m). Тогда возможными значениями случайной величины X + У будут суммы Случайные величины - определение и вычисление с примерами решения вероятности которых равны

Случайные величины - определение и вычисление с примерами решения

Как было отмечено выше, все комбинации Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения можно считать допустимыми, причем если сумма Случайные величины - определение и вычисление с примерами решения невозможна, то полагаем Случайные величины - определение и вычисление с примерами решения.

Имеем

Случайные величины - определение и вычисление с примерами решения

Воспользовавшись очевидными свойствами суммы: 1) сумма не зависит от порядка слагаемых и 2) множитель, не зависящий от индекса суммирования, можно выносить за знак суммы, из (4) получим

Случайные величины - определение и вычисление с примерами решения

Сумма Случайные величины - определение и вычисление с примерами решения представляет собой вероятность события, состоящего в том, что случайная величина X принимает значение xt при условии, что случайная величина У принимает одно из своих возможных значений (что достоверно); это сложное событие, очевидно, эквивалентно тому, что X принимает значение xt и поэтому

Случайные величины - определение и вычисление с примерами решения

Аналогично,

Случайные величины - определение и вычисление с примерами решения

Тогда из формулы (5) получаем

Случайные величины - определение и вычисление с примерами решения

что и требовалось доказать.

2) Для нескольких случайных величин, например для трех X, У и Z, имеем

Случайные величины - определение и вычисление с примерами решения

и т. д.

Следствие. Если С — постоянная величина, то

Случайные величины - определение и вычисление с примерами решения

Теорема: Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий, т. е.

Случайные величины - определение и вычисление с примерами решения

где X и У — независимые случайные величины.

Доказательство: Пусть Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения — законы распределения соответственно случайных величин X и У. Так как X и У независимы, то полный набор значений случайной величины XY состоит из всех произведений вида Случайные величины - определение и вычисление с примерами решения, причем вероятности этих значений по теореме умножения для независимых событий равны Случайные величины - определение и вычисление с примерами решения.

Имеем

Случайные величины - определение и вычисление с примерами решения

что и требовалось доказать.

Следствие 1. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению математических ожиданий этих величин.

Действительно, например, для трех взаимно независимых случайных величин X, У, Z имеем

Случайные величины - определение и вычисление с примерами решения

и т. п.

Следствие 2. Постоянный множитель можно выносить за знак математического ожидания.

Если С — постоянная величина, а X — любая случайная величина, то, учитывая, что С и X независимы, на основании теоремы 1 получим

Случайные величины - определение и вычисление с примерами решения

Следствие 3. Математическое ожидание разности любых двух случайных величин X и Y равно разности математических ожиданий этих величину т. е.

Случайные величины - определение и вычисление с примерами решения

Действительно, используя теорему о сумме математических ожиданий и следствие 2, получим

Случайные величины - определение и вычисление с примерами решения

Дисперсия

Пусть X — случайная величина, М(Х) — ее математическое ожидание (среднее значение). Случайную величину X – М(Х) называют отклонением.

Теорема: Для любой случайной величины X математическое ожидание ее отклонения равно нулю, т. е.

Случайные величины - определение и вычисление с примерами решения

Локазательство. Действительно, учитывая, что М(Х) — постоянная величина, имеем

Случайные величины - определение и вычисление с примерами решения

Определение: Дисперсией (рассеянием) случайной величины называют математическое ожидание квадрата отклонения этой величины от ее математического ожидания.

Отсюда, обозначая дисперсию буквой D, для случайной величины X будем иметь

Случайные величины - определение и вычисление с примерами решения

Очевидно, что дисперсия случайной величины постоянна, т. е. является числовой характеристикой этой величины.

Если случайная величина X имеет закон распределения Случайные величины - определение и вычисление с примерами решения, то, обозначая для краткости Случайные величины - определение и вычисление с примерами решения, из формулы (1) будем иметь

Случайные величины - определение и вычисление с примерами решения

Корень квадратный из дисперсии D{X) называется средним квадратичным отклонением а (иначе— стандартом) этой величины:

Случайные величины - определение и вычисление с примерами решения

Пример №8

Пусть закон распределения случайной величины задан таблицей:

Случайные величины - определение и вычисление с примерами решения

Определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратичное отклонение Случайные величины - определение и вычисление с примерами решения. Имеем

Случайные величины - определение и вычисление с примерами решения

отсюда

Случайные величины - определение и вычисление с примерами решения

Дисперсия D{X)служит мерой рассеяния (разброса)значений дискретной случайной величины X. Действительно, пусть D(X) мала. Тогда из формулы (2) получаем, что все слагаемые Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения также малы. Отсюда следует, что если не обращать внимания на значения, имеющие малую вероятность (такие значения практически невозможны), то все остальные значения Случайные величины - определение и вычисление с примерами решения мало отклоняются от Случайные величины - определение и вычисление с примерами решения. Таким образом, при малой дисперсии D(X) почти достоверно, что значения случайной величины концентрируются около ее математического ожидания (за исключением, быть может, сравнительно малого числа отдельных значений). В частности, если D(X) = 0, то, очевидно, X = Случайные величины - определение и вычисление с примерами решения и случайная величина представляет собой точку на числовой оси. Если D(X) велика, то концентрация значений случайной величины X около какого-нибудь центра исключается.

Теорема: Дисперсия случайной величины равна разности между математическим ожиданием квадрата этой величины и квадратом ее математического ожидания, т. е.

Случайные величины - определение и вычисление с примерами решения

Доказательство: Используя основные теоремы о математических ожиданиях случайных величин, имеем

Случайные величины - определение и вычисление с примерами решения

Теорема: Дисперсия постоянной величины равна нулю. Действительно, если С — постоянная величина, то М(С) = С и, следовательно,

Случайные величины - определение и вычисление с примерами решения

Результат этот очевиден, так как постоянная величина изображается одной точкой на числовой оси Ох и не имеет рассеяния.

Теорема: Дисперсия суммы двух независимых случайных величин X и Y равна сумме дисперсий этих величин, т. е.

Случайные величины - определение и вычисление с примерами решения

Доказательство: Так как

Случайные величины - определение и вычисление с примерами решения

то имеем

Случайные величины - определение и вычисление с примерами решения

где

Случайные величины - определение и вычисление с примерами решения

— так называемый корреляционный момент величин X и У. Если случайные величины X и У независимы, то случайные величины X – М(Х) и У – М(У), отличающиеся от X и У на постоянные величины, очевидно, также независимы. Поэтому в силу теорем 3 имеем

Случайные величины - определение и вычисление с примерами решения

и, следовательно, справедлива формула (5).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме дисперсий этих величин.

Следствие 2. Если С — постоянная величина, то

Случайные величины - определение и вычисление с примерами решения

Таким образом, случайные величины X и X + С имеют одинаковую меру рассеяния.

Теорема: Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат, т. е.

Случайные величины - определение и вычисление с примерами решения

Доказательство: Если С — постоянный множитель, то в силу теоремы 2 имеем

Случайные величины - определение и вычисление с примерами решения

Таким образом, рассеяние величины СХ в С2 раз больше рассеяния величины X.

Следствие. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин, т. е. если случайные величины X и У независимы, то

Случайные величины - определение и вычисление с примерами решения

Действительно, на основании теорем 4 и 5 имеем

Случайные величины - определение и вычисление с примерами решения

Математическое ожидание и дисперсия случайной величины являются ее основными числовыми характеристиками.

Пример №9

Определить математическое ожидание и дисперсию для числа X появления события А при п независимых испытаниях, в каждом из которых вероятность события Р(А) = р постоянна.

Случайная величина X принимает значения Случайные величины - определение и вычисление с примерами решения и распределена по биномиальному закону

Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения

Величину X можно рассматривать как сумму независимых случайных величин

Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения — число появлений события А в Случайные величины - определение и вычисление с примерами решения-м испытании. Случайная величина X, принимает лишь два значения: 1, если событие А появилось в i-м испытании, и 0, если событие А не произошло в i-м испытании. Вероятности этих значений Случайные величины - определение и вычисление с примерами решения. Отсюда

Случайные величины - определение и вычисление с примерами решения

. Отсюда, используя теорему о математическом ожидании суммы, будем иметь

Случайные величины - определение и вычисление с примерами решения

Таким образом, математическое ожидание числа появлений события А в условиях схемы Бернулли совпадает со «средним числом» появления этого события в данной серии испытаний. Для дисперсии случайной величины X, получаем

Случайные величины - определение и вычисление с примерами решения

Отсюда по свойству дисперсии суммы независимых случайных величин (теорема) будем иметь

Случайные величины - определение и вычисление с примерами решения

Поэтому среднее квадратичное отклонение (стандарт)

Случайные величины - определение и вычисление с примерами решения

Формулы (8) и (9) дают математическое ожидание и дисперсию для биномиального закона распределения.

Замечание. Теперь становится понятным смысл случайной величины

Случайные величины - определение и вычисление с примерами решения

в приближенных формулах Лапласа, а именно, t представляет собой отклонение числа появлений события А от его математического ожидания, измеренное в стандартах (так называемое нормированное отклонение).

Рассмотрим п дискретных попарно независимых случайных величин Случайные величины - определение и вычисление с примерами решения, дисперсии Случайные величины - определение и вычисление с примерами решения которых равномерно ограничены:

Случайные величины - определение и вычисление с примерами решения

Эти величины, возможно, имеют значительный разброс, однако их среднее арифметическое

Случайные величины - определение и вычисление с примерами решения

ведет себя достаточно «кучно».

А именно, при указанных выше условиях имеет место замечательная теорема:

Теорема Чебышева: Для любого положительного Случайные величины - определение и вычисление с примерами решения> 0 вероятность неравенства

Случайные величины - определение и вычисление с примерами решения

сколь угодно близка к 1, если число случайных величин п достаточно велико, т. е.

Случайные величины - определение и вычисление с примерами решения

(закон .больших чисел в форме Чебышева).

Теорема Чебышева находит применение в теории ошибок, статистике и т. п.

Непрерывные случайные величины. Функция распределения

Случайную величину X будем называть непрерывной, если все ее возможные значения целиком заполняют некоторый конечный или бесконечный промежуток Случайные величины - определение и вычисление с примерами решения числовой оси. Предполагается, что при каждом испытании случайная величина X принимает одно и только одно значение Случайные величины - определение и вычисление с примерами решения. Заметим, что дискретные и непрерывные случайные величины не исчерпывают все типы случайных величин.

Для характеристики непрерывной случайной величины X вводят функцию распределения

Случайные величины - определение и вычисление с примерами решения

называемую интегральным законом распределения.

Если значения случайной величины X рассматривать как точки числовой оси Ох, то Ф(х) представляет собой вероятность события, состоящего в том, что наблюдаемое значение случайной величины X принадлежит интервалу Случайные величины - определение и вычисление с примерами решения, т. е. находится левее точки х. Этот интервал зависит от правого конца его х, и поэтому естественно вероятность является функцией от х, определенной на всей оси Случайные величины - определение и вычисление с примерами решения.

Заметим, что функция распределения имеет смысл также для дискретных случайных величин.

Функция распределения Ф(х) обладает следующими свойствами:

I.Функция Ф(х) есть неубывающая функция аргумента х, т. е. если Случайные величины - определение и вычисление с примерами решения то Случайные величины - определение и вычисление с примерами решения.

Действительно, если х’ > х, то из события Случайные величины - определение и вычисление с примерами решения очевидно, следует событие Случайные величины - определение и вычисление с примерами решения. Но тогда вероятность Ф(х’) второго события не меньше вероятности Ф(х) первого.

II.Так как Ф(х) — вероятность, то справедливо неравенство

Случайные величины - определение и вычисление с примерами решения

III.Случайные величины - определение и вычисление с примерами решения

Действительно, событие Случайные величины - определение и вычисление с примерами решения очевидно, невозможно, а событие Случайные величины - определение и вычисление с примерами решения достоверно.

Зная функцию распределения Ф(х), можно для любого промежутка Случайные величины - определение и вычисление с примерами решения определить Случайные величины - определение и вычисление с примерами решения — вероятность попадания случайной величины X в этот промежуток (здесь принято левый конец а промежутка включать, а правый Случайные величины - определение и вычисление с примерами решения не включать в этот промежуток).

В самом деле, пусть А есть событие Случайные величины - определение и вычисление с примерами решения, В — событие Случайные величины - определение и вычисление с примерами решения и С — событие Случайные величины - определение и вычисление с примерами решения.

Тогда, очевидно, имеем

Случайные величины - определение и вычисление с примерами решения

Так как события А и С несовместны, то по теореме сложения вероятностей получаем Р(Б) = Р(А) + Р(С), отсюда

Случайные величины - определение и вычисление с примерами решения

причем Случайные величины - определение и вычисление с примерами решения в силу свойства I.

Таким образом, вероятность того, что случайная величина X примет значение, принадлежащее промежутку [a, b), равна приращению ее функции распределения на этом промежутке.

В дальнейшем случайную величину X будем называть непрерывной лишь в том случае, когда ее функция распределения Ф(х) непрерывна на оси Случайные величины - определение и вычисление с примерами решения.

Теорема: Вероятность (до опыта) того, что непрерывная случайная величина X примет заранее указанное строго определенное значение а, равна нулю.

В самом деле, в силу формулы (2) имеем

Случайные величины - определение и вычисление с примерами решения

Положим, что Случайные величины - определение и вычисление с примерами решения; тогда в пределе промежуток [а, х) будет содержать единственную точку а. Кроме того, в силу непрерывности функции Ф(х) в точке а имеем

Случайные величины - определение и вычисление с примерами решения

Переход я к пределу при Случайные величины - определение и вычисление с примерами решения в равенстве (3), получим

Случайные величины - определение и вычисление с примерами решения

Таким образом, при непрерывной функции распределения вероятность «попадания в точку» равна нулю.

Следствие. Для непрерывной случайной величины X справедливы равенства

Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения — ее функция распределения. Действительно,

Случайные величины - определение и вычисление с примерами решения

Аналогично доказывается второе равенство.

Замечание. В общем случае невозможные события и события с нулевой вероятностью могут оказаться неэквивалентными.

Предположим теперь, что для непрерывной случайной величины X ее функция распределения Ф(х) имеет непрерывную производную

Случайные величины - определение и вычисление с примерами решения

Функцию ф(х) называют плотностью вероятности (для данного распределения) или дифференциальным законом распределения случайной величины X.

Термин плотность вероятности имеет следующий смысл. Пусть Случайные величины - определение и вычисление с примерами решения — бесконечно малый промежуток. Тогда в силу формулы (2′) имеем

Случайные величины - определение и вычисление с примерами решения

Заменяя бесконечно малое приращение функции Случайные величины - определение и вычисление с примерами решения ее дифференциалом Случайные величины - определение и вычисление с примерами решения, получаем приближенное равенство

Случайные величины - определение и вычисление с примерами решения

Таким образом, плотность вероятности представляет собой отношение вероятности попадания точки в бесконечно малый промежуток к длине этого промежутка.

Так как плотность вероятности ф(х) является производной неубывающей функции Ф(х), то она неотрицательна: Случайные величины - определение и вычисление с примерами решения. В отличие от вероятности, плотность вероятности может принимать сколь угодно большие значения.

Так как Ф(х) является первообразной для ф(х), то на основании формулы Ньютона—Лейбница имеем

Случайные величины - определение и вычисление с примерами решения

Отсюда в силу (3′) получаем

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Геометрически (рис. 271) эта вероятность представляет собой площадь S криволинейной трапеции, ограниченной — графиком плотности вероятности у = ф(х), осью Ох и двумя ординатами Случайные величины - определение и вычисление с примерами решения

Полагая Случайные величины - определение и вычисление с примерами решения получаем достоверное событие Случайные величины - определение и вычисление с примерами решения, вероятность которого равна единице. Следовательно,

Случайные величины - определение и вычисление с примерами решения

Полагая в формуле (6) Случайные величины - определение и вычисление с примерами решения и обозначая для ясности переменную интегрирования х другой буквой, например t (это законно для определенного интеграла), получаем функцию распределения

Случайные величины - определение и вычисление с примерами решения

Числовые характеристики непрерывной случайной величины

Будем рассматривать бесконечно малый промежуток Случайные величины - определение и вычисление с примерами решения как «жирную точку» х оси Ох. Тогда вероятность того, что случайная величина X принимает значение, совпадающее с этой «жирной точкой» х, равна y(x)dx и математическое ожидание этого события есть

Случайные величины - определение и вычисление с примерами решения

Представляя прямую Случайные величины - определение и вычисление с примерами решения как бесконечное множество таких жирных точек, по аналогии с определением математического ожидания дискретной случайной величины, получаем естественное определение математического ожидания непрерывной случайной величины (только здесь суммирование заменяется интегрированием).

Определение: Под математическим о жид а ни ем непрерывной случайной величины X понимается число

Случайные величины - определение и вычисление с примерами решения

(конечно, это определение имеет смысл лишь для таких случайных величин X, для которых интеграл (1) сходится).

Для дисперсии непрерывной случайной величины X сохраним прежнее определение

Случайные величины - определение и вычисление с примерами решения

Из формулы (1) вытекает

Случайные величины - определение и вычисление с примерами решения

(конечно, в предположении, что интеграл (2) сходится). Можно также пользоваться формулой

Случайные величины - определение и вычисление с примерами решения

Можно доказать, что основные свойства математического ожидания и дисперсии дискретных случайных величин сохраняются также и для непрерывных случайных величин.

Пусть теперь все возможные значения непрерывной случайной величины X целиком заполняют конечный отрезок Случайные величины - определение и вычисление с примерами решения. Тогда ф(х) = 0 при Случайные величины - определение и вычисление с примерами решения и при Случайные величины - определение и вычисление с примерами решения и, следовательно,

Случайные величины - определение и вычисление с примерами решения

Аналогично,

Случайные величины - определение и вычисление с примерами решения

Равномерное распределение

Непрерывная случайная величина X, все возможные значения которой заполняют конечный промежуток Случайные величины - определение и вычисление с примерами решения, называется равномерно распределенной, если ее плотность вероятности ф(х) постоянна на этом промежутке.

Иными словами, для равномерно распределенной случайной величины все ее возможные значения являются равновозможными.

Пусть, например, Случайные величины - определение и вычисление с примерами решения. Так как в этом случае ф(х) = const при Случайные величины - определение и вычисление с примерами решения, то

Случайные величины - определение и вычисление с примерами решения

отсюда

Случайные величины - определение и вычисление с примерами решения

Пусть Случайные величины - определение и вычисление с примерами решения (рис. 272). Тогда

Случайные величины - определение и вычисление с примерами решения

т. е.

Случайные величины - определение и вычисление с примерами решения

где L — длина (линейная мера) всего отрезка Случайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решения — длина частичного отрезка Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения

Значения случайной величины X, т. е. точки х отрезка Случайные величины - определение и вычисление с примерами решения, можно рассматривать как всевозможные элементарные исходы некоторого испытания. Пусть событие А состоит в том, что результат испытания принадлежит отрезку Случайные величины - определение и вычисление с примерами решения. Тогда точки отрезка Случайные величины - определение и вычисление с примерами решения есть благоприятные элементарные исходы события А.

Согласно формуле (1) имеем геометрическое определение вероятности: под вероятностью события А понимается отношение меры Случайные величины - определение и вычисление с примерами решения множества элементарных исходов, благоприятствующих событию А, к мере L множества всех возможных элементарных исходов в предположении, что они равновозможны:

Случайные величины - определение и вычисление с примерами решения

Это определение естественно переносит классическое определение вероятности на случай бесконечного числа элементарных исходов.

Аналогичное определение можно ввести также тогда, когда элементарные исходы испытания представляют собой точки плоскости или пространства.

Пример №10

В течение часа Случайные величины - определение и вычисление с примерами решения (t —- время в часах) на остановку прибывает один и только один автобус. Какова вероятность того, что пассажиру, пришедшему на эту остановку в момент времени t = 0, придется ожидать автобус не более 10 мин?

Решение:

Здесь множество всех элементарных исходов образует отрезок [0, 1], временная длина которого L = 1, а множество благоприятных элементарных исходов составляет отрезок [0,1/6] временной длины Случайные величины - определение и вычисление с примерами решения = 1/6.

Поэтому искомая вероятность есть

Случайные величины - определение и вычисление с примерами решения

Пример №11

В квадрат К со стороной а с вписанным в него кругом S (рис. 273) случайно бросается материальная точка М. Какова вероятность того, что эта точка попадает в круг S?

Случайные величины - определение и вычисление с примерами решения

Решение:

Здесь площадь квадрата есть К = а2, а площадь круга Случайные величины - определение и вычисление с примерами решения

За искомую вероятность естественно принять отношение

Случайные величины - определение и вычисление с примерами решения

Эта вероятность, а следовательно, и число л, очевидно, могут быть определены экспериментально.

Нормальное распределение

Распределение вероятностей случайной величины X называется нормальным, если плотность вероятности подчиняется закону Гаусса

Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения — некоторые постоянные, причем а > 0 и b > 0. В этом случае график плотности вероятности представляет собой смещенную кривую Гаусса (рис. 274), симметричную относительно прямой Случайные величины - определение и вычисление с примерами решения и с максимальной ординатой Случайные величины - определение и вычисление с примерами решения

Для удобства выкладок эту кривую центрируем, введя новые координаты Случайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решения. Тогда закон Гаусса примет вид

Случайные величины - определение и вычисление с примерами решения

и будет представлять собой дифференциальный закон распределения случайной величины Случайные величины - определение и вычисление с примерами решения

Постоянные а и b в формуле (2) не являются произвольными, так как для плотности вероятностей Случайные величины - определение и вычисление с примерами решения должно быть выполнено условие

Случайные величины - определение и вычисление с примерами решения

Делая замену переменной Случайные величины - определение и вычисление с примерами решения, будем иметьСлучайные величины - определение и вычисление с примерами решения

Отсюда на основании формулы (3) находим

Случайные величины - определение и вычисление с примерами решения

т. е.

Случайные величины - определение и вычисление с примерами решения

Таким образом,

Случайные величины - определение и вычисление с примерами решения

Для математического ожидания случайной величины будем иметь

Случайные величины - определение и вычисление с примерами решения

(ввиду нечетности подынтегральной функции). Отсюда

Случайные величины - определение и вычисление с примерами решения

Таким образом, при нормальном распределении случайной величины X ее математическое ожидание х0 совпадает с точкой пересечения оси симметрии графика соответствующей кривой Гаусса с осью Ох (центр рассеивания).

Для дисперсии случайной величины X получаем

Случайные величины - определение и вычисление с примерами решения

Полагая Случайные величины - определение и вычисление с примерами решения и интегрируя по частям, с учетом формулы (4) будем иметь

Случайные величины - определение и вычисление с примерами решения

Таким образом, из формулы (9) получаем

Случайные величины - определение и вычисление с примерами решения

и, следовательно,

Случайные величины - определение и вычисление с примерами решения

Отсюда для среднего квадратичного отклонения величины X получим

Случайные величины - определение и вычисление с примерами решения

Введя обозначение Случайные величины - определение и вычисление с примерами решения, будем иметь

Случайные величины - определение и вычисление с примерами решения

Подставляя эти значения в формулу (1), получим стандартный вид нормального закона распределения случайной величины X в дифференциальной форме:

Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения

Таким образом, нормальный закон распределения зависит только от двух параметров: математического ожидания и среднего квадратичного отклонения.

Нормальный закон распределения случайной величины в интегральной форме имеет вид

Случайные величины - определение и вычисление с примерами решения

Формулы (11) и (12) упрощаются, если ввести нормированное отклонение

Случайные величины - определение и вычисление с примерами решения

тогда

Случайные величины - определение и вычисление с примерами решения

. Полагая в интеграле (12) Случайные величины - определение и вычисление с примерами решения, получаем

Случайные величины - определение и вычисление с примерами решения

где t определяется формулой (13) и Случайные величины - определение и вычисление с примерами решения — стандартный интеграл вероятностей.

Отсюда получаем, что для случайной величины X, подчиняющейся нормальному закону, вероятность попадания ее на отрезок Случайные величины - определение и вычисление с примерами решения есть

Случайные величины - определение и вычисление с примерами решения

В частности, вероятность того, что отклонение величины X от ее математического ожидания х0 по абсолютной величине будет меньше а, равна

Случайные величины - определение и вычисление с примерами решения

Полагая Случайные величины - определение и вычисление с примерами решения, получаем

Случайные величины - определение и вычисление с примерами решения

т. е. такое отклонение является почти достоверным (правило трех сигм).

Нормальный закон распределения вероятностей находит многочисленные применения в теории ошибок, теории стрельбы, физике и т. д.

Пример №12

Задана плотность распределения

Случайные величины - определение и вычисление с примерами решения

Определить коэффициент к и функцию распределения Случайные величины - определение и вычисление с примерами решения

Решение.

Случайные величины - определение и вычисление с примерами решения  Отсюда Случайные величины - определение и вычисление с примерами решения

Построим график Случайные величины - определение и вычисление с примерами решения (рис. 2.12).

Случайные величины - определение и вычисление с примерами решения

Найдем функцию распределения, используя (2.7):

Случайные величины - определение и вычисление с примерами решения

Построим график Случайные величины - определение и вычисление с примерами решения (рис. 2.13).

Случайные величины - определение и вычисление с примерами решения

Функция распределения – универсальный закон распределения (для ДСВ и НСВ)

Для количественной характеристики распределения вероятностей любой случайной величины удобнее пользоваться не вероятностью события X = х, а вероятностью X < х, где х – некоторая текущая переменная.

Определение 34. Задание вероятности выполнения неравенства X < х , рассматриваемой как функции аргумента х, называется функцией распределения (или интегральным законом распределения, или интегральной функцией распределения) случайной величины X:

Случайные величины - определение и вычисление с примерами решения.

F(x) – универсальная характеристика: существует как для ДСВ, так и для НСВ. Она полностью характеризует СВ с вероятностной точки зрения, т.е. является одной из форм закона распределения.

Геометрическая интерпретация F(x): если рассматривать СВ как случайную точку X оси (Ох), которая в результате опыта может занять то или иное положение, то функция распределения F(x) есть вероятность того, что эта случайная точка X в результате опыта попадет левее точки х.

Случайные величины - определение и вычисление с примерами решения

Для ДСВ X, которая может принимать возможные значения Случайные величины - определение и вычисление с примерами решения функция распределения будет иметь вид:

Случайные величины - определение и вычисление с примерами решения,

где символ Случайные величины - определение и вычисление с примерами решения < х под знаком суммы обозначает, что суммирование распространяется на все возможные значения СВ, которые по своей величине меньше аргумента х.

Свойства F(x).

1. F(x) – неотрицательная функция, заключенная между 0 и 1: Случайные величины - определение и вычисление с примерами решения.

Пояснение: справедливость свойства вытекает из того, что F(x) определена как вероятность события X < х.

2. F(x) – неубывающая функция своего аргумента, т.е. при Случайные величины - определение и вычисление с примерами решения.

Пояснение (см. рис. выше): будем увеличивать х, т.е. перемещать точку х вправо по оси (Ох). Очевидно, что при этом вероятность того, что точка X попадет левее точки х не может уменьшаться, следовательно, функция F(x) с возрастанием х убывать не может.

3. Случайные величины - определение и вычисление с примерами решения.

Пояснение (см. рис. выше): будем неограниченно перемещать точку х влево по оси (Ох). При этом попадание случайной точки X левее точки х в пределе становится невозможным событием. Поэтому естественно полагать, что вероятность этого события стремится к нулю.

4. Случайные величины - определение и вычисление с примерами решения.

Пояснение (см. рис. выше): будем неограниченно перемещать точку х вправо по оси (Ох). При этом попадание случайной точки X левее точки х в пределе становится достоверным событием. Вероятность достоверного события по определению равна 1.

5. F(x) – непрерывна слева, т.е. Случайные величины - определение и вычисление с примерами решения.

6. Вероятность появления случайной величины в интервале Случайные величины - определение и вычисление с примерами решения равна разности значений функции распределения в концах интервала:

Случайные величины - определение и вычисление с примерами решения.

Доказательство.

Рассмотрим три события: Случайные величины - определение и вычисление с примерами решения, причем события В и С -несовместные.

Очевидно, что А = В + С. По теореме сложения вероятностей несовместных событий имеем:

Случайные величины - определение и вычисление с примерами решения.

Перепишем данное равенство, воспользовавшись определением функции распределения:

Случайные величины - определение и вычисление с примерами решения, отсюда:

Случайные величины - определение и вычисление с примерами решения.    (что и требовалось доказать)

Замечание. Если F(x) возрастает в каждой точке интервала (а; b), то возможные значения случайной величины непрерывно заполняют этот интервал, т.к. согласно свойству № 6, вероятность того, что СВ примет значение, заключенное в сколь угодно малой части Случайные величины - определение и вычисление с примерами решения этого интервала отлична от нуля. Таким образом, монотонно возрастающей функции F(x) на интервале (а; b) соответствует непрерывная случайная величина, возможные значения которой непрерывно заполняют этот интервал. Отсюда следует другое определение НСВ:

Определение 35. Непрерывной случайной величиной называется случайная величина, функция распределения которой непрерывна.

Будем неограниченно уменьшать участок Случайные величины - определение и вычисление с примерами решения, полагая, что Случайные величины - определение и вычисление с примерами решения. В пределе вместо вероятности попадания случайной величины X в интервал Случайные величины - определение и вычисление с примерами решенияполучим вероятность того, что эта величина примет отдельно взятое значение Случайные величины - определение и вычисление с примерами решения:

Случайные величины - определение и вычисление с примерами решения (из свойства 6)

Значение этого предела зависит от того, непрерывна ли функция F(x) в точке Случайные величины - определение и вычисление с примерами решения или же терпит разрыв.

Если в точке Случайные величины - определение и вычисление с примерами решения функция F(x) имеет разрыв, то Случайные величины - определение и вычисление с примерами решения — значению скачка в точке в Случайные величины - определение и вычисление с примерами решения.

Если в точке Случайные величины - определение и вычисление с примерами решения функция F(x) непрерывна, то Случайные величины - определение и вычисление с примерами решения.

Вывод: т.к. непрерывная случайная величина X имеет непрерывную функцию распределения F(x), то из равенства нулю предела для непрерывной функции в точке Случайные величины - определение и вычисление с примерами решения следует, что и вероятность любого отдельного значения непрерывной случайной величины равна нулю:

Случайные величины - определение и вычисление с примерами решения.

Таким образом, нулевой вероятностью могут обладать не только невозможные, но и возможные события, т.е. событие Случайные величины - определение и вычисление с примерами решения – возможно, а Р(А) = 0. Р(Случайные величины - определение и вычисление с примерами решения) = 1, но Случайные величины - определение и вычисление с примерами решения – не достоверно. Говорят, что А происходит почти всегда.

Вывод парадоксален, но он вполне согласуется со статистическим определением вероятности. Равенство нулю вероятности события характеризует тенденцию частоты этого события неограниченно убывать при увеличении числа опытов, т.е. частота только приближается к вероятности, и ни в коей мере не означает, что данное событие равно нулю.

Например: 1.) Тело имеет определенную массу, а ни одна из точек внутри тела определенной массой не обладает. Сколь угодно малый объем, выделенный из тела, обладает конечной массой, но она стремится к нулю по мере его уменьшения и равна нулю для точки.    2.) При непрерывном

распределении вероятностей вероятность попадания на сколь угодно малый участок может быть отлична от нуля, тогда как вероятность попадания в строго определенную точку равна нулю.

Механическая интерпретация непрерывной случайной величины: распределение единичной массы непрерывно по оси абсцисс, причем ни одна точка не обладает конечной массой.

Следствия из свойства 6:

1. Если все возможные значения X принимает интервал (a; b), F(x) = 0 при Случайные величины - определение и вычисление с примерами решения ; F(x) = 1 при Случайные величины - определение и вычисление с примерами решения.

2. Случайные величины - определение и вычисление с примерами решения, т.е для НСВ граничные точки могут как включаться, так и не включаться в промежуток (a; b).

Графики функции распределения

1. Для ДСВ функция распределения Случайные величины - определение и вычисление с примерами решения.
Когда текущая переменная х проходит через какое-нибудь из возможных значений ДСВ X, функция распределения F(x) меняется скачкообразно, причем величина скачка равна вероятности этого значения. Таким образом, F(x) любой ДСВ – разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям СВ и равны вероятностям этих значений. Сумма всех скачков равна 1.

Случайные величины - определение и вычисление с примерами решения

2. Для НСВ функция распределения – непрерывная функция во всех точках и заключенная между нулем и единицей (следует из свойств).

Случайные величины - определение и вычисление с примерами решения

Замечание. 

Случайные величины - определение и вычисление с примерами решения

Если для ДСВ увеличить число возможных значений и уменьшить интервалы между ними, то число скачков будет больше, а сами скачки меньше, следовательно, ступенчатая кривая становится более плавной, ДСВ постепенно приближается к НСВ, а ее функция распределения – к непрерывной функции распределения.

3. Можно построить примеры СВ, возможные значения которых непрерывно заполняют некоторый промежуток, но для которых F(x) не везде является непрерывной, а в отдельных точках терпит разрыв. Такие СВ называются смешанными.

График F(x) в общем случае представляет собой график неубывающей функции, значения которой начинаются от 0 и доходят до 1, причем в отдельных точках функция может иметь скачки.

Случайные величины - определение и вычисление с примерами решения

Пример №13

Стрелок производит 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. Построить функцию распределения числа попаданий. Найти вероятность того, что будет а) меньше 2 попаданий, b) не больше двух попаданий, с) больше одного попадания, d) число попаданий будет либо 1, либо 2.

Решение.

Ранее мы построили ряд распределения числа попаданий. Ряд распределения имеет вид: 

Случайные величины - определение и вычисление с примерами решения

Это ДСВ, следовательно, функция распределения находится по формуле: Случайные величины - определение и вычисление с примерами решения.

1) при Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

2) при Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

3) при Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

4) при Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

5) при Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Найдем вероятность того, что будет а) меньше 2 попаданий, b) не больше двух попаданий, с) больше одного попадания, d) число попаданий будет либо 1, либо 2.

a) Случайные величины - определение и вычисление с примерами решения = (по определению функции распределения) = F(2) = 0,648

b) Случайные величины - определение и вычисление с примерами решения = Р(Х < 2) + Р(Х = 2) = F(2) + Р(Х = 2) = 0,648 + 0,288 = 0,936

c) Р(Х > 1) = Случайные величины - определение и вычисление с примерами решения = 1 – [Р(Х < 1) + Р(Х = 1)] = 1 – [F(l) + Р(Х = 1)] = 1 – [0,216 + 0,432] = 0,352

d) Случайные величины - определение и вычисление с примерами решения + Р(Х = 2) = F(2) – F( 1) + Р(Х = 2) = 0,648 – 0,216 + 0,288 = 0,72

Пример №14

Функция распределения непрерывной случайной величины задана выражением:

Случайные величины - определение и вычисление с примерами решения

Найти коэффициент а. Определить вероятность того, что СВ X в результате опыта примет значение на участке а) (1; 2), b)[1; 2].

Решение.

Т. к. X – НСВ, то F(x) – непрерывная функция, следовательно, при х = 3 должно выполняться равенство, что F(x) = 1, т. е.

Случайные величины - определение и вычисление с примерами решения.

Найдем вероятность того, что Х в результате опыта примет значение на участке (1; 2):

Случайные величины - определение и вычисление с примерами решения.

Найдем вероятность того, что Х в результате опыта примет значение на участке [1; 2]:

Случайные величины - определение и вычисление с примерами решения = (т.к. СВ – непрерывная, то) = Случайные величины - определение и вычисление с примерами решения.

Замечание. Функция распределения F(x) случайной величины является ее исчерпывающей вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения СВ в в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения НСВ в окрестностях различных точек дастся другой функцией – плотностью распределения вероятности.

Плотность распределения вероятностей НСВ

Пусть X – непрерывная случайная величина, ее функция распределения F{x) – непрерывная и дифференцируемая функция. Рассмотрим участок Случайные величины - определение и вычисление с примерами решения, где Случайные величины - определение и вычисление с примерами решения – длина участка. Тогда вероятность попадания СВ Х на данный участок можно найти по формуле (по свойству 6):

Случайные величины - определение и вычисление с примерами решения.

Рассмотрим предел отношения приращения функции F(x) на участке к длине этого участка (или среднюю вероятность, приходящуюся на единицу длины участка) при условии, что длина стягивается в точку:

Случайные величины - определение и вычисление с примерами решения — по определению производной.

Определение 36. Предел отношения вероятности попадания НСВ на элементарный участок от х до Случайные величины - определение и вычисление с примерами решения к длине этого участка, когда Случайные величины - определение и вычисление с примерами решения стремится к нулю или производная функции распределения F'(x) НСВ называется плотностью распределения НСВ Х в точке х и обозначается Случайные величины - определение и вычисление с примерами решения:

Случайные величины - определение и вычисление с примерами решения.

Другие названия плотности: плотность вероятности, дифференциальная функция распределения, дифференциальный закон распределения.

Случайные величины - определение и вычисление с примерами решения существует только для непрерывных СВ. Она является одной из форм закона распределения.

Случайные величины - определение и вычисление с примерами решения характеризует плотность, с которой распределяются значения СВ в данной точке.

Механическая интерпретация: Случайные величины - определение и вычисление с примерами решения характеризует плотность распределения масс по оси абсцисс.

Определение 37. Кривая, изображающая плотность распределения Случайные величины - определение и вычисление с примерами решения СВ, называется кривой распределения.

Замечание. Если возможные значения СВ заполняют некоторый конечный промежуток, то Случайные величины - определение и вычисление с примерами решения = 0 вне этого промежутка.

Геометрическая интерпретация Случайные величины - определение и вычисление с примерами решения.

Перепишем определение: Случайные величины - определение и вычисление с примерами решения.

Из данного равенства следует, что Случайные величины - определение и вычисление с примерами решения, т.к. х – независимая переменная, то Случайные величины - определение и вычисление с примерами решения.

Отсюда следует, что Случайные величины - определение и вычисление с примерами решения, где S – площадь элементарного прямоугольника, опирающегося на участок dx. (см. рис.)

При Случайные величины - определение и вычисление с примерами решения площадь прямоугольника приближается к площади криволинейной трапеции, которую можно найти с помощью определенного интеграла: Случайные величины - определение и вычисление с примерами решения.

Величина Случайные величины - определение и вычисление с примерами решения называется элементом вероятности.

Рассмотрим большой участок Случайные величины - определение и вычисление с примерами решения, тогда:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Вероятность того, что НСВ примет значение, х принадлежащее интервалу Случайные величины - определение и вычисление с примерами решения, равна площади криволинейной трапеции, опирающейся на интервал Случайные величины - определение и вычисление с примерами решения оси (Ох) :

Случайные величины - определение и вычисление с примерами решения.

Замечание. Для НСВ непринципиально, какие знаки в неравенстве брать < или Случайные величины - определение и вычисление с примерами решения: Случайные величины - определение и вычисление с примерами решения, т. е. включать или не включать крайние точки интервала, потому что в них вероятность все равно равна нулю.

Связь F(x) и Случайные величины - определение и вычисление с примерами решения.

Нам известно, что Случайные величины - определение и вычисление с примерами решения

Выразим функцию распределения F(x) через плотность. По определению Случайные величины - определение и вычисление с примерами решения.

Из формулы (1) следует, что

Случайные величины - определение и вычисление с примерами решения
Геометрически, это площадь кривой распределения, лежащая левее точки х.

Случайные величины - определение и вычисление с примерами решения

Замечания.

1. Формулу (3) можно доказать по-другому: по определению дифференциала функции имеем, что Случайные величины - определение и вычисление с примерами решения, следовательно,

Случайные величины - определение и вычисление с примерами решения.

2. Формулу (1) можно доказать на основании свойства функции распределения: Случайные величины - определение и вычисление с примерами решения,

Но согласно равенству (3) Случайные величины - определение и вычисление с примерами решения, поэтому

Случайные величины - определение и вычисление с примерами решения.

3. Функция распределения F(x)- безразмерная величина, размерность плотности Случайные величины - определение и вычисление с примерами решения обратна размерности случайной величины.

Свойства плотности распределения

1. Случайные величины - определение и вычисление с примерами решения – неотрицательная функция, т. е. Случайные величины - определение и вычисление с примерами решения.

Пояснение: это следует из того, плотность распределения есть производная от неубывающей функции F(х). Геометрически: вся кривая распределения лежит не ниже оси абсцисс.

2. Условие нормировки: интеграл в бесконечных пределах от плотности распределения равен 1:

Случайные величины - определение и вычисление с примерами решения

—со

Доказательство

Подставим в равенство (3) Случайные величины - определение и вычисление с примерами решения, учитывая, что Случайные величины - определение и вычисление с примерами решения.

Геометрически данное свойство означает следующее: полная площадь, ограниченная кривой распределения и осью абсцисс равна единице.

Пример №15

Дана функция распределения НСВ X: 

Случайные величины - определение и вычисление с примерами решения.

Найти 1) коэффициент а, 2) плотность распределения Случайные величины - определение и вычисление с примерами решения, 3) P(0,25 < X < 0,5), построить графики функций F(x) и Случайные величины - определение и вычисление с примерами решения.

Решение.

1) Т. к. F(x) – непрерывная функция, то при х = 1 должно выполняться равенство, что Случайные величины - определение и вычисление с примерами решения. То есть Случайные величины - определение и вычисление с примерами решения. Отсюда, а = 1.

2) Случайные величины - определение и вычисление с примерами решения = F(x), тогда Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

3) 1 способ: (0,25; 0,5) входит в интервал (0; 1). По свойству 6 функции распределения: Случайные величины - определение и вычисление с примерами решения.

2 способ. Можно было найти по формуле (1) с помощью плотности распределения:

Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения

Пример №16

Пусть НСВ X подчинена закону распределения с плотностью

Случайные величины - определение и вычисление с примерами решения,

Найти 1) коэффициент а, 2) функцию распределения F(x), 3) Случайные величины - определение и вычисление с примерами решения, 4) построить графики функций F(x) и Случайные величины - определение и вычисление с примерами решения.

Решение.

1) Для нахождения коэффициента а воспользуемся условием нормировки (4):

Случайные величины - определение и вычисление с примерами решения.

2) Найдем функцию распределения по формуле (3): Случайные величины - определение и вычисление с примерами решения.

Если Случайные величины - определение и вычисление с примерами решения, то Случайные величины - определение и вычисление с примерами решения = 0, следовательно Случайные величины - определение и вычисление с примерами решения.

Если Случайные величины - определение и вычисление с примерами решения, то Случайные величины - определение и вычисление с примерами решения.

Если Случайные величины - определение и вычисление с примерами решения, то Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

Итак, F(x) = Случайные величины - определение и вычисление с примерами решения,

3) Случайные величины - определение и вычисление с примерами решения можно найти двумя способами,. Случайные величины - определение и вычисление с примерами решения.

1 способ: По свойству 6 функции распределения:

Случайные величины - определение и вычисление с примерами решения.

2 способ. Можно было найти по формуле (1) с помощью плотности распределения:

Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения

Вывод:

Законы распределения    

ДСВ

1. Ряд распределения (графически -многоугольник распределения).
2. Функция распределения F(x).

НСВ

1. Функция распределения F(x).
2. Плотность распределения Случайные величины - определение и вычисление с примерами решения (графически -кривая распределения).

Числовые характеристики случайных величин, их роль и назначение

Определение 38. Характеристики, назначение которых – выразить в сжатой форме наиболее существенные особенности распределения, называются числовыми характеристиками СВ.

Они не характеризуют СВ полностью, а указывают только отдельные числовые параметры, например, какое-то среднее значение, около которого группируются возможные значения СВ; какое-либо число, характеризующее степень разбросанности этих значений относительно среднего и т. д.

Характеристики положения (математическое ожидание, мода, медиана)

Данные характеристики характеризуют положение СВ на числовой оси, т. е. указывают некоторое среднее, ориентировочное значение, около которого группируются все возможные значения случайной величины.

Например, 1) среднее время работы, 2) средняя точка попадания смещена относительно цели на 0,3 м вправо…

Разберем эти характеристики подробнее.

1. Математическое ожидание или среднее значение случайной величины

a) Для дискретных случайных величин.

Рассмотрим ДСВ X, имеющую возможные значения Случайные величины - определение и вычисление с примерами решения с вероятностями Случайные величины - определение и вычисление с примерами решения. Охарактеризуем каким-нибудь числом положение значений СВ на оси абсцисс с учетом того, что эти значения имеют различные вероятности, т. е. рассмотрим «среднее взвешенное» из Случайные величины - определение и вычисление с примерами решения, причем каждое Случайные величины - определение и вычисление с примерами решения, при осреднении учитывается с «весом», пропорциональным вероятности Случайные величины - определение и вычисление с примерами решения:

Случайные величины - определение и вычисление с примерами решения.

Определение 39. Сумма произведений всех возможных значений случайной величины на вероятности этих значений называется математическим ожиданием случайной величины

Случайные величины - определение и вычисление с примерами решения

Замечания.

1. М[Х] существует тогда и только тогда, когда ряд Случайные величины - определение и вычисление с примерами решения сходится.

2. Когда М[Х] входит в формулы как определенное число, то ее обозначают М[Х] = Случайные величины - определение и вычисление с примерами решения.

Механическая интерпретация М[Х] для ДСВ: пусть на оси (Ох) расположены точки с абсциссами Случайные величины - определение и вычисление с примерами решения, в которых сосредоточены соответственно массы Случайные величины - определение и вычисление с примерами решения, причем сумма всех масс равна 1 Случайные величины - определение и вычисление с примерами решения, тогда М[Х] – абсцисса центра тяжести данной системы материальных точек.

Связь между М[Х] и средним арифметическим числа наблюдаемых значений СВ при большом числе опытов: при увеличении числа опытов среднее арифметическое наблюдаемых значений СВ будет приближаться (сходиться по вероятности) к ее математическому ожиданию. Эта связь – одна из форм закона больших чисел.

b) Для непрерывных случайных величин.

Рассмотрим НСВ. Заменим в формуле (1) отдельные значения Случайные величины - определение и вычисление с примерами решения непрерывно изменяющимся параметром х, соответствующие вероятности Случайные величины - определение и вычисление с примерами решения – элементом вероятности Случайные величины - определение и вычисление с примерами решения, конечную сумму -интегралом, тогда

Случайные величины - определение и вычисление с примерами решения

Механическая интерпретация М[Х] для НСВ: М[Х] – абсцисса центра тяжести в случае, когда единичная масса распределена по оси (Ох) непрерывно с плотностью Случайные величины - определение и вычисление с примерами решения.

Свойства М[Х].

1. М[С] = С , где С – постоянная.

2. Случайные величины - определение и вычисление с примерами решения.

3. Случайные величины - определение и вычисление с примерами решения.

4. Случайные величины - определение и вычисление с примерами решения.

5. M[aX+b] = аМ[Х] + b, а, b- постоянные.

с) Для смешанных случайных величин.

М[Х] = Случайные величины - определение и вычисление с примерами решения, причем сумма распространяется на те точки Случайные величины - определение и вычисление с примерами решения, где функция терпит разрыв, а интеграл берется по тем участкам, где функция непрерывна.

2. Мода случайной величины

Определение 40. Мода – наиболее вероятное значение случайной величины.

Иначе, мода – точка максимума многоугольника распределения для ДСВ или кривой распределения для НСВ.

Мода обознается М; когда мода входит в формулы как определенное число, то ее обозначают Случайные величины - определение и вычисление с примерами решения.

а) Для дискретных случайных величин.

Случайные величины - определение и вычисление с примерами решения

Мода М – такое значение Случайные величины - определение и вычисление с примерами решения, что Случайные величины - определение и вычисление с примерами решения.

b) Для непрерывных случайных величин.

Случайные величины - определение и вычисление с примерами решения

Мода – действительное число Случайные величины - определение и вычисление с примерами решения, определяемое, как точка максимума плотности распределения Случайные величины - определение и вычисление с примерами решения.

Замечание. Мода может не существовать, может иметь единственное значение или иметь бесконечное множество значений.

Определение 41. Распределения, обладающие посередине не максимумом, а минимумом называются антимодальными.

Замечание. Мода и математическое ожидание СВ не совпадают, но если распределение является симметричным и модальным и существует мат. ожидание, то оно совпадает с модой и центром симметрии распределения.

3. Медиана случайной величины

Вводится лишь для НСВ, хотя формально ее можно определить и для ДСВ.

Определение 42. Медианой непрерывной случайной величины называется такое ее значение х = Me, относительно которого равновероятно получение большего или меньшего значения случайной величины, т. е. для которого справедливо равенство:

Случайные величины - определение и вычисление с примерами решения,

Случайные величины - определение и вычисление с примерами решения ( для НСВ безразлично > или Случайные величины - определение и вычисление с примерами решения ) Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения (по определению функции распределения).

Таким образом, медиана – это корень уравнения Случайные величины - определение и вычисление с примерами решения.    (3)

Геометрически: медиана – это абсцисса точки, в которой площадь, ограниченная кривой распределения, делится пополам.

Случайные величины - определение и вычисление с примерами решения

Замечание. В случае симметричного модального распределения медиана совпадает с мат. ожиданием и модой.

Когда медиана входит в формулы как определенное число, то ее обозначают Случайные величины - определение и вычисление с примерами решения.

Моменты:

Данные характеристики описывают некоторые свойства распределения СВ. В механике, например, для описания распределения масс существуют статические моменты, моменты инерции…

Определение 43. Начальным моментом s – того порядка для ДСВ и НСВ называется математическое ожидание s – той степени этой случайной величины:

Случайные величины - определение и вычисление с примерами решения.

Замечание. При s = 1 Случайные величины - определение и вычисление с примерами решения, т. е. математическое ожидание – это первый начальный момент.

a) Для дискретных случайных величин: Случайные величины - определение и вычисление с примерами решения.    (4)

Замечание. Определение совпадает с определением начального момента порядка s в механике, если на оси (Ох) в точках Случайные величины - определение и вычисление с примерами решения сосредоточены соответственно массы Случайные величины - определение и вычисление с примерами решения.

b) Для непрерывных случайных величин: Случайные величины - определение и вычисление с примерами решения.    (5)

Определение 44. Центрированной случайной величиной, соответствующей величине X, называется отклонение случайной величины Х от ее математического ожидания:

Случайные величины - определение и вычисление с примерами решения.

Рассмотрим математическое ожидание центрированной ДСВ:

Случайные величины - определение и вычисление с примерами решения.

Аналогично, для НСВ Случайные величины - определение и вычисление с примерами решения.

Центрирование СВ равносильно переносу начала координат в среднюю, центральную точку, абсцисса которой равна математическому ожиданию.

Определение 45. Моменты центрированной случайной величины называются центральными моментами.

Определение 46. Центральным моментом s – того порядка для ДСВ и НСВ называется математическое ожидание s – той степени соответствующей центрированной случайной величины:

Случайные величины - определение и вычисление с примерами решения.

a) Для дискретных случайных величин: Случайные величины - определение и вычисление с примерами решения.    (6)

b) Для непрерывных случайных величин: Случайные величины - определение и вычисление с примерами решения.    (7)

Замечание. Для любой СВ центральный момент 1-го порядка Случайные величины - определение и вычисление с примерами решения равен 0: Случайные величины - определение и вычисление с примерами решения, так как мат. ожидание центрированной СВ равно 0.

Рассмотрим подробнее центральные моменты 2, 3, 4 порядков и выведем соотношения, связывающие начальные и центральные моменты.

Случайные величины - определение и вычисление с примерами решения – дисперсия

Определение 47. Дисперсией случайной величины X D[X] называется мат ожидание квадрата соответствующей центрированной случайной величины: Случайные величины - определение и вычисление с примерами решения

a) Для дискретных случайных величин: Случайные величины - определение и вычисление с примерами решения.    (8)

b) Для непрерывных случайных величин: Случайные величины - определение и вычисление с примерами решения.(9)

Дисперсия случайной величины – характеристика рассеивания, разбросанности значений случайной величины около ее мат. ожидания.

Когда дисперсия входит в формулы как определенное число, то ее обозначают Случайные величины - определение и вычисление с примерами решения

Механическая интерпретация D[X]: Дисперсия – момент инерции заданного распределения масс относительно центра тяжести (мат. ожидания).

Рассмотрим ДСВ. (Для НСВ получаем аналогично)

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения – связь между начальным и центральным моментом 2-го порядка. (10)

Свойства D[X].

1. D[C] = 0 , где С – постоянная.

2. Случайные величины - определение и вычисление с примерами решения.

3. Случайные величины - определение и вычисление с примерами решения.

4. Случайные величины - определение и вычисление с примерами решения для независимых СВ.

5. Случайные величины - определение и вычисление с примерами решения – постоянные.

Замечание. D[X] имеет размерность квадрата случайной величины. Для более наглядной характеристики рассеивания удобнее пользоваться величиной, размерность которой совпадает с размерностью случайной величины. Для этого из D[X] извлекают корень:

Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения – среднее квадратическое отклонение или стандарт случайной величины X.

Когда среднее квадратическое входит в формулы как определенное число, то его обозначают Случайные величины - определение и вычисление с примерами решения.

Замечание. Математическое ожидание и дисперсия характеризуют наиболее важные черты распределения: его положение и степень разбросанности. Для более подробного описания применяются моменты высших порядков.

Случайные величины - определение и вычисление с примерами решения – асимметрия

Асимметрия случайной величины – характеристика асимметрии или скошенности распределения значений случайной величины.

Теорема. Если распределение симметрично относительно мат. ожидания (т. е. масса распределена симметрично относительно центра тяжести), то все моменты нечетного порядка (если они существуют) равны нулю.

Доказательство.

Действительно, для ДСВ в сумме Случайные величины - определение и вычисление с примерами решения при симметричном относительно Случайные величины - определение и вычисление с примерами решения законе распределения и нечетном s каждому положительному слагаемому соответствует равное ему по абсолютной величине отрицательное слагаемое так, что вся сумма равна 0. Аналогично. Для НСВ Случайные величины - определение и вычисление с примерами решения как интеграл в симметричных пределах от нечетной функции. (что и требовалось доказать).

В связи с этим, в качестве характеристики асимметрии и выбирают простейший нечетный момент – третий Случайные величины - определение и вычисление с примерами решения. Он имеет размерность куба СВ, для получения безразмерной характеристики рассматривают отношение Случайные величины - определение и вычисление с примерами решения к среднему квадратическому Случайные величины - определение и вычисление с примерами решения в третьей степени:

Определение 48. Коэффициентом асимметрии Sk случайной величины X называется величина

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения связь между начальными и центральным моментом 3-го порядка.

Случайные величины - определение и вычисление с примерами решения и эксцесс

Четвертый центральный момент Случайные величины - определение и вычисление с примерами решения служит для характеристики «крутости», т. е. островершинности или плосковсршинности распределения.

Это свойство описывается с помощью эксцесса.

Определение 49. Эксцессом случайной величины X называется величина Случайные величины - определение и вычисление с примерами решения

Число 3 вычитается из соотношения Случайные величины - определение и вычисление с примерами решения потому, что для наиболее распространенного нормального закона распределения НСВ (с которым познакомимся позднее)Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения

Кривая нормального распределения, для которого эксцесс равен нулю, принята как бы за эталон, с которым сравниваются другие распределения. Кривые более островершинные имеют положительный эксцесс, более плосковершинные – отрицательный.

Абсолютные моменты:

Случайные величины - определение и вычисление с примерами решения – начальный абсолютный момент.

Случайные величины - определение и вычисление с примерами решения – центральный абсолютный момент.

Абсолютные моменты четных порядков совпадают с обычными моментами. Из абсолютных моментов нечетного порядка чаще всего применяется первый абсолютный центральный момент:

Случайные величины - определение и вычисление с примерами решения – среднее арифметическое отклонение.

a) Для дискретных случайных величин: Случайные величины - определение и вычисление с примерами решения, (14)

b) Для непрерывных случайных величин: Случайные величины - определение и вычисление с примерами решения (15)

Случайные величины - определение и вычисление с примерами решения применяется как характеристика рассеивания (как и Случайные величины - определение и вычисление с примерами решения).

Замечания.

1. Моменты могут рассматриваться не только относительно начала координат (начальные) или математического ожидания (центральные), но и относительно произвольной точки а:

Случайные величины - определение и вычисление с примерами решения.

2. Во многих задачах полная характеристика случайной величины (закон распределения) не нужна или не может быть получена, поэтому ограничиваются приблизительным описанием СВ с помощью числовых характеристик, каждая из которых выражает какое-либо характерное свойство распределения. Иногда характеристиками пользуются для приближенной замены одного распределения другим.

Пример №17

Дан ряд распределения ДСВ:

Случайные величины - определение и вычисление с примерами решения

Найти: 1) величину а, 2) математическое ожидание и дисперсию М[Х] и D[X] , 3) М[3Х + 2], D[2X + 3].

Решение.

1) Величину а найдем из условия: Случайные величины - определение и вычисление с примерами решения, отсюда а = 0,4.

2) Найдем математическое ожидание и дисперсию:

По формуле (1) Случайные величины - определение и вычисление с примерами решения,

По формуле (8) Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

Дисперсию можно было найти, используя формулу (10) и (4): Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

3) М[ЗХ + 2] = (по 5 свойству мат. ожидания) = Случайные величины - определение и вычисление с примерами решения,

D[2X + 3] = (по 5 свойству дисперсии) = Случайные величины - определение и вычисление с примерами решения

Пример №18

Стрелок производит 3 выстрела по мишени. Вероятность попадания в мишень при каждом выстреле равна 0,4. СВ Х – число попаданий. Определить: 1) математическое ожидание, 2) дисперсию, 3) среднее квадратическое отклонение, 4) моду, 5) асимметрию, 6) среднее арифметическое отклонение.

Решение.

Ранее мы построили ряд распределения числа попаданий. Ряд распределения имеет вид:

Случайные величины - определение и вычисление с примерами решения

1) Случайные величины - определение и вычисление с примерами решения. (по формуле 1).

2) Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения 

(по формуле 8. Можно было по формуле (4): Случайные величины - определение и вычисление с примерами решения).

3) Случайные величины - определение и вычисление с примерами решения (по формуле 11).

4) Найдем моду М: Случайные величины - определение и вычисление с примерами решения, следовательно, М = 1.

5) По формуле (6)

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Тогда коэффициент асимметрии по формуле (12) Случайные величины - определение и вычисление с примерами решения.

6) По формуле (14) найдем среднее арифметическое отклонение:Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

Пример №19

Непрерывная случайная величина подчинена закону распределения с плотностью Случайные величины - определение и вычисление с примерами решения. Найти: 1) коэффициент А, 2) математическое ожидание, 3) дисперсию, 4) среднее квадратическос отклонение, 5) моду, 6) медиану, 7) асимметрию, 8) эксцесс.

Решение.

1) Если х < 0 Случайные величины - определение и вычисление с примерами решения, если Случайные величины - определение и вычисление с примерами решения.

Воспользуемся свойством плотности распределения для определения А:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения.

2) Случайные величины - определение и вычисление с примерами решения, т.к. функция нечетная.

3) Случайные величины - определение и вычисление с примерами решения, следовательно, 

Случайные величины - определение и вычисление с примерами решения = (решаем методом интегрирования по частям, 2 раза) = 2

4) Случайные величины - определение и вычисление с примерами решения.

5) M = 0.

6) Случайные величины - определение и вычисление с примерами решения, следовательно, Случайные величины - определение и вычисление с примерами решения,

Случайные величины - определение и вычисление с примерами решения, следовательно, x=0, т.е. Me=0.

7) Случайные величины - определение и вычисление с примерами решения, как интеграл в симметричных пределах от нечетной функции.

Следовательно, асимметрия Sk=0.

8) Случайные величины - определение и вычисление с примерами решения, следовательно, эксцесс Случайные величины - определение и вычисление с примерами решения.

Пример №20

Случайная величина X подчинена закону распределения, плотность которого задана графически. Найти: 1)выражение для плотности, 2) найти мат. ожидание, 3) дисперсию.

Случайные величины - определение и вычисление с примерами решения

Решение.

1) Случайные величины - определение и вычисление с примерами решения.

2) Случайные величины - определение и вычисление с примерами решения, следовательно, Случайные величины - определение и вычисление с примерами решения.

3) Дисперсию найдем двумя способами.

1 способ (по определению): Случайные величины - определение и вычисление с примерами решения.

2 способ (через начальные моменты):

Случайные величины - определение и вычисление с примерами решения.

Биномиальное распределение

Постановка задачи: пусть СВ X выражает число появления события А ( m раз) при n независимых испытаниях, проводимых в одинаковых условиях. Вероятность появления события А – р – постоянна. Вероятности возможных значений Случайные величины - определение и вычисление с примерами решения данной СВ определяются по формуле Бернулли:

Случайные величины - определение и вычисление с примерами решения.

Определение 50. Распределение дискретной случайной величины, для которой ряд распределения задастся формулой Бернулли, называется биномиальным.

Примеры типовых задач: 1) число бракованных изделий в выборке из n деталей, 2) число попаданий или промахов при выстрелах в мишень.

Найдем математическое ожидание и дисперсию СВ, имеющей биномиальное распределение.

1) Случайные величины - определение и вычисление с примерами решения. (*)

Вычислим данную сумму. Ранее записали следствие из теоремы Бернулли, что Случайные величины - определение и вычисление с примерами решения. Следовательно, Случайные величины - определение и вычисление с примерами решения.

Продифференцируем данное равенство по переменной р:

Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения, умножим обе части полученного равенства на р:

Случайные величины - определение и вычисление с примерами решения, следовательно, из (*):

Случайные величины - определение и вычисление с примерами решения.

Вывод: математическое ожидание числа наступления события А в серии независимых и одинаковых испытаний равно произведению числа испытаний на вероятность появления события при одном испытании

Случайные величины - определение и вычисление с примерами решения.

2) Можно вывести, что дисперсия СВ X, распределенной по биномиальному закону, находится по формуле:

Случайные величины - определение и вычисление с примерами решения.

Тогда среднее квадратическое: Случайные величины - определение и вычисление с примерами решения.

Пример №21

Случайная величина X представляет число бракованных деталей из выборки в 50 штук. Вероятность брака одной детали р = 0,06. Найти М[Х], D[X], Случайные величины - определение и вычисление с примерами решениячисла бракованных деталей в выборке.

Решение.

СВ X имеет биномиальное распределение, следовательно, сразу по формулам имеем:

Случайные величины - определение и вычисление с примерами решения (детали в среднем бракованы).

Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения(детали) – разброс бракованных деталей относительно среднего числа.

Распределение Пуассона

Постановка задачи: пусть СВ X выражает число появления события А ( m раз) при n независимых испытаниях, проводимых в одинаковых условиях, причем n очень велико (Случайные величины - определение и вычисление с примерами решения). Вероятность появления события А – р – очень мала. Вероятности возможных значений Случайные величины - определение и вычисление с примерами решения данной СВ можно вычислить, пользуясь асимптотической формулой Пуассона:

Случайные величины - определение и вычисление с примерами решения,

где Случайные величины - определение и вычисление с примерами решения – среднее число появления события в n испытаниях: Случайные величины - определение и вычисление с примерами решения = np.

Определение 51. Распределение дискретной случайной величины, для которой ряд распределения задастся формулой Пуассона, называется распределением Пуассона.

Примеры типовых задач: 1) число вызовов на телефонной станции за некоторое время t, 2) число отказов сложной аппаратуры за некоторое время t, 3) распределение изюма в булочках, 4) число кавалеристов, убитых за год копытом лошади.

Распределение Пуассона зависит только от одного параметра Случайные величины - определение и вычисление с примерами решения. Так как это среднее число появления события в n испытаниях, то это ни что иное как математическое ожидание, следовательно,

Случайные величины - определение и вычисление с примерами решения.

Можно вывести, что дисперсия СВ X, распределенной по закону Пуассона, находится по формуле:

Случайные величины - определение и вычисление с примерами решения.

Замечание. Мы использовали распределение Пуассона как приближенное в тех случаях, когда точным распределением СВ является биномиальное распределение, и когда математическое ожидание мало отличается от дисперсии, т. е. Случайные величины - определение и вычисление с примерами решения.

Можно было получить распределение Пуассона, рассматривая задачу о числе случайных точек на оси абсцисс, попадающих на заданный отрезок, причем Случайные величины - определение и вычисление с примерами решения – среднее число точек, приходящихся на единицу длины.

Пример №22

На телефонную станцию в течение определенного часа дня поступает в среднем 30 вызовов. Найти вероятность того, что в течение минуты поступает не более двух вызовов.

Решение.

Случайные величины - определение и вычисление с примерами решения – среднее число появления события в n испытаниях, т. е. Случайные величины - определение и вычисление с примерами решения.

СВ Х- число вызовов, ее возможные значения: Случайные величины - определение и вычисление с примерами решения.

По условию, в течение минуты поступает не более двух вызовов, т. е. Случайные величины - определение и вычисление с примерами решения , тогда,

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Пример №23

Завод отправил на базу 500 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,002. Найти вероятность того, что на базу прибудет 3 негодных изделия.

Решение.

Дано: р = 0,002; q = 1 – р = 0,998; n = 500. Проверим, можно ли воспользоваться формулой Пуассона, т. е. проверим истинность равенства: Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения, отсюда, Случайные величины - определение и вычисление с примерами решения, т. е. можно пользоваться формулой Пуассона.

Случайные величины - определение и вычисление с примерами решения, следовательно.

Случайные величины - определение и вычисление с примерами решения.

Гипергеометрическое распределение

Постановка задачи: производится ряд n независимых испытаний, в каждом из которых с вероятностью p наступает событие А. Опыты продолжаются до первого появления события А. Случайная величина Х- число проведенных опытов, Случайные величины - определение и вычисление с примерами решения– возможные значения данной СВ.

Определение 52. X с возможными значениями Случайные величины - определение и вычисление с примерами решения, а имеет гипергеометрическое распределение с параметрами n, а, b, если Случайные величины - определение и вычисление с примерами решения.

Можно вывести, что Случайные величины - определение и вычисление с примерами решения,

Случайные величины - определение и вычисление с примерами решения.

Определение 53. X имеет гипергеометричское распределение, если

Случайные величины - определение и вычисление с примерами решения.

Пример типовой задачи: из урны, содержащей 5 красных и 7 синих шаров, случайным образом и без возвращения извлекается 3 шара. Случайная величина X— число синих шаров в выборке. Описать закон распределения Х и найти математическое ожидание.

Решение.

Шары синие, следовательно, n = 3, а + b = 12, а = 7.

Данная случайная величина имеет возможные значения Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения,

Случайные величины - определение и вычисление с примерами решения.

Следовательно, ряд распределения имеет вид:

Случайные величины - определение и вычисление с примерами решения

Мат. ожидание найдем по формуле: Случайные величины - определение и вычисление с примерами решения.

или по определению: Случайные величины - определение и вычисление с примерами решения.

Равномерное распределение или закон равномерной плотности

Пусть известно, что все возможные значения х непрерывной случайной величины X лежат в пределах определенного интервала (а, b), в некоторых источниках рассматривается [а, b].

Определение 54. Равномерным называют распределение вероятностей НСВ X, если на каждом интервале (а, b) ее плотность распределения Случайные величины - определение и вычисление с примерами решения сохраняет постоянное значение, равное Случайные величины - определение и вычисление с примерами решения  (т.е. все х одинаково вероятны), а вне этого интервала плотность равна нулю:

Случайные величины - определение и вычисление с примерами решения
 

Примеры типовых задач: равномерное распределение реализуется 1) в экспериментах, в которых наудачу ставится точка на промежутке (а, b) или [а, b], причем Х – координата поставленной точки; 2) в экспериментах по измерению тех или иных физических величин с округлением, причем X – ошибка округления.

Выведем формулы для вычисления мат. ожидания и дисперсии.

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения,

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

Итак, Случайные величины - определение и вычисление с примерами решения, тогда среднее квадратическое Случайные величины - определение и вычисление с примерами решения.

Вероятность попадания случайной величины на участок Случайные величины - определение и вычисление с примерами решения находится по формуле:

Случайные величины - определение и вычисление с примерами решения.

Найдем функцию распределения F(x):

Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения.

Итак, Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Пример №24

Цена деления шкалы амперметра равна 0,1 ампера. Показания амперметра округляют до ближайшего целого деления. Найти вероятность того, что при отсчете будет сделана ошибка, превышающая 0,02 ампера.

Решение.

СВ X – ошибка округления отсчета. X распределена равномерно в интервале между двумя соседними целыми делениями:
 

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Ошибка отсчета превысит 0,02, если она будет заключена в интервале (0,02; 0,08). Найдем вероятность попадания Х в этот интервал:
 

Случайные величины - определение и вычисление с примерами решения.

Можно было найти эту вероятность, сразу подставив в формулу Случайные величины - определение и вычисление с примерами решения , следовательно, Случайные величины - определение и вычисление с примерами решения.

Показательное или экспоненциальное распределение

Определение 55. НСВ X распределена по показательному или экспоненциальному закону, если ее плотность распределения Случайные величины - определение и вычисление с примерами решения имеет вид:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения – коэффициент распределения.

Выведем формулы для вычисления мат. ожидания и дисперсии.

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения

Итак, Случайные величины - определение и вычисление с примерами решения тогда среднее квадратическое: Случайные величины - определение и вычисление с примерами решения

Найдем функцию распределения F(x):

Если Случайные величины - определение и вычисление с примерами решения следовательно Случайные величины - определение и вычисление с примерами решения.

Если Случайные величины - определение и вычисление с примерами решения.

Итак, Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Пример №25

Случайная величина Т – время работы радиолампы имеет показательное распределение. Определить вероятность того, что время работы лампы будет не меньше 600 часов, если среднее время работы лампы 400 часов.

Решение.

По условию Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Нормальный закон распределения

Определение 56. НСВ X распределена по нормальному закону, если ее плотность распределения Случайные величины - определение и вычисление с примерами решения имеет вид:

Случайные величины - определение и вычисление с примерами решения

Нормальный закон называют еще законом распределения Гаусса.

Говорят, что случайная величина X подчинена нормальному закону и пишут Случайные величины - определение и вычисление с примерами решения.

Примеры типовых задач: случайные величины в них характеризуют ошибки при измерениях, боковые отклонения и отклонения по дальности при стрельбе, величина износа деталей…

График плотности или кривая распределения называется гауссовской кривой. Она имеет симметричный холмообразный вид. При Случайные величины - определение и вычисление с примерами решения Ветви кривой быстро приближаются к оси (Ох): площадь под кривой на участке [m – 3;m + 3] равна 90% площади под всей кривой.

Случайные величины - определение и вычисление с примерами решения

Главная особенность нормального закона состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.

Кривые распределения по всем другим законам распределения получаются из одной единственной кривой – гауссовской.

Для наглядной демонстрации нормального закона распределения иногда используют специальное устройство – доску Гальтона. В нем падающие сверху шарики распределяются между правильными шестиугольниками и в результате падают на горизонтальную поверхность, образуя картинку, похожую на подграфик гауссовой кривой.

Распределение пассажиров по вагонам метро – гауссово распределение. Покажем это. Пассажиры метро бегут по переходу, выходящему на середину станции, на поезд, стоящий напротив выхода из перехода. Платформа, у которой стоит поезд, равномерно разделена колоннами. Ясно, что большинство пассажиров войдет в средние вагоны, а по мере удаления вагонов от центра, количество садящихся в них людей будет уменьшаться.

Случайные величины - определение и вычисление с примерами решения

Замечание. С гауссовской плотностью Случайные величины - определение и вычисление с примерами решения мы встречались при рассмотрении локальной теоремы Муавра- Лапласа.

1. Убедимся, что Случайные величины - определение и вычисление с примерами решения действительно плотность НСВ, для чего проверим равенство Случайные величины - определение и вычисление с примерами решения (условие нормировки). Известно, что Случайные величины - определение и вычисление с примерами решения (интеграл Пуассона).

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения Что и требовалось доказать

2. Докажем, что численные параметры m и Случайные величины - определение и вычисление с примерами решения совпадают с основными характеристиками распределения: m = М[Х] – мат. ожидание, Случайные величины - определение и вычисление с примерами решения – среднеквадратическое отклонение. Для этого вычислим М[Х] и Случайные величины - определение и вычисление с примерами решения[Х].
Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Таким образом, m = M[X]. Этот параметр, особенно в задачах стрельбы, называют центром рассеивания.

Доказать самостоятельно, что Случайные величины - определение и вычисление с примерами решения (Сначала вычислить дисперсию).

Смысл параметров m и Случайные величины - определение и вычисление с примерами решения

m – центр симметрии распределения (т.к. при изменении знака разности (х – m) в формуле плотности на противоположный, выражение не меняется). Если изменять центр рассеивания m, то кривая распределения будет смещаться вдоль оси (Ох), не изменяя своей формы. Следовательно, m характеризует положение распределения на оси (Ох).

Размерность m та же, что и размерность случайной величины X.

В задачах m означает систематические ошибки.

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения характеризует форму кривой распределения, т.к. это характеристика рассеивания. Площадь под кривой распределения всегда должна быть равна 1. Наибольшая ордината кривой распределения обратно пропорциональна Случайные величины - определение и вычисление с примерами решения, следовательно, при увеличении Случайные величины - определение и вычисление с примерами решения максимальная ордината уменьшается.

Случайные величины - определение и вычисление с примерами решения

Размерность о совпадает Случайные величины - определение и вычисление с примерами решения размерностью СВ. В задачах Случайные величины - определение и вычисление с примерами решения означает стандартные ошибки.

Замечания.

1. В некоторых курсах теории вероятностей вводят понятие меры точности Случайные величины - определение и вычисление с примерами решения, тогда нормальный закон запишется в виде: Случайные величины - определение и вычисление с примерами решения

2. Случайные величины - определение и вычисление с примерами решения.

3. Если НСВ X распределяется по закону N(0, 1), то она называется стандартизованной случайной величиной.

Формула для центральных моментов любого порядка имеет вид:

Случайные величины - определение и вычисление с примерами решения

Т.к. Случайные величины - определение и вычисление с примерами решения = 0, то все нечетные моменты равны 0 (это следует из симметричности нормального закона).

Для четных моментов: Случайные величины - определение и вычисление с примерами решения Асимметрия нормального закона Случайные величины - определение и вычисление с примерами решения эксцесс Случайные величины - определение и вычисление с примерами решения (назначение эксцесса характеризовать крутость законов по сравнению с нормальным законом), мода М = m, медиана Me – m.

Найдем вероятность попадания НСВ X, подчиненной нормальному закону с параметрами m и Случайные величины - определение и вычисление с примерами решения, на участок от Случайные величины - определение и вычисление с примерами решения до Случайные величины - определение и вычисление с примерами решения.

Случайные величины - определение и вычисление с примерами решения тогда

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения (интеграл вычисляется с помощью специальной функции – функции Лапласа Ф(х) [смотри предельную интегральную теорему Муавра-Лапласа §6 п. 3])

Случайные величины - определение и вычисление с примерами решения

Итак, Случайные величины - определение и вычисление с примерами решения

Вероятность попадания НСВ X левее Случайные величины - определение и вычисление с примерами решения находится по формуле: Случайные величины - определение и вычисление с примерами решения

Свойства функции Лапласа Случайные величины - определение и вычисление с примерами решения

1. Ф(х) определена для всех действительных х.

2. Случайные величины - определение и вычисление с примерами решения

3. Ф(х) неубывающая, т. е. возрастает на R.

4. Ф(-х) = 1 – Ф(х) (это следует из симметричности нормального распределения с параметрами m = 0, Случайные величины - определение и вычисление с примерами решения =1 относительно начала координат).

5. Случайные величины - определение и вычисление с примерами решения

6. Случайные величины - определение и вычисление с примерами решения

7. Случайные величины - определение и вычисление с примерами решения — формула для нахождения вероятности того, что абсолютная величина отклонения СВ X от числа m меньше положительного числа Случайные величины - определение и вычисление с примерами решения, где Случайные величины - определение и вычисление с примерами решения – ошибка.

Если m = 0, то Случайные величины - определение и вычисление с примерами решения

Вывод 7 свойства.

Из 4 свойства и формулы для вычисления интервальных вероятностей имеем, что:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения            

Функция Лапласа затабулирована. Для тех значений х, которых нет в таблице: Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Свойства функции Лапласа Случайные величины - определение и вычисление с примерами решения

1. Ф(x) определена для всех действительных x.

2. Ф(0) = 0.

3. Ф(x) неубывающая, т.е. возрастает на R.

4. Ф(-x) = -Ф(x).

5. Случайные величины - определение и вычисление с примерами решения

6. Случайные величины - определение и вычисление с примерами решения

7. Случайные величины - определение и вычисление с примерами решения

Функция Лапласа затабулирована. Для тех значений х, которых нет в таблице: Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Пример №26

Длина изготовленной автоматом детали представляет собой случайную величину, распределенную по нормальному закону с параметрами Случайные величины - определение и вычисление с примерами решения Найти вероятность брака, если допустимые размеры детали Случайные величины - определение и вычисление с примерами решения

Решение.

Вероятность брака: Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Случайные величины в теории вероятностей

С каждым случайным экспериментом связано множество его возможных исходов Случайные величины - определение и вычисление с примерами решения Это множество обычно называют пространством элементарных исходов или элементарных событий. Экспериментатор обычно не просто наблюдает, а измеряет, и в результате эксперимента получается число. Тем самым каждому исходу эксперимента ставится в соответствие определенное число Случайные величины - определение и вычисление с примерами решения а это означает, что на множестве исходов эксперимента определена некоторая числовая функция.

Определение. Случайной величиной называется функция Случайные величины - определение и вычисление с примерами решения определенная на множестве элементарных исходов эксперимента и принимающая действительные или комплексные значения. Если множество исходов эксперимента конечно, то приведенное определение является точным. В общем случае функция Случайные величины - определение и вычисление с примерами решения полагается измеримой. Случайная величина считается заданной, если указано, какие значения она может принимать и каковы вероятности этих значений.

Определение. Всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями, называется законом распределения случайной величины. Фактически для задания закона распределения нужно перечислить все возможные значения случайной величины и указать вероятности этих значений.

Закон распределения является исчерпывающей характеристикой случайной величины. Если он задан, то с вероятностной точки зрения случайная величина описана полностью. Поэтому часто говорят о том или ином законе распределения, имея в виду случайную величину, которая распределена по этому закону.

Случайные величины будем обозначать большими латинскими буквами Случайные величины - определение и вычисление с примерами решения а отдельные возможные значения этих величин соответствующими малыми буквами Случайные величины - определение и вычисление с примерами решения

Определение. Случайную величину называют дискретной, если она может принимать отделенные друг от друга значения с определенными вероятностями. Множество возможных значений дискретной случайной величины конечно или счетно, т.е. их можно занумеровать с помощью ряда натуральных чисел.

Определение. Случайная величина называется непрерывной, если ее возможные значения составляет некоторый интервал (конечный или бесконечный).

Отметим способы задания законов распределения дискретных случайных величин. Соответствие между возможными значениями 68 дискретной случайной величины и вероятностями этих значений можно задать в виде формулы. Если это затруднительно, то можно просто перечислить то и другое в виде таблицы, называемой рядом распределения:Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения– вероятность того, что Случайные величины - определение и вычисление с примерами решения примет значение Случайные величины - определение и вычисление с примерами решения Из соображений наглядности принято возможные значения перечислять в порядке возрастания. События Случайные величины - определение и вычисление с примерами решения несовместимы, и в результате опыта одно из них непременно происходит, т.е. эти события образуют полную группу. Поэтому Случайные величины - определение и вычисление с примерами решения

Ряд распределения можно изобразить графически. Для этого в каждой точке Случайные величины - определение и вычисление с примерами решения на горизонтальной оси откладывают вдоль вертикальной оси отрезок, равный Случайные величины - определение и вычисление с примерами решения Полученную в результате фигуру называют многоугольником распределения (рис. 2.8.1).

Случайные величины - определение и вычисление с примерами решения

Функция распределения

Определение. Функцией распределения случайной величины Случайные величины - определение и вычисление с примерами решения называют функцию

 Случайные величины - определение и вычисление с примерами решения

определяющую для каждого значения Случайные величины - определение и вычисление с примерами решения вероятность того, что случайная величина X в результате опыта примет значение меньшее Случайные величины - определение и вычисление с примерами решения.

Непосредственно из определения функции распределения можно вывести ряд ее свойств

1. Случайные величины - определение и вычисление с примерами решения Это следует из того, что Случайные величины - определение и вычисление с примерами решения равна вероятности, а вероятность любого события заключена между нулем и единицей.

Отметим также, что Случайные величины - определение и вычисление с примерами решения так как события Случайные величины - определение и вычисление с примерами решения являются соответственно невозможным и достоверным.

2. Функция распределения является неубывающей, т.е. Случайные величины - определение и вычисление с примерами решения при Случайные величины - определение и вычисление с примерами решения В самом деле, при Случайные величины - определение и вычисление с примерами решения появление события Случайные величины - определение и вычисление с примерами решения эквивалентно появлению одного из несовместимых событий Случайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решения Поэтому Случайные величины - определение и вычисление с примерами решения или 

Случайные величины - определение и вычисление с примерами решения

В правой части равенства (2.8.1) находится неотрицательная величина, поэтому Случайные величины - определение и вычисление с примерами решения Равенство (2.8.1) означает, что вероятность попадания случайной величины Х в полуинтервал Случайные величины - определение и вычисление с примерами решения равна приращению функции распределения на этом полуинтервале.

3. Случайные величины - определение и вычисление с примерами решения непрерывна слева, т.е. Случайные величины - определение и вычисление с примерами решения при Случайные величины - определение и вычисление с примерами решения

4. Для любого Случайные величины - определение и вычисление с примерами решения согласно формуле (2.8.1), Случайные величины - определение и вычисление с примерами решения

Предел в правой части равен нулю, если Случайные величины - определение и вычисление с примерами решения – точка непрерывности функции Случайные величины - определение и вычисление с примерами решения. Если же х – точка разрыва функцииСлучайные величины - определение и вычисление с примерами решения, то предел в правой части равенства равен скачку этой функции в точке Случайные величины - определение и вычисление с примерами решения. Следовательно, если Случайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решения точки непрерывности функции Случайные величины - определение и вычисление с примерами решения, то Случайные величины - определение и вычисление с примерами решения

Впредь будем называть непрерывными только случайные величины с непрерывной функцией распределения. Для непрерывной случайной величины вероятность любого отдельно взятого значения равна нулю. Сходная ситуация в геометрии. Геометрическая точка не имеет размера, а состоящий из точек интервал имеет отличную от нуля длину. Так и для непрерывной случайной величины: одно отдельно взятое значение имеет нулевую вероятность, хотя и является возможным значением, и только интервалы значений имеют отличную от нуля вероятность.

График функции распределения одной из непрерывных случайных величин изображен на рис. 2.8.2.

Случайные величины - определение и вычисление с примерами решения

Функцию распределения можно задать и для непрерывной и для дискретной случайной величины. Для дискретной случайной величины функция распределения представляет собой, как это следует из определения, функцию накопленных вероятностей:

Случайные величины - определение и вычисление с примерами решения

где суммирование распространяется на все значения индекса Случайные величины - определение и вычисление с примерами решения для которых Случайные величины - определение и вычисление с примерами решения

Если дискретная случайная величина Х имеет закон распределения:Случайные величины - определение и вычисление с примерами решения

то ее функция распределения имеет вид ступенчатой функции, причем скачки функции равны вероятностям соответствующих значений Х (рис. 2.8.3).

Случайные величины - определение и вычисление с примерами решения

Функция распределения непрерывной случайной величины непрерывна, для дискретной случайной величины она представляет собой ступенчатую функцию. Можно привести примеры таких случайных величин, функция распределения которых вместе с участками непрерывного роста в некоторых точках имеет разрывы. Такие величины называют смешанными случайными величинами. Примером смешанной случайной величины может служить время ожидания у светофора. Пусть, например, равновозможно прибытие автомобиля к перекрестку в любой момент цикла работы светофора (рис. 2.8.4). Найдем функцию распределения времени ожидания автомобиля.

Случайные величины - определение и вычисление с примерами решения

Обозначим время ожидания у светофора через Случайные величины - определение и вычисление с примерами решения Это неотрицательная случайная величина. Вероятность того, что время ожидания будет меньше Случайные величины - определение и вычисление с примерами решения равна вероятности прибыть к светофору в момент времени из интервала (А,В). Поэтому Случайные величины - определение и вычисление с примерами решения при Случайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решения при Случайные величины - определение и вычисление с примерами решения Функция распределения времени ожидания изображена на рис. 2.8.5. Из графика функции распределения видно, что нулевое время ожидания, имея вероятность 3/7, соответствует точке скачка функции, равного этой величине.

Случайные величины - определение и вычисление с примерами решения

Функция плотности вероятности

Если функция распределения представима в виде Случайные величины - определение и вычисление с примерами решения где функция  Случайные величины - определение и вычисление с примерами решения то подынтегральную функцию Случайные величины - определение и вычисление с примерами решения называют функцией плотности вероятности. Если функция распределения дифференцируема, то функцией плотности вероятности Случайные величины - определение и вычисление с примерами решения называется первая производная от функции распределения Случайные величины - определение и вычисление с примерами решения т.е. Случайные величины - определение и вычисление с примерами решения

Заметим, что

Случайные величины - определение и вычисление с примерами решения

Геометрически это означает, что вероятность попадания случайной величины в интервал Случайные величины - определение и вычисление с примерами решения численно равна площади криволинейной трапеции, которая опирается на этот интервал и ограничена сверху кривой Случайные величины - определение и вычисление с примерами решения (рис. 2.8.6).

Случайные величины - определение и вычисление с примерами решения

Свойства функции плотности вероятности.

1. Случайные величины - определение и вычисление с примерами решения

2. Случайные величины - определение и вычисление с примерами решения

Последнее условие называется условием нормировки. Геометрически это условие означает, что площадь, заключенная между осью абсцисс и графиком функции плотности вероятности, равна единице.

По функции плотности вероятности Случайные величины - определение и вычисление с примерами решения можно найти функцию распределения случайной величины:

Случайные величины - определение и вычисление с примерами решения

Числовые характеристики случайных величин

Числа, назначение которых указывать основные особенности случайных величин, называются числовыми характеристиками.

Определение. Математическим ожиданием (или средним значением) дискретной случайной величины Х называется числоСлучайные величины - определение и вычисление с примерами решения

равное сумме произведений возможных значений Случайные величины - определение и вычисление с примерами решения на соответствующие им вероятности Случайные величины - определение и вычисление с примерами решения Если дискретная случайная величина имеет бесконечно много значений, то требуется абсолютная сходимость ряда (2.8.2). Если ряд (2.8.2) не сходится абсолютно, то математическое ожидание такой случайной величины не существует.

Математическим ожиданием непрерывной случайной величины, имеющей функцию плотности вероятности Случайные величины - определение и вычисление с примерами решения, называется числоСлучайные величины - определение и вычисление с примерами решения

если интеграл абсолютно сходится. Если интеграл (2.8.3) не сходится абсолютно, то говорят, что математическое ожидание не существует.

Свойства математического ожидания.

  1. Математическое ожидание постоянной равно самой этой постоянной, т.е. Случайные величины - определение и вычисление с примерами решения
  2. Математическое ожидание суммы любого конечного числа случайных величин равно сумме их математических ожиданий.
  3. Математическое ожидание произведения любого конечного числа взаимно независимых случайных величин равно произведению их математических ожиданий.

Следствие. Постоянный множитель можно выносить за знак математического ожидания.

Определение. Дисперсией случайной величины X называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания: 

Случайные величины - определение и вычисление с примерами решения

Для вычисления дисперсии иногда удобно использовать другую формулу:Случайные величины - определение и вычисление с примерами решения

т.е. дисперсия равна математическому ожиданию квадрата случайной величины минус квадрат ее математического ожидания:

Свойства дисперсии.

  1. Дисперсия постоянной величины равна нулю: Случайные величины - определение и вычисление с примерами решения
  2. Постоянный множитель можно выносить за знак дисперсии с возведением в квадрат, т.е. Случайные величины - определение и вычисление с примерами решения где C –– постоянная величина.

Определение. Центрированной случайной величиной называется отклонение случайной величины от ее математического ожидания:Случайные величины - определение и вычисление с примерами решения

Центрированные случайные величины удобно использовать в преобразованиях, так как

Случайные величины - определение и вычисление с примерами решения

3. Если случайные величины Х и Y независимы, то Случайные величины - определение и вычисление с примерами решения

4. Если случайные величины Х и Y независимы, тоСлучайные величины - определение и вычисление с примерами решения

Дисперсия имеет размерность квадрата случайной величины. Это лишает наглядности дисперсию как числовую характеристику. Поэтому для характеристики разброса значений случайной величины используют среднее квадратическое отклонение, которое равно положительному значению корня квадратного из дисперсии: Случайные величины - определение и вычисление с примерами решения Среднее квадратическое отклонение имеет ту же размерность, что и сама случайная величина.

Пример №27

Некто носит на связке пять ключей. При отмыкании замка он последовательно испытывает ключи, пока не подберет нужный. Полагая выбор ключей бесповторным, написать закон распределения числа испытанных ключей. Вычислите математическое ожидание этой случайной величины.

Решение. Обозначим через X – число испытанных ключей. Так как выбор ключей бесповторный, то X может принимать значения: 1, 2, 3, 4, 5. Случайная величина X примет значение Случайные величины - определение и вычисление с примерами решения если с первой попытки будет выбран нужный ключ, вероятность чего равна 1/5 в силу равновозможности выбора любого из ключей. Значение Случайные величины - определение и вычисление с примерами решения случайная величина примет, если при первой попытке ключ будет выбран ошибочно (вероятность чего равна 4/5) и при второй попытке будет выбран нужный ключ из оставшихся четырех(вероятность этого равна 1/4). Поэтому:

Случайные величины - определение и вычисление с примерами решения

Случайная величина X имеет закон распределения Случайные величины - определение и вычисление с примерами решения

Среднее число попыток равно Случайные величины - определение и вычисление с примерами решения

Ответ. 3.

Пример №28

В ящике в полном беспорядке лежат пять пар туфель. Туфли по одной (без возвращения) вынимают из ящика, пока среди выбранных не обнаружится какая-либо пара. Сколько в среднем туфель придется извлечь из ящика?

Решение. Обозначим через X – число извлеченных туфель. Случайна величина X принимает только значения 2, 3, 4, 5, 6. (Чтобы сформировать пару, нужно извлечь минимум две туфли, а среди шести туфель хотя бы одна пара непременно найдется.) Найдем вероятности этих значений:

Случайные величины - определение и вычисление с примерами решения так как после выбора первой туфли в пару к ней годится только одна из девяти оставшихся;

Случайные величины - определение и вычисление с примерами решения так как вторая должна быть не парной к первой, вероятность чего равна 8/9, а третья должна быть парной либо к первой, либо ко второй, вероятность чего равна 2/8;

Случайные величины - определение и вычисление с примерами решения так как вторая должна быть не парной к первой, вероятность чего 8/9, третья – не парной к первым двум, вероятность чего 6/8, а четвертая должна быть одной туфлей из трех уже разукомплектованных пар, вероятность чего 3/7;

Случайные величины - определение и вычисление с примерами решениятак как вторая должна быть не парной к первой, вероятность чего 8/9, третья – не парной к первым двум, вероятность чего 6/8, четвертая – не парной к первым трем, вероятность чего равна 4/7, а пятая должна быть одной туфлей из четырех уже разукомплектованных пар, вероятность чего 4/6;

Случайные величины - определение и вычисление с примерами решения так как для этого необходимо, чтобы каждая из пяти первых туфель выбиралась из еще не тронутой пары.

Итак, случайная величина имеет закон распределения:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Ответ. Случайные величины - определение и вычисление с примерами решения

Пример №29

Цена лотерейного билета равна 50 рублей. В данной лотерее каждый пятый билет выигрывает. Величина выигрыша на один билет X имеет распределение:

Случайные величины - определение и вычисление с примерами решения

Некто приобрел пять билетов. Необходимо вычислить его средний выигрыш от участия в этом тираже лотереи.

Решение. Обозначим через Случайные величины - определение и вычисление с примерами решения выигрыш, приходящийся на Случайные величины - определение и вычисление с примерами решенияй билет. Тогда общий выигрыш Случайные величины - определение и вычисление с примерами решения По свойствам математического ожидания Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения

Поэтому средний выигрыш на пять билетов составит 5 • 36 = 180 руб., но за билеты было заплачено 250 руб. В итоге, средний «выигрыш» (фактически, проигрыш) равен 180 – 250 = –70 руб.

Ответ. –70 руб.

Пример №30

Монету подбрасывают до тех пор, пока не выпадет герб, или пять раз подряд не выпадет цифра. Пусть X – число бросков монеты. Напишите закон распределения случайной величины X и найдите ее математическое ожидание.

Решение. Если при первом же броске выпадет герб, то X =1, вероятность чего равна 1/2.

Бросков понадобится два, если сначала выпадет цифра, а при втором броске – герб. Вероятность такого исхода равна (1/ 2)(1/ 2) = 1/ 4.

Монету придется бросать трижды, если сначала дважды выпадет цифра и при третьем броске – герб. Вероятность этого равна (1/ 2)(1/ 2)(1/ 2) = 1/ 8.

Аналогично Случайные величины - определение и вычисление с примерами решения

Если четыре раза подряд выпадет цифра, то необходим пятый бросок, который независимо от результата (с вероятностью один) будет последним. Поэтому Случайные величины - определение и вычисление с примерами решения

Закон распределения числа бросков имеет вид: Случайные величины - определение и вычисление с примерами решения

Среднее число бросков равно Случайные величины - определение и вычисление с примерами решения 

Ответ. Случайные величины - определение и вычисление с примерами решения

Пример №31

Вероятность попадания в цель при каждом выстреле равна 1/3. Имеется семь патронов. Стрельба производится до тех пор, пока не будет трех попаданий или пока не кончатся патроны. Пусть X – число выстрелов. Найдите математическое ожидание случайной величины X.

Решение. Найдем сначала закон распределения случайной величины X. Для трех попаданий необходимо минимум три выстрела. Вероятность трех попаданий подряд равна Случайные величины - определение и вычисление с примерами решения Поэтому Случайные величины - определение и вычисление с примерами решения Выстрелов понадобится четыре, если в первых трех выстрелах будет только два попадания (вероятность чего равна Случайные величины - определение и вычисление с примерами решения) и при четвертом выстреле будет попадание. Поэтому Случайные величины - определение и вычисление с примерами решения Придется произвести пять выстрелов, если в первых четырех выстрелах будет два попадания (вероятность чего равна Случайные величины - определение и вычисление с примерами решения) и попадание будет при пятом выстреле. Поэтому Случайные величины - определение и вычисление с примерами решения Аналогично Случайные величины - определение и вычисление с примерами решения

Выстрелов будет семь, если к моменту седьмого выстрела будет два или меньше двух попаданий.

Поэтому Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Заметим, что проще эту вероятность было посчитать, отняв от единицы вычисленные уже вероятности остальных значений. Итак, случайная величина X имеет закон распределения: Случайные величины - определение и вычисление с примерами решения

Ответ. Случайные величины - определение и вычисление с примерами решения

Пример №32

Из 12 изделий три имеют скрытые дефекты. Наугад выбраны четыре изделия. Напишите закон распределения числа изделий со скрытыми дефектами среди выбранных.

Решение. Пусть X – число деталей со скрытыми дефектами среди выбранных четырех. Это дискретная случайная величина с возможными значениями Случайные величины - определение и вычисление с примерами решения Четыре детали из 12 можно выбрать Случайные величины - определение и вычисление с примерами решения способами.

Значению X = 0 благоприятствуют Случайные величины - определение и вычисление с примерами решения способов выбора изделия. Поэтому Случайные величины - определение и вычисление с примерами решения Значению X =1 благоприятствуют Случайные величины - определение и вычисление с примерами решения Значению X = 2 благоприятствуют Случайные величины - определение и вычисление с примерами решения способов, Случайные величины - определение и вычисление с примерами решения Наконец, значению X = 3 благоприятствуют Случайные величины - определение и вычисление с примерами решения способов, Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения Случайная величина X имеет закон распределения 

Случайные величины - определение и вычисление с примерами решения

Среднее число деталей со скрытыми дефектами в выборке равно Случайные величины - определение и вычисление с примерами решения

Ответ. 1.

Пример №33

Случайная величина X принимает значения 1, 3, 5, 7, 9 с вероятностямиСлучайные величины - определение и вычисление с примерами решения где Случайные величины - определение и вычисление с примерами решения – некоторая постоянная величина. Найти математическое ожидание X.

Решение. Так как сумма вероятностей всех возможных значений случайной величины равна единице, то Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решенияПоэтому

Случайные величины - определение и вычисление с примерами решения

Ответ. Случайные величины - определение и вычисление с примерами решения

Пример №34

Из чисел 1, 2, 3, …, 20 наугад без возвращения выбирают восемь чисел. Найти математическое ожидание их суммы.

Решение. Обозначим через Случайные величины - определение и вычисление с примерами решения число, выбранное Случайные величины - определение и вычисление с примерами решениям по порядку. Тогда для любого Случайные величины - определение и вычисление с примерами решения имеем

Случайные величины - определение и вычисление с примерами решения

Например, вероятность того, что пятое по порядку число будет равно Случайные величины - определение и вычисление с примерами решения равна Случайные величины - определение и вычисление с примерами решения

Это означает, что для Случайные величины - определение и вычисление с примерами решенияго по порядку числа равновозможны все значения от 1 до 20. Поэтому математическое ожидание Случайные величины - определение и вычисление с примерами решенияго числа равно

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения Сумма выбранных чисел Случайные величины - определение и вычисление с примерами решения имеет математическое ожидание Случайные величины - определение и вычисление с примерами решения

Ответ. 84.

Пример №35

Из чисел 1, 2, 3, 4, 5, 6, 7 наугад без возвращения выбирают четыре числа. Пусть X – наибольшее из этих чисел. Требуется найти закон распределения случайной величины X и ее математическое ожидание.

Решение. Случайная величина X может принимать значения 4, 5, 6, 7. Вычислим вероятности этих значений. Всего имеется Случайные величины - определение и вычисление с примерами решения способов выбрать любых четыре числа из семи. Реализуется значение X = 4, если будут выбраны первые четыре числа 1, 2, 3, 4. Это можно сделать единственным способом. Поэтому Случайные величины - определение и вычисление с примерами решения Значение X = 5 получится, если будет выбрано число пять и в добавление к этому три числа из первых четырех. Это можно сделать Случайные величины - определение и вычисление с примерами решения способами. Поэтому Случайные величины - определение и вычисление с примерами решения Величина X = 6 , если будет выбрана цифра шесть и в дополнение к ней любых три числа из первых пяти. Это можно сделать Случайные величины - определение и вычисление с примерами решения Следовательно, Случайные величины - определение и вычисление с примерами решения Если будет выбрана цифра семь и в дополнение к ней любые три из первых шести, то реализуется значение X = 7. Вероятность этого Случайные величины - определение и вычисление с примерами решения В итоге имеем закон распределения:

Случайные величины - определение и вычисление с примерами решения

Поэтому Случайные величины - определение и вычисление с примерами решения

Ответ. Случайные величины - определение и вычисление с примерами решения

Пример №36

Пусть в урне находится M белых шаров и R черных. Из урны наугад выбирают один шар. После установления его цвета в урну добавляют Случайные величины - определение и вычисление с примерами решения шар того же цвета (т.е. выбранный шар возвращают в урну и к нему добавляют еще Случайные величины - определение и вычисление с примерами решения шаров того же цвета). Затем выбирают из урны второй шар и в урну возвращают Случайные величины - определение и вычисление с примерами решения шар такого же цвета, что и второй 82 шар. Потом выбирают очередной шар и т.д. Всего производят выбор и добавление шаров Случайные величины - определение и вычисление с примерами решения раз.

Обозначим через X число белых шаров, выбранных из урны в процессе этих Случайные величины - определение и вычисление с примерами решения испытаний. Требуется найти закон распределения случайной величины X и ее математическое ожидание.

Решение. Заметим, что X принимает значения 0, 1, 2, 3, …, Случайные величины - определение и вычисление с примерами решения. Вычислим Случайные величины - определение и вычисление с примерами решения

Рассудим следующим образом. После каждого опыта число шаров в урне возрастает на Случайные величины - определение и вычисление с примерами решения. Первый шар выбирается из Случайные величины - определение и вычисление с примерами решения шаров, выбор второго возможен из Случайные величины - определение и вычисление с примерами решения шаров, третий шар можно выбрать из Случайные величины - определение и вычисление с примерами решения шаров и т.д., для Случайные величины - определение и вычисление с примерами решения-го шара имеется Случайные величины - определение и вычисление с примерами решения возможностей выбора. Поэтому число всех возможных исходов этих Случайные величины - определение и вычисление с примерами решения опытов по комбинаторному принципу равно

Случайные величины - определение и вычисление с примерами решения

Если белый шар был выбран Случайные величины - определение и вычисление с примерами решения раз, то первый их них выбирался из M шаров, второй – из Случайные величины - определение и вычисление с примерами решения шаров, третий – из  и т.д., Случайные величины - определение и вычисление с примерами решения-й белый шар можно было выбрать из Случайные величины - определение и вычисление с примерами решения шаров. По комбинаторному принципу Случайные величины - определение и вычисление с примерами решения белых шаров можно было выбрать Случайные величины - определение и вычисление с примерами решения способами.

Аналогично Случайные величины - определение и вычисление с примерами решения черный шар можно было выбрать Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решенияспособами. Тогда выбрать Случайные величины - определение и вычисление с примерами решения белых и Случайные величины - определение и вычисление с примерами решения черных шаров в любой последовательности можно было

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения способами.

Различимых последовательностей в чередовании белых и черных шаров существует Случайные величины - определение и вычисление с примерами решения именно таким числом способов можно из Случайные величины - определение и вычисление с примерами решения опытов выбрать различных Случайные величины - определение и вычисление с примерами решения и в них получить белые шары. Поэтому

Случайные величины - определение и вычисление с примерами решения

Закон распределения случайной величины X со значениями 0, 1, 2, 3, …, Случайные величины - определение и вычисление с примерами решения и вероятностями этих значений Случайные величины - определение и вычисление с примерами решения определяемыми по формуле (2.8.6), называют законом распределения Полиа.

Замечание. Если в распределении Полиа Случайные величины - определение и вычисление с примерами решения то получим независимые опыты и формула (2.8.5) переходит в формулу Бернулли (2.6.1). Если же Случайные величины - определение и вычисление с примерами решения то это означает, что выбранный шар в урну не возвращается и новых шаров в урну не добавляется. Мы попадаем в условия бесповторного выбора. В этом случае формула (2.8.5) переходит в формулу (2.1.1).

Рассмотрим серию опытов, которые производятся в неодинаковых условиях и поэтому вероятность появления события Случайные величины - определение и вычисление с примерами решения меняется от опыта к опыту. Например, во время боя из-за сближения или удаления противника вероятность поражения цели при выстреле меняется от выстрела к выстрелу. Обозначим через Случайные величины - определение и вычисление с примерами решения – вероятность появления события Случайные величины - определение и вычисление с примерами решения в Случайные величины - определение и вычисление с примерами решениям опыте, а вероятность непоявления события через Случайные величины - определение и вычисление с примерами решения Требуется найти вероятность Случайные величины - определение и вычисление с примерами решения того, что в результате Случайные величины - определение и вычисление с примерами решения опытов событие Случайные величины - определение и вычисление с примерами решения появится Случайные величины - определение и вычисление с примерами решения раз.

Можно, как и при выводе формулы Бернулли (2.6.1), моделировать результаты Случайные величины - определение и вычисление с примерами решения опытов с помощью Случайные величины - определение и вычисление с примерами решения букв A и Случайные величины - определение и вычисление с примерами решения букв Случайные величины - определение и вычисление с примерами решения. Различимых перестановок таких букв будет Случайные величины - определение и вычисление с примерами решения Именно таким числом способов можно из Случайные величины - определение и вычисление с примерами решения мест выбрать Случайные величины - определение и вычисление с примерами решения и поставить на них буквы Случайные величины - определение и вычисление с примерами решения, а на остальные – буквы Случайные величины - определение и вычисление с примерами решения.

Каждая перестановка этих букв соответствует определенной последовательности появлений и непоявлений события Случайные величины - определение и вычисление с примерами решения. К сожалению, в нашем случае перестановки не равновозможны и суммировать их вероятности трудоемко. Вместо утомительного перебора возможных комбинаций букв поступим следующим образом. Составим функцию Случайные величины - определение и вычисление с примерами решения

где Случайные величины - определение и вычисление с примерами решения – некоторая действительная переменная.

Если перемножить скобки, привести подобные и упорядочить их по степеням Случайные величины - определение и вычисление с примерами решения, то получим многочлен по степеням Случайные величины - определение и вычисление с примерами решения. Легко понять, что при каждой степени Случайные величины - определение и вычисление с примерами решения будет коэффициент в виде произведения Случайные величины - определение и вычисление с примерами решения букв Случайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решения букв Случайные величины - определение и вычисление с примерами решения с какими-то индексами, а после приведения подобных получится коэффициент, который будет равен сумме всех подобных произведений, т.е. равный Случайные величины - определение и вычисление с примерами решения

Пример №37

С разных расстояний производится четыре независимых выстрела по одной и той же цели. Вероятности попадания в цель при этих выстрелах равны соответственно 0,1; 0,2; 0,4; 0,8. Найти распределения числа попаданий и математическое ожидание этого числа.

Решение. Обозначим число попаданий в цель через X . Запишем производящую функцию

Случайные величины - определение и вычисление с примерами решения

Итак, случайная величина X имеет распределение: Случайные величины - определение и вычисление с примерами решения

Заметим, что Случайные величины - определение и вычисление с примерами решения можно вычислить непосредственно (не находя предварительно закона распределения). Представим число попаданий в виде Случайные величины - определение и вычисление с примерами решения где Случайные величины - определение и вычисление с примерами решения – число попаданий при Случайные величины - определение и вычисление с примерами решениям выстреле. Тогда Случайные величины - определение и вычисление с примерами решения

Но Случайные величины - определение и вычисление с примерами решенияПоэтому Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Ответ. Случайные величины - определение и вычисление с примерами решения

Пример №38

На круговом экране локатора равновозможно появление пятна в каждой точке экрана. Радиус экрана равен R. Найти закон распределения расстояния от центра экрана до пятна. Найти математическое ожидание и дисперсию этого расстояния.

Решение. Обозначим через Х расстояние от центра экрана до пятна. Это расстояние будет меньше Случайные величины - определение и вычисление с примерами решения если пятно попадет внутрь круга радиуса Случайные величины - определение и вычисление с примерами решения Вероятность этого по геометрическому определению вероятности равна отношению площади круга радиуса Случайные величины - определение и вычисление с примерами решения к площади всего экрана локатора. Поэтому функция распределения случайной величины Х имеет вид Случайные величины - определение и вычисление с примерами решения при Случайные величины - определение и вычисление с примерами решения Случайные величины - определение и вычисление с примерами решения при Случайные величины - определение и вычисление с примерами решения и Случайные величины - определение и вычисление с примерами решения при Случайные величины - определение и вычисление с примерами решения Тогда функция плотности вероятности Случайные величины - определение и вычисление с примерами решения при Случайные величины - определение и вычисление с примерами решения а Случайные величины - определение и вычисление с примерами решения

Ответ. Случайные величины - определение и вычисление с примерами решения

Пример №39

Случайная величина X имеет функцию распределения Случайные величины - определение и вычисление с примерами решения

Найти Случайные величины - определение и вычисление с примерами решения

Решение. Найдем сначала функцию плотности вероятности Случайные величины - определение и вычисление с примерами решения

Тогда Случайные величины - определение и вычисление с примерами решения Поэтому Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

С учетом определения и свойств функции распределения Случайные величины - определение и вычисление с примерами решения имеем Случайные величины - определение и вычисление с примерами решения

В последнем случае учтено, что Случайные величины - определение и вычисление с примерами решения в силу непрерывности случайной величины X.

Ответ.Случайные величины - определение и вычисление с примерами решения Случайные величины - определение и вычисление с примерами решения

Случайные величины и их характеристики

Если классическая теория вероятностей изучала, в основном, события и вероятность их появления (наступления), то современная теория вероятностей изучает случайные явления и их закономерности с помощью случайных величин. Понятие случайной величины, таким образом, является основополагающим в теории вероятностей. Ещё ранее проводились события, состоящие в появлении того или иного числа. Например, при бросании игральной кости могли появиться числа 1, 2, 3, 4, 5, 6. Наперёд определить число появившихся очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины. Случайной величиной называется величина, которая в результате опыта принимает то или иное (причём, одно и только одно) возможное числовое значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Случайны величины принято, обычно, обозначать прописными буквами X ,Y ,Z ,…, а их возможное значения – соответствующими строчными буквами x, y,z,… Например, если случайная величина X имеет три возможных значения, то они, соответственно, обозначаются так: Случайные величины - определение и вычисление с примерами решения Для удобства будем писать: Случайные величины - определение и вычисление с примерами решения
 

Пример 1. Число родившихся мальчиков среди ста новорожденных есть величина случайная, которая имеет следующие возможные значения: 0, 1, 2, …, 100.
 

Пример 2. Расстояние, которое пролетит снаряд при выстреле из орудия, есть также величина случайная. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т. п.), которые не могут быть полностью учтены. Возможные значения этой величины, очевидно, принадлежат некоторому промежутку (интервалу) Случайные величины - определение и вычисление с примерами решения Заметим, что с каждым случайным событием можно связать какую-либо случайную величину, принимающую значения из R.

Например, опыт – выстрел по
мишени; событие – попадание в мишень; случайная величина – число попаданий в мишень. Вернёмся к примерам, приведённым выше. В первом из них случайная величина X могла принять одно из следующих возможных значений: 0, 1, 2,…, 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значений X . Таким образом, в этом примере случайная величина принимает отдельные, изолированные, возможные значения.

Во втором примере случайная величина могла принять любое из значений промежутка a,b. Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины. Уже из сказанного можно заключить о целесообразности различать случайные величины, принимающие лишь отдельные, изолированные значения и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.

Дискретной (прерывной) случайной величиной называется такая случайная величина, которая принимает конечное или счётное множество4 различных значений. Другими словами – это такая случайная величина, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным. Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка действительной числовой оси.
Очевидно, во-первых, число возможных значений непрерывной случайной величины – бесконечно. Во-вторых, дискретная случайная величина является частным случаем непрерывной случайной величины.
 

Закон распределения вероятностей

Закон распределения вероятностей дискретной случайной величины:

На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все её возможные значения. В действительности это не так: различные случайные величины иногда могут иметь одинаковые перечни возможных значений, а соответствующие вероятности этих значений – различные. Поэтому для полной характеристики мало знать значения случайной величины, нужно ещё знать, как часто эти значения встречаются в опыте при его повторении, т.е. нужно ещё указать вероятности их появления.
Рассмотрим случайную величину Случайные величины - определение и вычисление с примерами решения Появление каждого их возможных значенийСлучайные величины - определение и вычисление с примерами решения свидетельствует о том, что произошло соответственно одно из событийСлучайные величины - определение и вычисление с примерами решения, которые образуют полную группу5. Допустим, что вероятности этих событий Случайные величины - определение и вычисление с примерами решения известны:

4 Напомню, что счётным является множество, элементы которого можно пронумеровать числами натурального ряда.
5 Ai – событие, состоящее в том, что случайная величина X приняла в опыте значение Случайные величины - определение и вычисление с примерами решения причём в одном испытании, как уже отмечалось, случайная величина X принимает одно и только одно возможное значение.

Случайные величины - определение и вычисление с примерами решения

Тогда: соответствие, устанавливающее связь между возможными значениями случайной величины и их вероятностями, называется законом распределения вероятностей случайной величины, или просто – законом распределения случайной величины. Закон распределения вероятностей данной случайной величины можно задать таблично (ряд распределения), аналитически (в виде формулы) и графически. При табличном задании закона распределения дискретной случайной
величины первая строка таблицы содержит возможные значения, а вторая – их вероятности, т.е.

Случайные величины - определение и вычисление с примерами решения

В целях наглядности закон распределения дискретной случайной величины
можно изобразить и графически, для чего в прямоугольной системе координат строят точки Случайные величины - определение и вычисление с примерами решения , а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения. При этом, сумма ординат Случайные величины - определение и вычисление с примерами решения построенного многоугольника равна единице.

Случайные величины - определение и вычисление с примерами решения

Аналитически закон распределения дискретной случайной величины можно записать, например, используя формулу Бернулли для схемы повторения независимых опытов. Так, если обозначить случайную величину, которой является число бракованных деталей в выборке, через X , то возможные её значения Случайные величины - определение и вычисление с примерами решения будут 0, 1, 2, . . . , n. Тогда, очевидно, формула Бернулли будет устанавливать зависимость между значениями Случайные величины - определение и вычисление с примерами решения и вероятностью Случайные величины - определение и вычисление с примерами решения их появления, где
Случайные величины - определение и вычисление с примерами решения
что о определяет закон распределения данной случайной величины.
 

Закон распределения вероятностей непрерывной случайной величины:

Вспомним, что дискретная случайная величина задаётся перечнем всех её возможных значений и их вероятностей. Такой способ задания не является общим: он не применим, например, для непрерывных случайных величин. Действительно, рассмотрим случайную величину X , возможные значения которой сплошь заполняют интервал Случайные величины - определение и вычисление с примерами решения Можно ли составить перечень всех возможных значений X ? Очевидно, что этого сделать нельзя. Этот пример указывает на целесообразность дать общий способ задания любых типов случайных величин (как уже отмечалось, дискретная случайная величина является частным случаем непрерывной случайной величины). С этой целью вводят интегральную функцию распределения.

Пусть x – переменная, принимающая произвольные действительные значения (на оси Случайные величины - определение и вычисление с примерами решения . Рассмотрим событие A, состоящее в том, что случайная величина X примет значение меньшее x . Тогда, вероятность Случайные величины - определение и вычисление с примерами решения события A зависит от x , т.е. является функцией от x . Эту функцию принято обозначать черезСлучайные величины - определение и вычисление с примерами решения и называть функцией распределения случайной величины или, ещё – интегральной функцией распределения. Другими словами: интегральной функцией распределения называют функциюСлучайные величины - определение и вычисление с примерами решения определяющую для каждого значения Случайные величины - определение и вычисление с примерами решения вероятность того, что случайная величина X примет значение, меньшее x , т.е.
Случайные величины - определение и вычисление с примерами решения
Геометрически это равенство можно истолковывать так:Случайные величины - определение и вычисление с примерами решения есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки x .
 

Свойства интегральной функции Случайные величины - определение и вычисление с примерами решения

1. Значения интегральной функции принадлежат отрезку Случайные величины - определение и вычисление с примерами решения
Случайные величины - определение и вычисление с примерами решения
Доказательство этого свойства вытекает из определения интегральной функции как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

Случайные величины - определение и вычисление с примерами решения

Действительно, пусть A– событие, состоящее в том, что случайная величина X примет значение меньшее Случайные величины - определение и вычисление с примерами решения аналогично, B – событие, состоящее в том, что случайная величина X примет значение меньшееСлучайные величины - определение и вычисление с примерами решения Другими словами:

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

3. Если возможные значения непрерывной случайной величины расположены на всей числовой оси Ox , то справедливо следующее предельное соотношение:

Случайные величины - определение и вычисление с примерами решения

Это свойство вполне очевидно. Так, если Случайные величины - определение и вычисление с примерами решения– достоверное событие, а Случайные величины - определение и вычисление с примерами решения – невозможное событие, то

Случайные величины - определение и вычисление с примерами решения

4. Вероятность того, что случайная величина примет значение, заключенное в интервале Случайные величины - определение и вычисление с примерами решенияравна приращению интегральной функции на этом интервале:

Случайные величины - определение и вычисление с примерами решения

Рассмотрим следующие события:Случайные величины - определение и вычисление с примерами решенияВидим, чтоСлучайные величины - определение и вычисление с примерами решеният.е. события A и B несовместны. ТогдаСлучайные величины - определение и вычисление с примерами решенияно Случайные величины - определение и вычисление с примерами решенияВ результате можем записать Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решениячто и требовалось показать.

Мы будем в основном изучать такие непрерывные случайные величины, функции распределения которых непрерывны.

График функция распределения дискретной случайной величины представляет собой ступенчатую ломаную линию (см. рис.). Величина
скачка в точках разрыва равна вероятности значения случайной величины в этой точке. Зная ряд распределения случайной величины, можно построить график её функции распределения:Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Для непрерывной случайной величины более наглядной является не интегральная, а дифференциальная функция распределения или, так называемая, плотность распределения случайной величины:
плотностью распределения Случайные величины - определение и вычисление с примерами решения случайной величины X называется производная от её интегральной функции распределения Случайные величины - определение и вычисление с примерами решения т.е.Случайные величины - определение и вычисление с примерами решения

Свойства дифференциальной функции Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решенияДоказательство этого свойства непосредственно следует из определения.
Действительно:

Случайные величины - определение и вычисление с примерами решения(самостоятельно – объяснить, почему. Рассмотреть различные случаи Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решенияДоказательство:Случайные величины - определение и вычисление с примерами решениячто и требовалось доказать.

Случайные величины - определение и вычисление с примерами решенияДоказательство: по четвёртому свойству для интегральной функцииСлучайные величины - определение и вычисление с примерами решения распределения случайной величины можем записать:Случайные величины - определение и вычисление с примерами решения

6 Воспользоваться вторым свойством для функции Случайные величины - определение и вычисление с примерами решения

Но, по рассмотренному выше второму свойству для Случайные величины - определение и вычисление с примерами решения справедливо:Случайные величины - определение и вычисление с примерами решенияТогда Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решенияДоказательство. Это свойство, как впрочем и предыдущие, можно доказать различными способами. В частности:

Случайные величины - определение и вычисление с примерами решения

Замечу, что график дифференциальной функции Случайные величины - определение и вычисление с примерами решения распределения случайной величины лежит выше (или – на) оси Ox (см. первое свойство) – это, во-первых. Во-вторых, учитывая четвёртое свойство, т.е. условие нормировки, можем также сказать, что площадь области, ограниченной кривойСлучайные величины - определение и вычисление с примерами решения плотности распределения, равна единице.

Пример №40

Плотность распределения случайной величины X задана формулой Случайные величины - определение и вычисление с примерами решения

Требуется:
1. найти величину постоянной A;
2. найти функцию Случайные величины - определение и вычисление с примерами решения
3. определить вероятность попадания случайной величины X в интервалСлучайные величины - определение и вычисление с примерами решения

Решение.
1. величину постоянной A найдём из условия нормировки: Случайные величины - определение и вычисление с примерами решения В нашем случае, получаем

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Числовые характеристики случайных величин

Закон распределения случайной величины отвечает на вопрос, где расположены возможные значения случайной величины и какова вероятность их появления в том или ином интервале значений. Часто на практике достаточно знать только некоторые характеристики
случайной величины, то есть иногда выгоднее пользоваться числами, которые описывают случайную величину суммарно. В теории вероятностей для общей характеристики случайной величины используют параметры, называемые числовыми характеристиками случайной величины. Наиболее часто используют такие из них: математическое ожидание, дисперсия, мода, медиана, моменты распределения.
 

Математическое ожидание

Математическим ожиданием Случайные величины - определение и вычисление с примерами решения дискретной случайной величины X называется число, равное сумме произведений всех возможных значений данной случайной величины на вероятность появления этих значений, т.е.

Случайные величины - определение и вычисление с примерами решения( или Случайные величины - определение и вычисление с примерами решениядля случайной величины, имеющей счётное множество различных значений).
Математическим ожиданием непрерывной случайной величины X называется число, равное Случайные величины - определение и вычисление с примерами решения

Из определения следует, что математическое ожидание случайной величины есть величина неслучайная, а постоянная. Кроме того, существуют случайные величины, у которых Случайные величины - определение и вычисление с примерами решения не существует. В дальнейшем будет показано, что математическое ожидание приближённо равно среднему арифметическому всех возможных значений случайной величины,получаемых в результате опыта. Поэтому Случайные величины - определение и вычисление с примерами решения ещё называют средним значением случайной величины 7.

Легко сообразить, что математическое ожидание больше наименьшего и меньше наибольшего возможных значений случайной величины. Другими словами, на числовой оси возможные значения случайной величины расположены слева и справа от математического ожидания. В этом смысле математическое ожидание характеризует расположение распределения случайной величины и поэтому его часто называют центром распределения (последний термин заимствован из механики).
 

Свойства математического ожидания

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения– постоянный множитель можно выносить за знак математического ожидания;

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решениянезависимые случайные величины (если закон распределения одной из них не зависит от того, какие возможные значения приняла другая случайная величина).

Модой дискретной случайной величины называется её наибольшее вероятное значение Случайные величины - определение и вычисление с примерами решения . Модой непрерывной случайной величины называется такое её значение Случайные величины - определение и вычисление с примерами решения , при котором плотность распределения имеет максимум, т.е.

Случайные величины - определение и вычисление с примерами решенияГеометрически, мода – это абсцисса точки максимума кривой распределения случайной величины.
Медианой случайной величины называется такое её значение e M , относительно которого равновероятно, что данная случайная величина
окажется больше или меньше медианы, т.е.Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Геометрически, медиана – это абсцисса точки, в которой площадь области, ограниченная кривой распределения и осью Ox , делится
пополам. Если распределение симметрично и имеет один максимум, то все три указанные характеристики совпадают. На рисунке
изображён случай несимметричного распределения случайной величины.

7 Происхождение термина «математическое ожидание» связано с начальным периодом возникновения теории вероятностей (XVI-XVII вв.), когда область её применения ограничивалась азартными играми. Игрока интересовало среднее значение ожидаемого выигрыша или, иными
словами, математическое ожидание выигрыша.

Дисперсия

Легко указать такие случайные величины, которые имеют одинаковые математические ожидания, но различные возможные значения.
Рассмотрим, например, две дискретные случайные величины X и Y, заданные следующими законами распределения:

Случайные величины - определение и вычисление с примерами решения

Нетрудно видеть, что M(X)=M(Y)=0. Здесь математические ожидания обеих случайных величин одинаковы, а возможные значения различны, причём Х имеет возможные значения, близкие к математическому ожиданию, а Y – далёкие от своего математического ожидания. Таким образом, зная лишь математическое ожидание случайной величины, ещё нельзя судить ни о том, какие возможные значения она может принимать, ни о том, как они рассеяны вокруг математического ожидания. Другими словами, математическое ожидание полностью случайную величину не характеризует. По этой причине, наряду с математическим ожиданием, вводят и другие числовые характеристики. Так, например, для того, чтобы оценить, как рассеяны возможные значения случайной величины вокруг её математического ожидания,
пользуются, в частности, числовой характеристикой, которую называют дисперсией. Дисперсией Случайные величины - определение и вычисление с примерами решенияслучайной величины называется математическое ожидание квадрата отклонения данной случайной величины от её математического ожидания, т.е.

Случайные величины - определение и вычисление с примерами решения

1). Для дискретной случайной величины Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решениядля случайной величины, имеющей конечное число значений);
2). Для непрерывной случайной величины Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решенияесли значения случайной величины принадлежат промежутку Случайные величины - определение и вычисление с примерами решения

Свойства дисперсии:

Случайные величины - определение и вычисление с примерами решения

Доказательства, приведённых выше свойств, вполне очевидны и проводятся по определению. Давайте докажем, например, третье свойство:

Случайные величины - определение и вычисление с примерами решения

Пример №41

Найти дисперсию Случайные величины - определение и вычисление с примерами решения случайной величины X , имеющей следующее распределение

Случайные величины - определение и вычисление с примерами решения

Решение:

Вычислим, прежде всего, математическое ожидание данной случайной величины:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Среднее квадратическое отклонение

Для оценки рассеяния возможных значений случайной величины вокруг её среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратическое отклонение.

Средним квадратическим отклонением Случайные величины - определение и вычисление с примерами решения) случайной величины Х называют квадратный корень из дисперсии этой случайной величины, то есть:Случайные величины - определение и вычисление с примерами решения

Легко показать, что дисперсия имеет размерность равную квадрату размерности случайной величины. Так как среднее квадратическое отклонение, по определению, равно квадратному корню из дисперсии, то размерность Случайные величины - определение и вычисление с примерами решения совпадает с размерностью Х. Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее
квадратическое отклонение, а не дисперсию. Например, если Х выражается в линейных метрах, тоСлучайные величины - определение и вычисление с примерами решения будет выражаться также в линейных метрах, а D(X) – в квадратных метрах.

Дисперсия и среднее квадратическое отклонение являются мерой рассеяния случайной величины относительно центра распределения – чем больше рассеяние, тем больше Случайные величины - определение и вычисление с примерами решения
 

Моменты распределения случайной величины

Рассмотрим дискретную случайную величину Х, Заданную законом распределения:

Случайные величины - определение и вычисление с примерами решения

Видимо,что Случайные величины - определение и вычисление с примерами решениязначительно больше М(Х). Это объясняется тем, что после возведения в квадрат возможное значение величины 2 X , соответствующее значению х=100 величины Х, стало равным 10 000, то есть значительно увеличилось; вероятность же этого значения мала 0,01. Таким образом, переход отСлучайные величины - определение и вычисление с примерами решения позволил лучше учесть влияние на математическое ожидание того возможного значения, которое велико и имеет малую вероятность. Разумеется, если бы величина Х имела несколько больших и маловероятных значений, то переход к величинеСлучайные величины - определение и вычисление с примерами решения а тем более к величинам Случайные величины - определение и вычисление с примерами решенияи т.д., позволил бы ещё больше «усилить роль» этих больших, но маловероятных, возможных значений. Вот почему оказывается целесообразным рассматривать математическое ожидание целой положительной степени случайной величины (не только дискретной, но и непрерывной).

Обобщением основных числовых характеристик случайной величины являются её моменты. В теории вероятностей используют начальные и центральные моменты случайной величины.

Начальным моментом k -ого порядка (обозначают через Случайные величины - определение и вычисление с примерами решения ) случайной величины X называют число, равное математическому ожиданию случайной величины Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Центральным моментом k -ого порядка (обозначают через Случайные величины - определение и вычисление с примерами решения ) случайной величины X называют число, равное математическому ожиданию случайной величины Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Нетрудно видеть, что для дискретной случайной величины моменты будут выражаться через сумму, а для непрерывной – через интеграл.

Справедливо, в частности:

  1. Условие нормировки Случайные величины - определение и вычисление с примерами решения
  2. Первый начальный момент равенСлучайные величины - определение и вычисление с примерами решения
  3. Второй центральный момент равенСлучайные величины - определение и вычисление с примерами решения
  4. Нормированный третий центральный момент Случайные величины - определение и вычисление с примерами решенияназывается коэффициентом асимметрии и служит характеристикой асимметрии или скошенности распределения случайной величины.

Асимметрия положительна, если «длинная часть» кривой распределения
расположена справа от математического ожидания; асимметрия отрицательна, если «длинная часть» кривой расположена слева от математического ожидания. На практике определяют знак асимметрии по расположению кривой распределения относительно моды (точки
максимума дифференциальной функции): если длинная часть кривой расположена правее моды, то асимметрия положительна, если слева – отрицательна (см. рис.).

Случайные величины - определение и вычисление с примерами решения

Если A = 0, то можно сказать, что значения случайнойвеличины распределены симметрично относительно математического ожидания, т.е. случайная величина имеет нормальное распределение.

5. С четвёртым центральным моментом связана величина, называемая эксцессом:

Случайные величины - определение и вычисление с примерами решения

Эксцесс характеризует островершинность или плосковершинность распределения случайной величины (другими
словами, эксцесс служит для оценки «крутости», то есть большего или меньшего подъёма кривой теоретического распределения по сравнению с нормальной кривой). Забегая немного вперёд, скажем, если эксцесс некоторого распределения отличен от нуля, то кривая этого распределения отличается от нормальной кривой: если эксцесс положительный, то кривая имеет более высокую и «острую» вершину, чем нормальная кривая; если эксцесс отрицательный, то сравниваемая кривая имеет более низкую и «плоскую» вершину, чем нормальная кривая (см. рис.). Для нормального распределения E = 0.
 

Замечания.
1. Для начальных и центральных моментов справедливы следующие соотношения:Случайные величины - определение и вычисление с примерами решения

2. Моменты непрерывной случайной величины аналогичны моментам твёрдого тела в механике. Так, если рассматривать бесконечный твёрдый стержень расположенный вдоль оси Ox , то можем записать:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решениямомент инерции стержня относительно оси перпендикулярной Ox и проходящей через центр масс стержня.
3. Распределение вероятностей случайной величины можно интерпретировать как распределение массы стержня на прямой Ox .

Основные законы распределения случайной величины

Равномерное распределение дискретной случайной величины.
Пусть случайная величина Х принимает n значений с вероятностями Случайные величины - определение и вычисление с примерами решения Данная случайная величина называется равномерно распределённой случайной величиной, если Случайные величины - определение и вычисление с примерами решения

В этом случае:
– ряд распределения

Случайные величины - определение и вычисление с примерами решения

– функция распределения Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

– математическое ожидание Случайные величины - определение и вычисление с примерами решения

– дисперсия Случайные величины - определение и вычисление с примерами решения

Пример №42

Случайная величина Х – выпадение числа очков на верхней грани игрального кубика при одном броске. Найти математическое ожидание случайной величины Х.
 

Решение. Очевидно, что Случайные величины - определение и вычисление с примерами решения
то, согласно определению, случайная величина Х распределена по равномерному закону. Следовательно, в этом случае, можем записать:

Случайные величины - определение и вычисление с примерами решения1.2. Равномерное распределение непрерывной случайной величины.

Непрерывная случайная величина подчиняется равномерному закону распределения, если её возможные значения лежат в некотором определённом интервале, в пределах которого все значения равновероятны, то есть обладают одной и той же плотностью вероятности. Другими словами, распределение вероятностей называют равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, дифференциальная функция имеет постоянное значение. Случайные величины, имеющие равномерное распределение вероятностей, часто встречаются на практике. Например, при снятии показаний измерительных приборов. Ошибка при округлении отсчёта до ближайшего целого деления шкалы является случайной величиной, которая может с постоянной плотностью вероятности принимать любые значения между двумя соседними делениями. Таким образом, данная случайная величина имеет равномерное распределение.

Найдём дифференциальную функцию (плотность) равномерного распределения, считая, что все возможные значения случайной величины Х
заключены в промежутке Случайные величины - определение и вычисление с примерами решения на котором дифференциальная функция сохраняет постоянное значение, то есть Случайные величины - определение и вычисление с примерами решения
По условию Х не принимает значений вне промежутка Случайные величины - определение и вычисление с примерами решения поэтому Случайные величины - определение и вычисление с примерами решения Найдём значение постоянной С. Так как все возможные значения случайной величины принадлежат промежутку Случайные величины - определение и вычисление с примерами решениято справедливо:Случайные величины - определение и вычисление с примерами решения

Итак, закон равномерного распределения случайной величины на отрезке Случайные величины - определение и вычисление с примерами решенияаналитически можно записать так:

Случайные величины - определение и вычисление с примерами решения

Найдём теперь интегральную функцию равномерного распределения непрерывной случайной величины. Для этого воспользуемся формулой

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Итак, искомая интегральная функция распределения аналитически может быть записана так:

Случайные величины - определение и вычисление с примерами решения

Свойства равномерного непрерывного распределения:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Пример №43

Троллейбусы идут строго по расписанию и с интервалом в 6 мин. Найти вероятность того, что пассажир, подошедший к остановке, будет ожидать троллейбус менее двух минут.
 

Решение. Время ожидания троллейбуса есть непрерывная случайная величина Х, имеющая равномерное распределение на промежутке [0,6], так как с равной вероятностью время ожидания может быть любым в этом промежутке. Тогда Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Гипергеометрическое распределение

Гипергеометрическое распределение играет важную роль в области статистического контроля качества. Будем говорить, что дискретная случайная величина Х, принимающая целочисленные значения Случайные величины - определение и вычисление с примерами решенияраспределена по гипергеометрическому закону, если вероятности этих значений определяются выражением

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

3. при Случайные величины - определение и вычисление с примерами решениягипергеометрическое распределение приближается к биномиальному распределению (о котором поговорим немного позднее).

Пример №44

Партия из 100 изделий содержит 10% брака. Для контроля выбрано 5 изделий. Необходимо определить вероятность того, что в выборке меньше двух бракованных изделий. Найти Случайные величины - определение и вычисление с примерами решения для случайной величины Х – числа дефектных изделий в данной выборке изделий.
 

Решение. Данная дискретная случайная величина Х={0,1,2,3,4,5}очевидно подчиняется гипергеометрическому закону распределения вероятностей. В нашем случае N = 100, D = 10, n = 5. Вероятность того, что в выборке ровно d бракованных изделий равна

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Заметим, что Случайные величины - определение и вычисление с примерами решенияТо есть вероятность того, что в выборке меньше двух бракованных изделий равна 0,923.
Далее, найдём

Случайные величины - определение и вычисление с примерами решения

Замечание: Сравним полученные значения математического ожидания и дисперсии с соответствующими значениями (см. свойства гипергеометрического распределения):

Случайные величины - определение и вычисление с примерами решения

Биномиальное распределение

Биномиальное распределение вероятностей является самым распространённым распределением для дискретных случайных величин.
Итак, пусть производится n независимых испытаний, в каждом из которых событие А может появиться, либо не появиться. И пусть, вероятность наступления события во всех испытаниях постоянна и равна р (следовательно, вероятность непоявления Случайные величины - определение и вычисление с примерами решения Рассмотрим в качестве дискретной случайной величины Х – число появлений события А в этих испытаниях. Поставим перед собой задачу: найти закон распределения величины Х. Для её решения требуется определить возможные значения случайной величины Х и их вероятности.

Очевидно, событие А в n испытаниях может либо не появиться, либо появиться 1 раз, либо 2 раза, . . . , либо n раз. Таким образом, нетрудно записать возможные значения случайной величиныСлучайные величины - определение и вычисление с примерами решения Остаётся найти вероятности этих возможных значений, для чего достаточно воспользоваться формулой Бернулли (см. Лекцию 5):

Случайные величины - определение и вычисление с примерами решения

Формула Бернулли и является аналитическим выражением искомого закона распределения.

Биномиальным называют распределение вероятностей дискретной случайной величины, определяемое формулой Бернулли.
Запишем биномиальный закон в виде таблицы:

Случайные величины - определение и вычисление с примерами решения

Свойства биномиального распределения:

Случайные величины - определение и вычисление с примерами решения

Действительно: Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Пример №45

Имеется три станка, коэффициент использования по времени которых составляет 0,8. Определить вероятность того, что в середине рабочей смены при нормальных условиях производства из данных трёх станков будет работать не более двух.
 

Решение. Работа каждого станка – события независимые. Вероятность того, что станок будет работать равна р=0,8 (следовательно q=1-0,8=0,2). Пусть случайная величина Х – число одновременно работающих станков, то есть Случайные величины - определение и вычисление с примерами решения Очевидно, что вероятности значений случайной величины Х подчиняются биномиальному закону распределения с параметрами р=0,8; q=0,2; n=3. Значит

Случайные величины - определение и вычисление с примерами решенияТребуется определить вероятность Случайные величины - определение и вычисление с примерами решенияПо определению Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Распределение Пуассона (закон редких событий)

Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р. Для определения вероятности k – появлений события А в этих испытаниях используют, как вам уже известно, формулу Бернулли. Однако, как быть если n велико, а вероятность р события А достаточно мала Случайные величины - определение и вычисление с примерами решения В таких случаях прибегают к асимптотической формуле Пуассона.

Итак, поставим своей задачей найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно k раз. Сделаем важное допущение: пусть произведение np сохраняет постоянное значение, а именно Случайные величины - определение и вычисление с примерами решения. Это означает, что среднее число появлений события в различных сериях испытаний, то есть при различных значениях n, остаётся
неизменным. Воспользуемся формулой Бернулли для вычисления интересующей нас
вероятности:

Случайные величины - определение и вычисление с примерами решения

Приняв во внимание, что n имеет очень большое значение, вместо Случайные величины - определение и вычисление с примерами решения найдёмСлучайные величины - определение и вычисление с примерами решения При этом будет найдено лишь приближённое значение отыскиваемой вероятности: n хотя и велико, но всё же конечно, а при отыскании предела мы устремим n к бесконечности.
Итак

Случайные величины - определение и вычисление с примерами решения

В результате (для простоты записи знак приближённого равенства опущен) запишем закон распределения.

Случайные величины - определение и вычисление с примерами решения

Эта формула выражает закон распределения Пуассона вероятностей массовых (n велико) редких (р мало) событий.

Таким образом, будем говорить, что дискретная случайная величина Случайные величины - определение и вычисление с примерами решения принимающая счётное множество значений, подчиняется закону распределения Пуассона, если вероятности её возможных значений задаются выражением:

Случайные величины - определение и вычисление с примерами решения

Свойства распределения Пуассона:

Случайные величины - определение и вычисление с примерами решенияДействительно: Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

3. если Случайные величины - определение и вычисление с примерами решениято из биномиального распределения следует закон распределения Пуассона.

Пример №46

Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,0002. Найти вероятность того, что на базу прибудут: а) три негодных изделия; б) не более трёх повреждённых изделия.
 

Решение: по условию n=5000, p=0,0002. НайдёмСлучайные величины - определение и вычисление с примерами решения
а) k = 3. Искомая вероятность по формуле Пуассона приближённо равна

Случайные величины - определение и вычисление с примерами решения

б) Пусть случайная величина Х – число изделий, повреждённых в пути, то есть Случайные величины - определение и вычисление с примерами решения Очевидно, что данная случайная величина распределена по биномиальному закону. Следовательно, искомую вероятность можно вычислить по формуле

Случайные величины - определение и вычисление с примерами решенияНо, так как Случайные величины - определение и вычисление с примерами решения , то по свойствуСлучайные величины - определение и вычисление с примерами решения можем воспользоваться законом распределения Пуассона, то есть, можем записать:

Случайные величины - определение и вычисление с примерами решенияЗамечание. По формуле Пуассона можно вычислить вероятность того, что
число событий, происшедших за время t равно k , если события образуют пуассоновский поток, причёмСлучайные величины - определение и вычисление с примерами решения– интенсивность потока, то есть среднее число событий, которые появляются в единицу времени:

Случайные величины - определение и вычисление с примерами решения

Пример №47

В течение часа коммутатор получает в среднем 60 вызовов. Какова вероятность того, что за время 30 сек, в течении которых телефонистка отлучилась, не будет ни одного вызова?
 

Решение: Найдём, прежде всего, Случайные величины - определение и вычисление с примерами решения – среднее число вызовов за 1 секунду:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Распределение Гаусса (нормальное распределение)

Наиболее известным и часто применяемым в теории вероятностей законом является нормальный закон распределения или закон Гаусса9.
Главная особенность нормального закона распределения заключается в том, что он является предельным законом для других законов распределения. Будем говорить, что непрерывная случайная величина Х, принимающая значения Случайные величины - определение и вычисление с примерами решения, подчиняется нормальному
закону, если её плотность распределения (дифференциальная функция) имеет вид

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Нетрудно видеть, что нормальное распределение определяется двумя параметрами: Случайные величины - определение и вычисление с примерами решенияДостаточно задать эти параметры, чтобы задать нормальное распределение. Заметим, что для нормального распределения интегральная функция имеет вид:

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Нормальное распределение было найдено впервые Муавром в 1733 г. в связи с исследованием предела биномиального распределения. Открытие прошло незамеченным; только в 1809 г. Гауссом и в 1812 г. Лапласом оно было снова открыто в связи с теорией ошибок наблюдений.

Существует известное замечание Липмана, гласящее, «каждый уверен в справедливости закона ошибок: экспериментаторы – потому, что они думают, что это математическая теорема, математики – потому, что они думают, что это экспериментальный факт». Отметим, что обе стороны совершенно правы, если только это их убеждение не слишком безусловно: при математическом доказательстве (см.центральную предельную теорему) утверждается, что при некоторых ограничениях вправе ожидать нормальное распределение, а статистический опыт показывает, что в действительности распределения являются часто приближённо нормальными. Поэтому, нормальному распределению уделяется большое внимание.

Покажем теперь, что вероятностный смысл параметров Случайные величины - определение и вычисление с примерами решения таков: а есть математическое ожидание, Случайные величины - определение и вычисление с примерами решения – среднее квадратическое отклонение (то есть Случайные величины - определение и вычисление с примерами решениянормального распределения:
а) по определению математического ожидания непрерывной случайной величины
имеем

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решениязначит Случайные величины - определение и вычисление с примерами решения

Действительно, Случайные величины - определение и вычисление с примерами решениятак как под знаком интеграла стоит нечётная функция, и пределы интегрирования
симметричны относительно начала координат;Случайные величины - определение и вычисление с примерами решенияинтеграл Пуассона.

Итак, математическое ожидание нормального распределения равно параметру а.
б) по определению дисперсии непрерывной случайной величины и, учитывая, что Случайные величины - определение и вычисление с примерами решения , можем записать

Случайные величины - определение и вычисление с примерами решения

Интегрируя по частям, положивСлучайные величины - определение и вычисление с примерами решениянайдём

Случайные величины - определение и вычисление с примерами решенияСледовательно Случайные величины - определение и вычисление с примерами решения

Итак, среднее квадратическое отклонение нормального распределения равно параметру Случайные величины - определение и вычисление с примерами решения

В случае если Случайные величины - определение и вычисление с примерами решениянормальное распределение называют нормированным (или, стандартным нормальным) распределением. Тогда, очевидно, нормированная плотность (дифференциальная) и нормированная интегральная функция распределения запишутся соответственно в виде:

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

(Функция Случайные величины - определение и вычисление с примерами решениякак вам известно, называется функцией Лапласа (см. ЛЕКЦИЮ5) или интегралом вероятностей. Обе функции, то есть Случайные величины - определение и вычисление с примерами решениятабулированы и их значения записаны в соответствующих таблицах).
 

Свойства нормального распределения (свойства нормальной кривой):

  1. Очевидно, функция Случайные величины - определение и вычисление с примерами решения на всей числовой прямой.
  2. Случайные величины - определение и вычисление с примерами решения то есть нормальная кривая расположена над осью Ох.
  3. Случайные величины - определение и вычисление с примерами решения то есть ось Ох служит горизонтальной асимптотой графика.
  4. Нормальная кривая симметрично относительно прямой х = а (соответственно график функции Случайные величины - определение и вычисление с примерами решения симметричен относительно оси Оу). Следовательно, можем записать:Случайные величины - определение и вычисление с примерами решения

5.Случайные величины - определение и вычисление с примерами решения

6. Легко показать, что точки Случайные величины - определение и вычисление с примерами решенияявляются точками перегиба нормальной кривой (доказать самостоятельно).

7. Очевидно, что

Случайные величины - определение и вычисление с примерами решения

Но так как Случайные величины - определение и вычисление с примерами решения

Кроме того Случайные величины - определение и вычисление с примерами решения, следовательно, все нечётные моменты равны нулю. Для чётных же моментов можем записать:

Случайные величины - определение и вычисление с примерами решения

8.Случайные величины - определение и вычисление с примерами решения

9.Случайные величины - определение и вычисление с примерами решения

10.Случайные величины - определение и вычисление с примерами решения

11. При отрицательных значениях случайной величины Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

12. Случайные величины - определение и вычисление с примерами решения

13. Вероятность попадания случайной величины на участок, симметричный относительно центра распределения, равна:

Случайные величины - определение и вычисление с примерами решения

Пример №48

Показать, что нормально распределённая случайная величина Х отклоняется от математического ожидания М(Х) не более чем на Случайные величины - определение и вычисление с примерами решения
 

Решение. Для нормального распределения: Случайные величины - определение и вычисление с примерами решения . Далее, запишем:

Случайные величины - определение и вычисление с примерами решения

Другими словами, вероятность того, что абсолютная величина отклонения превысит утроенное среднее квадратическое отклонение, очень мала, а именно равна 0, 0027. Это означает, что лишь в 0,27% случаев так может произойти. Такие события, исходя из принципа невозможности маловероятных событий, можно считать практически невозможнымиСлучайные величины - определение и вычисление с примерами решения. Итак, событие с вероятностью 0,9973 можно считать практически
достоверным, то есть случайная величина отклоняется от математического ожидания не более чем наСлучайные величины - определение и вычисление с примерами решения.

Пример №49

Зная характеристики нормального распределения случайной величины Х – предела прочности стали: Случайные величины - определение и вычисление с примерами решения найти вероятность получения стали с пределом прочности от Случайные величины - определение и вычисление с примерами решения
 

Решение.

Случайные величины - определение и вычисление с примерами решения

В этом состоит сущность так называемого правила трёх сигм: если случайная величина распределена нормально, то абсолютная величина её отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения. На практике правило трёх сигм применяется так: если распределение изучаемой случайной величины неизвестно, но условие, указанное в приведённом правиле, выполняется, то имеются все основания предполагать, что изучаемая величина распределена нормально; в противном случае она не распределена нормально.

Показательное распределение (экспоненциальный закон распределения)

Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается дифференциальной функцией (плотность распределения)

Случайные величины - определение и вычисление с примерами решениягде Случайные величины - определение и вычисление с примерами решения – постоянная положительная величина.

Случайные величины - определение и вычисление с примерами решения

Показательное распределение определяется одним параметром Случайные величины - определение и вычисление с примерами решения . Эта особенность показательного распределения указывает на его преимущество, по сравнению с распределениями, зависящими от большего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближённые значения); разумеется, проще оценить один параметр, чем два, или три и т.д.

Нетрудно записать интегральную функцию показательного распределения:

Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Мы определили показательное распределение при помощи дифференциальной функции; ясно, что его можно определить, пользуясь интегральной функцией.

Замечание: Рассмотрим непрерывную случайную величину Т – длительность времени безотказной работы изделия. Обозначим принимаемые её значения через t, Случайные величины - определение и вычисление с примерами решения. Интегральная функция распределенияСлучайные величины - определение и вычисление с примерами решения определяет вероятность отказа изделия за время длительностью t. Следовательно, вероятность безотказной работы за это же время, длительностью t, то есть вероятность противоположного события Случайные величины - определение и вычисление с примерами решения , равна Случайные величины - определение и вычисление с примерами решения

Применяется в теории надёжности для описания времени безотказной работы невосстанавливаемых изделий.

Функцией надёжностиСлучайные величины - определение и вычисление с примерами решения называют функцию, определяющую вероятность безотказной работы изделия (элемента) за время длительностью t. Если длительность времени безотказной работы изделия (элемента) имеет показательное распределение, то функция надёжности, в этом случае, запишется в видеСлучайные величины - определение и вычисление с примерами решенияТаким образом, показательным законом надёжности называют функцию надёжности, определяемую последним равенством, где Случайные величины - определение и вычисление с примерами решения – интенсивность отказов.

Свойства показательного распределения:

1. Математическое ожидание показательного распределения равно обратной
величине параметра Случайные величины - определение и вычисление с примерами решенияДействительно,

Случайные величины - определение и вычисление с примерами решения

2.Случайные величины - определение и вычисление с примерами решенияСледовательно Случайные величины - определение и вычисление с примерами решенияТаким образом, математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Случайные величины - определение и вычисление с примерами решения

Пример №50

Пусть время, необходимое для ремонта станков, распределено по показательному (экспоненциальному) закону с параметром Случайные величины - определение и вычисление с примерами решенияОпределить вероятность того, что время ремонта одного станка меньше 6-и часов. Найти среднее время ремонта одного станка.
 

Решение. Т – время ремонта станка  Случайные величины - определение и вычисление с примерами решенияТогда можем записать Случайные величины - определение и вычисление с примерами решения

Далее, так как среднее время ремонта – это М( Т ), то Случайные величины - определение и вычисление с примерами решения

Среднее арифметическое, мода и медиана. Среднее квадратическое отклонение

Вероятно, Вы отлично знаете, что такое среднее арифметическое. Если мы имеем набор каких-то величин, и все они одной природы (усреднять килограммы с километрами мы, конечно, не можем), надо посчитать сумму, а затем, поделив ее на количество слагаемых, найти среднее арифметическое. Казалось бы, простое и хорошо знакомое действие, но и тут имеется несколько проблем для обсуждения. При знакомстве с некоторыми “показателями” поневоле вспоминается известная шутка о “средней температуре по больнице”.

Пример №51

Допустим, фирма имеет две палатки, торгующие горячей выпечкой, которую они пекут на месте из полуфабрикатов. В таблице приводится примерная сводка ежедневной выручки каждой из палаток за неделю (в руб.). Случайные величины - определение и вычисление с примерами решения

Различие в ежедневной выручке в основном связано с расположением палаток. Палатка 1 находится в парке отдыха, в то время как Палатка 2 расположена напротив школы и вблизи проходной крупного НИИ.

Владелец фирмы решил выплачивать ежемесячную премию продавцам той палатки, которая даст в этом месяце большую выручку. При распределении премии выяснилась удивительная вещь: выигрыш в этом “соревновании” зависел только от количества выходных в месяце.

Не хотелось бы приводить большое количество цифр за весь месяц в целом, но и без этого видно, что если бы владельцу фирмы пришла в голову идея ежедневного премирования победителя какой-то фиксированной суммой, “Палатка выходного дня” могла бы рассчитывать на премии в два с половиной раза реже, хотя недельная выручка от нее больше.

В таких условиях более разумное соревнование могло бы быть основано на осреднении показателей за неделю. Допустим, недельные показатели практически совпали. Как оценить, какая из палаток полезнее для фирмы, если по каким-то причинам фирме необходимо продать одну из них?

Если выручка практически совпадает, владелец, по-видимому, поинтересуется стабильностью работы торговой точки. Вины продавцов в этом нет, но если оборудование работает два дня в неделю на износ, а в остальное время больше простоев, выход из строя такого оборудования более вероятен. Пусть в один (случайным образом выпавший) день в неделю идет сильный дождь, и на улицах мало прохожих, падение выручки особенно резко заметно, когда такой дождливый день совпадает с одним из выходных. Для сравнения можно представить спортсменов, которые имеют равные шансы выиграть, но один из них выступает ровнее. Скорее всего, именно он и будет принят в состав сборной.

Но вот еще один вопрос: а не делает ли эта самая нестабильная палатка работу фирмы в целом более стабильной, прекрасно дополняя работу палатки 2? Давайте выдвинем это утверждение в качестве гипотезы и попробуем его доказать или опровергнуть. Чтобы оценить эту проблему количественно, надо прежде всего просуммировать дневную выручку обеих палаток. Случайные величины - определение и вычисление с примерами решения

То, что мы описали общими словами как “нестабильность работы”, в статистике называется характеристикой рассеивания. К ним относятся такие показатели как дисперсия и среднее квадратическое отклонение. Покажем на предыдущем примере, как определяются эти понятия. Посчитаем сначала среднее арифметическое выручки для каждой палатки отдельно, и для обеих палаток вместе (осреднение проводим за семь дней): Случайные величины - определение и вычисление с примерами решения

Чтобы сравнить разброс значений, посчитаем для обеих палаток дневные отклонения выручки от их собственного среднего значения.

Чтобы измерить, насколько одна палатка “нестабильнее” другой, хочется сложить всю строку за неделю и получить общее отклонение за весь отчетный период. Но этого делать нельзя, мы сами так построили эти показатели, что, сложив, получим ноль (с точностью до погрешности округления – среднее арифметическое величина не обязательно целая). Чтобы избежать этого обнуления, нам надо, чтобы каждое отклонение от среднего арифметического “лишилось” своего знака. Для этого возводят каждую величину в квадрат, и лишь затем суммируют весь ряд значений.

Случайные величины - определение и вычисление с примерами решения

Чтобы не зависеть от периода осреднения делят полученную сумму квадратов на число слагаемых (в нашем случае, по-прежнему на семь). Такая величина называется дисперсией.

Случайные величины - определение и вычисление с примерами решения

Мы видим, что дисперсия действительно очень показательная величина. У “Палатки выходного дня” она выше более, чем в десять раз.

Дисперсию можно посчитать в Excel автоматически, даже не считая предварительно среднее арифметическое, программа сделает это сама. Для этого, находясь в файле Excel, нажмите в верхнем меню кнопку Случайные величины - определение и вычисление с примерами решения Затем, выберите среди функций тип “СТАТИСТИЧЕСКИЕ”, и из предложенного перечня в окошке – ДИСПРА.

Затем, по подсказке, поставив курсор в поле “Число 1” проведите мышью вдоль строки с набранными значениями. Этот вид подсчета называется “вычисление смещенной дисперсии по генеральной совокупности”. Дисперсией часто пользуются, но более удобная характеристика носит название среднее квадратическое отклонение (обычно обозначается греческой буквой омега.

Среднее квадратическое отклонение – это квадратный корень из дисперсии, он удобен тем, что имеет ту же размерность, что и исходные величины. Так, в нашем случае, дисперсия имела бы размерность “рубли в квадрате”, в то время как среднее квадратическое отклонение получается просто и привычно, в рублях.

В нашем примере, видно, что суммарная дисперсия и среднее квадратическое отклонение у двух палаток вместе все-таки выше, чем у одной первой палатки, причем среднее квадратическое отклонение выше более, чем в два раза. Значит, наша гипотеза о “повышенной стабильности суммы” за счет присутствия второй палатки несостоятельна.

Иногда, вместо среднего арифметического употребляют другие характерные величины, если это по каким-то причинам лучше описывает выборку. Так если расставить выборку по возрастанию (или убыванию) той величины, которой мы интересуемся, то медиана – это то, что будет ровно посередине “строя”. Например, если мы расположим по порядку длительности интервалы времени: секунда, минута, час, сутки и неделя – то медианой будет час. Еще одно понятие для замены среднего – мода. Само название позволяет легко запомнить это определение. Если мы выстроим по порядку все пары обуви на складе по размеру, то самый ходовой размер будет модой. Мода – это то, что непременно должны учитывать производители упаковок и фасовщики. Если бы большинство людей покупало за один раз стакан молока, молочные пакеты не были бы литровыми. В следующем параграфе мы начнем работать со случайными величинами, имеющими нормальное распределение, и эти понятия нам снова встретятся.

Случайные величины и их законы распределения

Понятие случайной величины. Функция распределения

Определение: Случайной величиной называется такая переменная величина, которая в результате проведения опыта может принять то или иное значение, неизвестное до проведения эксперимента.

Случайные величины принято обозначать заглавными, последними буквами латинского алфавита Случайные величины - определение и вычисление с примерами решения а значения, которые они могут принять обозначают аналогичными, но прописными буквами Случайные величины - определение и вычисление с примерами решения

Пример:

Являются ли случайными величинами следующие переменные величины: а) число вызовов, поступивших от абонентов на телефонную станцию в течение определенного промежутка времени; б) число электронов, вылетевших из нагретого катода за определенный промежуток времени; в) длина некоторой детали при массовом производстве (самостоятельно).

Решение:

Все случайные величины делятся на три группы: дискретные, смешанные и непрерывные. В Примере случаи а) и б) указывают на случайные дискретные величины, а случай в) – на случайную непрерывную величину.

Определение: Законом распределения случайной величины называется любое соотношение, с помощью которого устанавливается соответствие между возможными значениями случайной величины и вероятностями некоторых событий, связанных определенным образом с этими возможными значениями. Закон распределения случайной величины может быть представлен аналитической формулой F(x); графиком, связывающим значения вероятности со значениями случайной величины; таблицей, которая устанавливает соответствие между значениями случайной величины и их вероятностями.

Замечание: В определение закона распределения случайной величины входят слова “любое соотношение” – это означает, что таких соотношений может быть очень много. К числу универсальных форм закона распределения случайной величины относится функция распределения.

Определение: Функцией распределения F(х) случайной величины X называется вероятность события X<х, которое состоит в том, что случайная величина X обязательно примет значение заведомо меньшее, чем заданное значение х, т. е. Случайные величины - определение и вычисление с примерами решения

Пример:

Найти функцию распределения F(х) случайной величины X, которая представляет собой значение определенной грани кубика.

Решение:

Рассмотрим события, определяющие случайную дискретную величину X, и вероятности этих событий:

1) Случайные величины - определение и вычисление с примерами решения – данное событие является Случайные величины - определение и вычисление с примерами решения, так как на гранях кубика нет числа, которое было бы меньше единицы, а вероятность невозможного события равна нулю (см. Лекцию №7); отметим, что любое событие Х<В (при Случайные величины - определение и вычисление с примерами решения) является невозможным событием, поэтому вероятность такого события равна нулю; Случайные величины - определение и вычисление с примерами решения

-данное событие является достоверным, так как в этом случае обязательно выпадет одно из чисел от 1 до 6, а вероятность достоверного события равна 1 (см. Лекцию №7);

8) для любого другого числа А (при Случайные величины - определение и вычисление с примерами решения) событие X < А будет достоверным событием, следовательно, вероятность такого события будет равна единице.

Итак, функция распределения имеет вид Случайные величины - определение и вычисление с примерами решения

Построим график функции распределения (Рис. 6): Случайные величины - определение и вычисление с примерами решения

Рис. 6. График функции распределения для случайной дискретной величины.

Замечание: Случайная дискретная величина характеризуется функцией распределения, график которой имеет “ступенчатый” вид. Случайная непрерывная величина характеризуется функцией распределения, график которой имеет “непрерывный” вид.

Свойства функции распределения

Вышеприведенный Примере иллюстрирует основные свойства функции распределения случайной величины произвольной природы:

Действительно, если Случайные величины - определение и вычисление с примерами решения то событие Случайные величины - определение и вычисление с примерами решения включает в себя как событие Случайные величины - определение и вычисление с примерами решениятак и событие Случайные величины - определение и вычисление с примерами решения (Рис. 7). Поэтому по теореме сложения вероятностей событий получаем: Случайные величины - определение и вычисление с примерами решения или

Случайные величины - определение и вычисление с примерами решения

В силу положительности всех слагаемых получаем, что Случайные величины - определение и вычисление с примерами решения причем знак равенства имеет место только в том случае, когда Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения

Рис. 7. Неубывание функции распределения.

Дифференциальная функция распределения и ее свойства

Для случайных непрерывных величин помимо функции распределения используется дифференциальная функция распределения.

Определение: Дифференциальной функцией распределения (плотностью вероятности) случайной непрерывной величины X называется первая производная от функции распределения, т.е. Случайные величины - определение и вычисление с примерами решения

Замечание: Из определения плотности вероятности следует, что функция распределения F(x) является первообразной для дифференциальной функции распределения f(х).

Рассмотрим свойства плотности вероятности:

Пример №52

Дифференциальная функция распределения случайной непрерывной величины X имеет вид Случайные величины - определение и вычисление с примерами решенияНайти коэффициент А и вероятность того, что случайная величина X попадает в интервал (-1; 1).

Решение:

Для нахождения коэффициента А воспользуемся свойством 4 для плотности вероятности: Случайные величины - определение и вычисление с примерами решения Отсюда находим, что Случайные величины - определение и вычисление с примерами решения Воспользовавшись свойством 2, найдем интегральную функцию распределения:

Случайные величины - определение и вычисление с примерами решения

Следовательно, вероятность того, что случайная величина X попадает в интервал (-1; 1), по свойству 6 для интегральной функции распределения, равна:

Случайные величины - определение и вычисление с примерами решения

Законы распределения случайных величин

Для задания закона распределения случайной непрерывной величины определяют плотность вероятности:

1. Нормальный закон распределения Случайные величины - определение и вычисление с примерами решения – параметры распределения.

2. Закон Рэлея Случайные величины - определение и вычисление с примерами решения – параметр распределения.

3. Закон Максвелла Случайные величины - определение и вычисление с примерами решения – параметр распределения.

4. Закон Коши Случайные величины - определение и вычисление с примерами решения – параметры распределения.

5. Экспоненциальный закон распределения Случайные величины - определение и вычисление с примерами решения – параметр распределения.

6. Распределение “хи-квадрат Случайные величины - определение и вычисление с примерами решения Случайные величины - определение и вычисление с примерами решения – параметр распределения, Случайные величины - определение и вычисление с примерами решения – гамма-функция.

7. Закон Стьюдента Случайные величины - определение и вычисление с примерами решения – параметр распределения.

8. Закон равномерной плотности Случайные величины - определение и вычисление с примерами решения

В заключение этого пункта приведем некоторые законы распределения для случайной дискретной величины:

1. Гипергеометрическое распределение возникает, когда из некоторого множества, содержащего N элементов, из которых m благоприятствуют появлению дискретной величины, извлекают наудачу n элементов без возвращения их в множество. В этом случае вероятность того, что дискретная величина появится x раз, определяется по формуле Случайные величины - определение и вычисление с примерами решения .

2. Закон Бернулли Случайные величины - определение и вычисление с примерами решения

3. Закон Пуассона Случайные величины - определение и вычисление с примерами решения

4. Дифференциальный Случайные величины - определение и вычисление с примерами решения и интегральный Случайные величины - определение и вычисление с примерами решения законы распределения Муавра-Лапласа.

Числовые характеристики случайной величины

Полную характеристику случайной величины дает ее закон распределения (или функция распределения). Однако на практике зачастую требуется знать лишь некоторые ее параметры, которые определяют характер поведения изучаемой случайной величины. Такими числовыми характеристиками являются, например, математическое ожидание (параметр расположения центра тяжести распределения), дисперсия и средне-квадратичное отклонение (параметры рассеивания случайной величины относительно математического ожидания).

Математическое ожидание или среднее значение случайной величины

Термин “математическое ожидание” применяется в теории вероятностей, а термин ‘”среднее значение случайной величины” – в практических приложениях математической статистики.

Определение: Математическим ожиданием случайной величины называется центр тяжести распределения, который определяется по формуле:

Случайные величины - определение и вычисление с примерами решения-для случайной дискретной величины; Случайные величины - определение и вычисление с примерами решения-для случайной непрерывной величины.

Пример №53

Пусть в беспроигрышной лотереи участвует 100 билетов. Из них 40 дают выигрыш по 1 грн., 30 – по 2 грн., 20 – по 5 грн. и 10 – по 10 грн. Стоимость одного билета 5 грн. Определить математическое ожидание случайной дискретной величины X, которая определяет выигрыш на 1 билет.

Решение:

Составим таблицу распределения случайной дискретной величины X, которая определяет выигрыш на один билет:Случайные величины - определение и вычисление с примерами решения

По определению математическое ожидание будет равно:

Случайные величины - определение и вычисление с примерами решения (грн.) Лотерея выпущена на сумму Случайные величины - определение и вычисление с примерами решения грн., выплаты на выигрыш составляют Случайные величины - определение и вычисление с примерами решения грн., следовательно, чистая прибыль равна 500-300 = 200 грн.

Свойства математического ожидания

Рассмотрим свойства математического ожидания:

1.Математическое ожидание постоянной величины равно самой этой константе, т.е. Случайные величины - определение и вычисление с примерами решения.

Доказательство: Для случайной непрерывной величины Случайные величины - определение и вычисление с примерами решения

2. Постоянный множитель можно выносить за знак математического ожидания, т.е. Случайные величины - определение и вычисление с примерами решения.

Доказательство: Для случайной дискретной величины: Случайные величины - определение и вычисление с примерами решения

3. Математическое ожидание от суммы двух случайных величин X и У равно сумме их математических ожиданий, т.е. Случайные величины - определение и вычисление с примерами решения

4. Объединяя свойства 2 и 3 математического ожидания, получаем

Случайные величины - определение и вычисление с примерами решения.

5. Математическое ожидание от произведения двух независимых случайных величин равно произведению их математических ожиданий, т.е. Случайные величины - определение и вычисление с примерами решения

Определение: Центрированной случайной величиной Случайные величины - определение и вычисление с примерами решения называется разность между случайной величиной X и ее математическим ожиданием: Случайные величины - определение и вычисление с примерами решения.

6. Математическое ожидание центрированной случайной величины Хо равно нулю, т.е. Случайные величины - определение и вычисление с примерами решения

Доказательство: Используя свойства математического ожидания, получим:

Случайные величины - определение и вычисление с примерами решения

Пример №54

Вычислить математическое ожидание от непрерывной случайной величины X, распределенной по экспоненциальному закону.

Решение:

Согласно определению математического ожидания имеем:

Случайные величины - определение и вычисление с примерами решения

Случайные величины - определение и вычисление с примерами решения (первое выражение равно нулю, поэтому имеем) = Случайные величины - определение и вычисление с примерами решения

Дисперсия или рассеивание случайной величины

Рассеивание случайной величины относительно математического ожидания определяется дисперсией и средним квадратичным отклонением.

Определение: Дисперсией случайной величины X называется математическое ожидание квадрата центрированной случайной величины Случайные величины - определение и вычисление с примерами решения Случайные величины - определение и вычисление с примерами решения

Замечание: Дисперсия случайной величины X является неотрицательной величиной.

Определение: Средне-квадратичным отклонением случайной величины X называется положительное число Случайные величины - определение и вычисление с примерами решения

Основные свойства дисперсии

1. Дисперсия постоянной (неслучайной) величины равна 0, т.е. Случайные величины - определение и вычисление с примерами решения

Доказательство: В силу того, что Случайные величины - определение и вычисление с примерами решения

2. Постоянный множитель можно выносить за знак дисперсии, возводя этот множитель в квадрат, т.е. Случайные величины - определение и вычисление с примерами решения

Доказательство: По определению дисперсии имеем:

Случайные величины - определение и вычисление с примерами решения

3. Дисперсия суммы двух случайных величин X и У равно сумме их дисперсий, т.е. Случайные величины - определение и вычисление с примерами решения.

4. Объединяя свойства 2 и 3 дисперсии, получаем Случайные величины - определение и вычисление с примерами решения

5. Дисперсия случайной величины X равна разности между математическим ожиданием квадрата этой величины и квадратом ее математического ожидания, т.е. Случайные величины - определение и вычисление с примерами решения

Доказательство: Используя определение дисперсии и свойства математического ожидания, получим:

Случайные величины - определение и вычисление с примерами решения

Пример №55

Распределение случайной величины X определяется плотностью вероятности Случайные величины - определение и вычисление с примерами решения Найти коэффициент а, математическое ожидание М[Х], дисперсию D[X] и среднее квадратичное отклонение Случайные величины - определение и вычисление с примерами решения

Решение:

Для нахождения коэффициента а воспользуемся свойством 4. для плотности вероятности:Случайные величины - определение и вычисление с примерами решения Отсюда находим, что Случайные величины - определение и вычисление с примерами решения Остальные параметры найдем согласно их определению: Случайные величины - определение и вычисление с примерами решения

Другие характеристики случайной величины

Иногда для практических расчетов требуется вычисление других числовых характеристик случайной величины. Определим эти параметры.

Определение: Начальным моментом порядка k случайной величины X называется математическое ожидание k-ой степени этой величины, т.е. Случайные величины - определение и вычисление с примерами решения

Замечание: Из определения начального момента порядка k видно, что математическое ожидание случайной величины X является ее первым начальным моментом.

Определение: Центральным моментом порядка k случайной величины X называется математическое ожидание k-ой степени центрированной случайной величины Случайные величины - определение и вычисление с примерами решения

Замечание: Из определения начального момента порядка k видно, что первый центральный момент любой случайной величины равен нулю, второй центральный момент равен дисперсии. Отметим также, что третий центральный момент используется в теории вероятностей для характеристики симметричности кривой плотности вероятности. Если Случайные величины - определение и вычисление с примерами решения то кривая плотности распределения симметрична относительно математического ожидания.

Замечание: Центральные и начальные моменты случайной величины X связаны между собой определенными соотношениями. В качестве примера рассмотрим случай, когда Случайные величины - определение и вычисление с примерами решения Отсюда получаем, что Случайные величины - определение и вычисление с примерами решения

Как решать случайные величины

Наряду со случайным событием одним из основных понятий теории вероятностей является понятие случайной величины.

Понятие случайной величины

Случайной называют величину, которая в результате испытания может принять одно и только одно возможное значение, заранее неизвестное и зависящее от случайных причин, которые заранее учесть невозможно. Примеры случайной величины:

  1. Число появлений герба при двукратном бросании монеты;
  2. Время безотказной работы некоторого устройства. Нетрудно заметить, что в первом случае все возможные значения случайной величины могут быть перечислены заранее. Такими значениями являются 0, 1, 2.

Отметим, что эти значения отделены друг от друга промежутками, в которых нет других возможных значений этой случайной величины. Во втором случае перечислить все возможные значения случайной величины не представляется возможным, так как эти значения не отделены друг от друга и заполняют собой некоторый промежуток. Очевидно, что число возможных значений непрерывной случайной величины – бесконечно.

В связи с этим принято различать дискретные и непрерывные случайные величины. Случайная величина называется дискретной (прерывной), если множество ее значений является конечным, или бесконечным, но счетным. Под непрерывной случайной величиной будем понимать величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Случайные величины принято обозначать прописными буквами латинского алфавита – X, Y, Z, а их значения – соответствующими строчными буквами x, y, z. Например, случайная величина Х – число появлений герба при двукратном бросании монеты – может принять значения Случайные величины - определение и вычисление с примерами решения

Закон распределения случайной величины

Наиболее полным, исчерпывающим описанием случайной величины является ее закон распределения.

Определение: Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.

Про случайную величину говорят, что она «распределена» по данному закону распределения или «подчинена» этому закону.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически или графически. Простейшей формой задания закона распределения дискретной случайной величины X является таблица, в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие им вероятности, т.е. Случайные величины - определение и вычисление с примерами решения

Такая таблица называется рядом распределения дискретной случайной величины.

Отметим, что события Случайные величины - определение и вычисление с примерами решениясостоящие в том, что в результате испытания случайная величина Х примет соответственно значения Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решенияявляются несовместными и единственно возможными, т.е. образуют полную группу. Следовательно, сумма их вероятностей равна единице, т.е. Случайные величины - определение и вычисление с примерами решения Ряд распределения может быть изображен графически, если по оси абсцисс откладывать значения случайной величины, а оси ординат – соответствующие им вероятности. Соединение полученных точек образует ломаную линию, которую называют многоугольником или полигоном распределения вероятностей.

Пример №56

Два стрелка делают по одному выстрелу в мишень. Составить закон распределения случайной величины Х – общего числа попаданий в мишень, если вероятность поражения мишени в одном выстреле для первого стрелка равна 0,8, а для второго – 0,6.

Решение:

Очевидно, что возможные значения Х – 0, 1, 2. Пусть А1 – событие состоящее в том, что первый стрелок попадет в мишень, А2 – второй стрелок попадет в мишень. Тогда Случайные величины - определение и вычисление с примерами решения Записываем ряд распределения случайной величины Х. Случайные величины - определение и вычисление с примерами решения На рис. 4.1 полученный ряд распределения представлен графически в виде многоугольника (полигона) распределения вероятностей случайной величины Х. ◄

Случайные величины - определение и вычисление с примерами решения

Две случайные величины называются независимыми, если закон распределения одной из них не меняется от того, какие возможные значения приняла другая величина. Так если случайная величина Х может принимать значения Случайные величины - определение и вычисление с примерами решения а случайная величина Y – значенияСлучайные величины - определение и вычисление с примерами решениято независимость случайных величин X и Y означает независимость событийСлучайные величины - определение и вычисление с примерами решения В противном случае случайные величины называются зависимыми.

Функция распределения случайной величины

Мы установили, что ряд распределения полностью характеризует дискретную случайную величину. Однако эта характеристика не является универсальной. Она существует только для дискретных величин. Для непрерывной величины ряд распределения построить нельзя. Действительно, непрерывная случайная величина имеет бесчисленное множество возможных значений, которые сплошь заполняют некоторый промежуток. Составить таблицу, в которой были бы перечислены все возможные значения этой величины, невозможно. Следовательно, для непрерывной случайной величины не существует ряда распределения в том смысле, в каком он существует для дискретной величины. Однако различные области возможных значений случайной величины не являются одинаково вероятными, и для непрерывной величины все-таки существует «распределение вероятностей», хотя и не в том смысле, как для дискретной.

Для количественной характеристики этого распределения вероятностей удобно воспользоваться не вероятностью события Р(Х = х), состоящего в том, что случайная величина примет определенное значение х, а вероятностью события Р(Х <х), состоящего в том, что случайная величина примет значение меньшее х. Очевидно, что вероятность этого события зависит от х, т.е. является некоторой функцией от х.

Определение: Функцией распределения случайной величины Х называется функция F(x), выражающая для каждого значения х вероятность того, что случайная величина Х примет значение, меньшее х: Случайные величины - определение и вычисление с примерами решения Функцию распределения называют также интегральной функцией распределения или интегральным законом распределения.

Функция распределения – самая универсальная характеристика случайной величины. Она существует для всех случайных величин: как дискретных, так и непрерывных. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения. Функция распределения допускает простую геометрическую интерпретацию. Рассмотрим случайную величину Х на оси Ох (рис. 4.2), которая в результате опыта может занять то или иное положение.

Случайные величины - определение и вычисление с примерами решения

Пусть на оси выбрана точка, имеющая значение х. Тогда в результате опыта случайная величина Х может оказаться левее или правее точки х. Очевидно, вероятность того, что случайная величина Х окажется левее точки х, будет зависеть от положения точки х, т.е. являться функцией аргумента х. Для дискретной случайной величины Х, которая может принимать значения Случайные величины - определение и вычисление с примерами решения функция распределения имеет вид Случайные величины - определение и вычисление с примерами решения где неравенство Случайные величины - определение и вычисление с примерами решения под знаком суммы означает, что суммирование касается всех тех значений xi, величина которых меньше х.

Пример №57

Дан ряд распределения случайной величины Х. Случайные величины - определение и вычисление с примерами решения Найти и изобразить графически ее функцию распределения.

Решение:

Будем задавать различные значения х и находить для них F(x) = = P(X < x). Случайные величины - определение и вычисление с примерами решения Запишем функцию распределения. Случайные величины - определение и вычисление с примерами решенияСлучайные величины - определение и вычисление с примерами решения

Изобразим функцию распределения графически (рис. 4.3). Заметим, что при подходе слева к точкам разрыва функция сохраняет свое значение (про такую функцию говорят, что она непрерывна слева). Эти точки на графике выделены. ◄

Этот пример позволяет прийти к утверждению, что функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины и равны вероятностям этих значений.

Рассмотрим общие свойства функции распределения:

1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей: Случайные величины - определение и вычисление с примерами решения 2. Функция распределения случайной величины есть неубывающая функция на всей числовой оси, т.е. Случайные величины - определение и вычисление с примерами решения 3. На минус бесконечности функция распределения равна нулю, на плюс бесконечности равна единице, т.е. Случайные величины - определение и вычисление с примерами решения 4. Вероятность попадания случайной величины в интервалСлучайные величины - определение и вычисление с примерами решениявключая Случайные величины - определение и вычисление с примерами решения равна приращению ее функции распределения на этом интервале, т.е. Случайные величины - определение и вычисление с примерами решения

Пример №58

Функция распределения случайной величины Х имеет вид: Случайные величины - определение и вычисление с примерами решения Найти вероятность того, что случайная величина X примет значение в интервале [1; 3).

Решение:

Случайные величины - определение и вычисление с примерами решения

Для непрерывных случайных величин справедливо следующее свойство: Вероятность любого отдельно взятого значения непрерывной случайной величины равна нулю.

Поясним это свойство. До сих пор мы рассматривали испытания, сводившиеся к схеме случаев, и нулевой вероятностью обладали лишь невозможные события. Из приведенного свойства следует, что нулевой вероятностью могут обладать и возможные события. На первый взгляд этот вывод может показаться парадоксальным. Действительно, если, например, событие α ≤ Х ≤ β имеет отличную от нуля вероятность, то оказывается, что оно представляет собой сумму событий, состоящих в принятии случайной величиной Х любых конкретных значений на отрезке [α, β] и имеющих нулевую вероятность. Однако представления о событии, имеющем отличную от нуля вероятность, но складывающемся из событий с нулевой вероятностью, не более парадоксально, чем представление об отрезке, имеющем определенную длину, тогда как ни одна точка отрезка отличной от нуля длиной не обладает. Отрезок состоит из таких точек, но его длина не равна сумме их длин. Из этого свойства вытекает следующее следствие.

Следствие. Если Х – непрерывная случайная величина, то вероятность попадания этой величины в интервал Случайные величины - определение и вычисление с примерами решения не зависит от того, является ли этот интервал открытым или закрытым: Случайные величины - определение и вычисление с примерами решения

Плотность вероятности

Непрерывная случайная величина может быть задана не только с помощью функции распределения. Введем понятие п л о т н о с т и в е р о я т н о с т и непрерывной случайной величины. Рассмотрим вероятность попадания непрерывной случайной величины наинтервал Случайные величины - определение и вычисление с примерами решенияВероятность такого события Случайные величины - определение и вычисление с примерами решения т.е. равна приращению функции распределения F(х) на этом участке. Тогда вероятность, приходящаяся на единицу длины, т.е. средняя плотность вероятности на участке Случайные величины - определение и вычисление с примерами решенияравна Случайные величины - определение и вычисление с примерами решения Переходя к пределу Δх → 0, получим плотность вероятности в точке х:

Случайные величины - определение и вычисление с примерами решения

представляющую производную функции распределения F(х). Напомним, что для непрерывной случайной величины F(х) – дифференцируемая функция.

Определение: Плотностью вероятности (плотностью распределения) f(x) непрерывной случайной величины Х называется производная ее функции распределения Случайные величины - определение и вычисление с примерами решения

Про случайную величину Х говорят, что она имеет распределение с плотностью f(x) на определенном участке оси абсцисс.

Плотность вероятности f(x), как и функция распределения F(x) является одной из форм закона распределения. Но в отличие от функции распределения она существует только для н е п р е р ы в н ы х случайных величин.

Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения. График плотности вероятности называется кривой распределения.

Пример №59

По данным примера 4.3 найти плотность вероятности случайной величины Х.

Решение:

Будем находить плотность вероятности случайной величины как производную от ее функции распределения f(x) = F'(x). Случайные величины - определение и вычисление с примерами решения Отметим свойство плотности вероятности непрерывной случайной величины.

1. Плотность вероятности – неотрицательная функция, т.е. f(x) ≥ 0, (4.9) как производная монотонно неубывающей функции F(x).

2. Вероятность попадания непрерывной случайной величины Х в интервалСлучайные величины - определение и вычисление с примерами решения Случайные величины - определение и вычисление с примерами решения равна определенному интегралу от ее плотности вероятности в пределах от Случайные величины - определение и вычисление с примерами решения Случайные величины - определение и вычисление с примерами решения

Геометрически вероятность попадания в интервал [α, β,] равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [α, β,] (рис.4.4). Случайные величины - определение и вычисление с примерами решения

3. Функция распределения непрерывной случайной величины может быть выражен через плотность вероятности по формуле: Случайные величины - определение и вычисление с примерами решения Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения и лежащей левее точки х (рис. 4.5).

4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице: Случайные величины - определение и вычисление с примерами решения Геометрически свойства 1 и 4 плотности вероятности означают, что ее график – кривая распределения – лежит не ниже оси абсцисс, а полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример №60

Функция f(x) задана в виде:

Случайные величины - определение и вычисление с примерами решения

Найти: а) значение А; б) выражение функции распределения F(х); в) вероятность того, что случайная величина Х примет значение на отрезке [0; 1].

Решение:

а) Для того, чтобы f(x) была плотностью вероятности некоторой случайной величины Х, она должна быть неотрицательна, следовательно, неотрицательным должно быть и значение А. С учетом свойства 4 находим: Случайные величины - определение и вычисление с примерами решения б) Функцию распределения находим, используя свойство 3: Если x ≤ 0, то f(x) = 0 и, следовательно, F(x) = 0. Если 0 < x ≤ 2, то f(x) = х/2 и, следовательно, Случайные величины - определение и вычисление с примерами решения Если х > 2, то f(x) = 0 и, следовательно Случайные величины - определение и вычисление с примерами решения в) Вероятность того, что случайная величина Х примет значение на отрезке [0; 1] находим, используя свойство 2: Случайные величины - определение и вычисление с примерами решения

Пример №61

Методом  произведений  вычислить  выборочную среднюю и выборочную дисперсию по данным выборки (табл. 3.1).

Случайные величины - определение и вычисление с примерами решения

Решение. В качестве «ложного нуля» возьмем варианту 16. 
Следовательно Случайные величины - определение и вычисление с примерами решения

Результаты вычислений сведем в табл. 3.2. 

Случайные величины - определение и вычисление с примерами решения

Контроль: 273 = 100 + 46 + 127. 
Равенство  выполнено,  следовательно,  таблица  заполнена верно. 
Вычислим условные начальные моменты: 

Случайные величины - определение и вычисление с примерами решения

Вычислим выборочную среднюю и выборочную дисперсию: 

Случайные величины - определение и вычисление с примерами решения

Определим  исправленную  выборочную  дисперсию:

Случайные величины - определение и вычисление с примерами решения и исправленное среднее квадратическое отклонение: Случайные величины - определение и вычисление с примерами решения

Получим  несмещенные  оценки  для  математического  ожидания, дисперсии и среднего квадратического отклонения.

  • Числовые характеристики случайных величин
  • Нормальный закон распределения
  • Основные законы распределения вероятностей
  • Асимптотика схемы независимых испытаний
  • Теоремы сложения и умножения вероятностей
  • Формула полной вероятности 
  • Повторные независимые испытания
  • Простейший (пуассоновский) поток событий

How could I find the probability of the following inequality?

$min(frac{a}{2} – |frac{{x}_{1}+{x}_{2}}{2}|, frac{b}{2} – |frac{{y}_{1}+{y}_{2}}{2}|) leq frac{1}{2}sqrt{{({x}_{1}+{x}_{2})}^{2} + {({y}_{1}+{y}_{2})}^{2}}$

Where ${x}_{1}, {y}_{1}, {x}_{2}, {y}_{2}$ – variables; $a, b$ – constants; $|{x}_{1}|, |{x}_{2}| < a$ and $|{y}_{1}|, |{y}_{2}| < b$.

${x}_{1}$ and ${x}_{2}$ are equally likely to be any real number between $-a$ and $a$.

${y}_{1}$ and ${y}_{2}$ are equally likely to be any real number between $-b$ and $b$.

My idea is to consider four random variables ${x}_{1}, {y}_{1}, {x}_{2}, {y}_{2}$ and to notice that their probability density function is ${f}_{v}(x)=frac{1}{l}$, where $l = 2a$ for $v$ being equal to ${x}_{1}$ and ${x}_{2}$ and $l = 2b$ for $v$ being equal to ${y}_{1}$ and ${y}_{2}$. Then to find the probability density function for the $min(frac{a}{2} – |frac{{x}_{1}+{x}_{2}}{2}|, frac{b}{2} – |frac{{y}_{1}+{y}_{2}}{2}|)$ and for the $frac{1}{2}sqrt{{({x}_{1}+{x}_{2})}^{2} + {({y}_{1}+{y}_{2})}^{2}}$. This will give me an expression which will be dependent only from $a$ and $b$. And I will be able to easily compute the probability for such an expression.

But inferring the expression is very tough for me, so are there any easier ways to find the desired probability? I am very new to the probability, so do not judge my question very much, please.

Каждая наука, развивающая общую теорию какого-либо круга явлений, содержит ряд основных понятий, на которых она базируется. Таковы, например, в геометрии понятия точки, прямой, линии; в механике— понятия силы, массы, скорости, ускорения и т. д. Естественно, что не все основные понятия могут быть строго определены, так как определить понятие — это значит свести его к другим, более известным. Очевидно, процесс определения одних понятий через другие должен где-то заканчиваться, дойдя до самых первичных понятий, к которым сводятся все остальные и которые сами строго не определяются, а только поясняются.

Такие основные понятия существуют и в теории вероятностей. В качестве первого из них введем понятие события.

Под «событием» в теории вероятностей понимается всякий факт, который в результате опыта может произойти или не произойти.

Приведем несколько примеров событий: А — появление герба при бросании монеты; В — появление трех гербов при трехкратном бросании монеты; С — попадание в цель при выстреле; D—появление туза при вынимании карты из колоды; Е— обнаружение объекта при одном цикле обзора радиолокационной станции; F — обрыв нити в течение часа работы ткацкого станка.

Рассматривая вышеперечисленные события, мы видим, что каждое из них обладает какой-то степенью возможности: одни — большей, другие — меньшей, причем для некоторых из этих событий мы сразу же можем решить, какое из них более, а какое менее возможно. Например, сразу видно, что событие А более возможно, чем В и D. Относительно событий С, Е и F аналогичных выводов сразу сделать нельзя; для этого следовало бы несколько уточнить условия опыта. Так или иначе ясно, что каждое, из таких событий обладает той или иной степенью возможности. Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определенное ч и с л о, которое тем больше, чем более возможно событие. Такое число мы назовем вероятностью события.

Таким образом, мы ввели в рассмотрение второе основное по- понятие теории вероятностей — понятие вероятности события. Вероятность события есть численная мера степени объективной возможности возможности этого события.

Заметим, что уже при самом введении понятия вероятности со- события мы связываем с этим понятием определенный практический смысл, а именно: на основании опыта мы считаем более вероятными те события, которые происходят чаще; менее вероятными —те события, которые происходят реже; мало вероятными — те, которые почти .никогда не происходят. Таким образом, понятие вероятности события в самой своей основе связано с опытным, практическим понятием частоты события.

Сравнивая между собой различные события по степени их воз- возможности, мы должны установить какую-то единицу измерения. В качестве такой единицы измерения естественно принять вероятность достоверного события, т. е. такого события, которое в результате опыта непременно должно произойти. Пример достоверного события — выпадение не более 6 очков при бросании одной игральной кости.

Если приписать достоверному событию вероятность, равную единице, то все другие события — возможные, но не достоверные — будут характеризоваться вероятностями, меньшими единицы, составляющими какую-то долю единицы.

Противоположностью по отношению к достоверному событию является невозможное событие, т. е. такое событие, которое в данном опыте не может произойти. Пример невозможного события — появление 12 очков при бросании одной игральной кости. Естественно приписать невозможному событию вероятность, равную нулю.

Таким образом, установлены единица измерения вероятностей — вероятность достоверного события — и диапазон изменения вероятностей любых событий —. числа от 0 до 1.

Непосредственный подсчет вероятностей

Существует целый класс опытов, для которых вероятности их возможных исходов легко оценить непосредственно из условий самого опыта. Для этого нужно, чтобы различные исходы опыта обладали симметрией и в силу этого были объективно одинаково возможными.

Рассмотрим, например, опыт, состоящий в бросании игральной кости, т. е. симметричного кубика, на гранях которого нанесено различное число очков; от 1 до 6.

В силу симметрии кубика есть основания считать все шесть воз- возможных исходов опыта одинаково возможными. Именно это дает нам право предполагать, что при многократном бросании кости все шесть граней будут выпадать примерно одинаково часто. Это предположение для правильно выполненной кости действительно оправдывается на опыте; при многократном бросании кости каждая ее грань появляется примерно в одной шестой доле всех случаев бросания, причем отклонение этой доли от Событие вероятность события решение примеры тем меньше, чем большее число опытов произведено. Имея в виду, что вероятность достоверного события принята равной единице, естественно приписать выпадению каждой отдельной грани вероятность, равную Событие вероятность события решение примеры Это число характеризует некоторые объективные свойства данного случайного явления, а именно свойство симметрии шести возможных исходов опыта.

Для всякого опыта, в котором возможные исходы симметричны и одинаково возможны, можно применить аналогичный прием, который называется непосредственным подсчетом вероятностей.

Симметричность возможных исходов опыта обычно наблюдается только в искусственно организованных опытах, типа азартных игр. Так как первоначальное развитие теория вероятностей получила именно на схемах азартных игр, то прием непосредственного под- подсчета вероятностей, исторически возникший вместе с возникновением математической теории случайных явлений, долгое время считался основным и был положен в основу так называемой «классической» теории вероятностей. При этом опыты, не обладающие симметрией возможных исходов, искусственно сводились к «классической» схеме.

Несмотря на ограниченную сферу практических применений этой схемы, она все же представляет известный интерес, так как именно на опытах, обладающих симметрией возможных исходов, и на событиях, связанных с такими опытами, легче всего познакомиться с основными свойствами вероятностей. Такого рода событиями, допускающими непосредственный подсчет вероятностей, мы и займемся в первую очередь.

Предварительно введем некоторые вспомогательные понятия.

  1. Полная группа событий. Говорят, что несколько событий в данном опыте образуют полную группу событий, если в результате опыта непременно должно появиться хотя бы одно из них.

Примеры событий’, образующих полную группу: 1) выпадение герба и выпадение цифры при бросании монеты; 2) попадание и промах при выстреле; 3) появление 1,2, 3, 4, 5, 6 очков при бросании игральной кости; 4) появление белого шара и появление черного шара при вынимании одного шара из урны, в которой 2 белых и 3 черных шара; 5) ни одной опечатки, одна, две, три и более трех опечаток при проверке страницы напечатанного текста;

6) хотя бы одно попадание и хотя бы одни промах при двух выстрелах.

Несовместные события

Несколько событий называются несовместными в данном опыте, если никакие два из них не могут появиться вместе. Примеры несовместных событий: 1) выпадение герба и выпадение цифры при бросании монеты; 2) попадание и промах при одном выстреле; 3) появление 1, 3, 4 очков при одном бросании игральной кости; 4) ровно один отказ, ровно два отказа, ровно три отказа тех- технического устройства за десять часов работы.

Равновозможные события

Несколько событий в данном опыте называются равновозмож- ными, если по условиям симметрии есть основание считать, что ни одно из этих событий не является объективно более возможным, чем другое. Примеры равновозможных событий: 1) выпадение герба и выпадение цифры при бросании монеты; 2) появление 1, 3, 4, 5 очков при бросании игральной кости; 3) появление карты бубновой, червонной, трефовой масти при вынимании карты из колоды; 4) появление шара с № 1, 2, 3 при вынимании одного шара из урны, содержащей 10 перенумерованных шаров.

Существуют группы событий, обладающие всеми тремя свойствами: они образуют полную группу, несовместны и равновозможны; на- например: появление герба и цифры при бросании монеты; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости. События, образующие такую группу, называются случаями (иначе «шансами»).

Если какой-либо опыт по своей структуре обладает симметрией возможных исходов, то случаи представляют собой исчерпывающую систему равновозможных и исключающих друг друга исходов опыта. Про такой опыт говорят, что он «сводится к схеме случаев» (иначе — к «схеме урн»).

Схема случаев по преимуществу имеет место в искусственно ор- организованных опытах, в которых заранее и сознательно обеспечена одинаковая возможность исходов опыта (как, например, в азартных играх). Для таких опытов возможен непосредственный подсчет вероятностей, основанный на оценке доли так называемых «благоприятных» случаев в общем числе случаев.

Случай называется благоприятным (или «благоприятствующим») некоторому событию, если появление этого случая влечет за собой появление данного события.

Например, при бросании игральной кости возможны шесть случаев: появление 1, 2, 3, 4, 5, 6 очков. Из них событию А—появлению четного числа очков — благоприятны три случая: 2, 4, б и не благоприятны остальные три.

Если опыт сводится к схеме, случаев, то вероятность события А в данном опыте можно оценить по относительной дело благоприятных случаев. Вероятность события А вычисляется как отношение числа благоприятных случаев к общему числу случаев: Событие вероятность события решение примеры(2.2.1)

где Р (А) — вероятность события А; п — общее число случаев; m — число случаев, благоприятных событию А.

Так как число благоприятных случаев всегда заключено между О и п (0—для невозможного и п—для достоверного события), то вероятность события, вычисленная по формуле 2.2.1), всегда есть рациональная правильная дробь: Событие вероятность события решение примеры(2.2.2)

Формула (2.2.1), так называемая «классическая формула» для вы- вычисления вероятностей, долгое время фигурировала в литературе как определение вероятности. В настоящее время при определении (пояснении) понятия вероятности обычно исходят из других принципов, непосредственно связывая понятие вероятности с эмпирическим понятием частоты; формула же B.2.1) сохраняется лишь как формула для непосредственного подсчета вероятностей, пригодная тогда и только тогда, когда опыт сводится к схеме случаев, т. е. обладает симметрией возможных исходов.

Пример:

В урне находится 2 белых и 3 черных шара. Из урны на- наугад вынимается один шар. Требуется найти вероятность того, что этот шар будет белым.

Решение:

Обозначим А событие, состоящее в появлении белого шара. Общее число случаев п= 5; число случаев, благоприятных событию А, m = 2. Следовательно,

Событие вероятность события решение примеры

Пример:

В урне а белых и b черных шаров. Из урны вынимаются два шара. Найти вероятность того, что оба шара будут белыми.

Решение:

Обозначим В событие, состоящее в появлении двух белых шаров. Подсчитаем общее число возможных случаев п и число случаев m благоприятных событию В:

Событие вероятность события решение примеры

следовательно,

Событие вероятность события решение примеры

Событие вероятность события решение примерыЗнаком Событие вероятность события решение примеры обозначено число сочетаний из k элементов по l

Пример:

В партии из N изделий М бракованных. Из партии выбирается наугад п изделий. Определить вероятность того, что среди этих п изделий будет ровно m бракованных.

Решение:

Общее число случаев, очевидно, равно Событие вероятность события решение примеры число благо- благоприятных случаев Событие вероятность события решение примеры откуда вероятность интересующего нас события

Событие вероятность события решение примеры

Частота, или статистическая вероятность, события

Формула (2.2.1) для непосредственного подсчета вероятностей применима только, когда опыт, в результате которого может появиться интересующее нас событие, обладает симметрией возможных исходов (сводится к схеме случаев). Очевидно, что далеко не всякий опыт может быть сведен к схеме случаев, и существует обширный класс событий, вероятности которых нельзя вычислить по формуле (2.2.1). Рассмотрим, например, неправильно выполненную, несимметричную игральную кость. Выпадение определенной грани уже не будет характеризоваться вероятностью Событие вероятность события решение примеры ; вместе с тем ясно, что для данной конкретной несимметричной кости выпадение этой грани обладает некоторой вероятностью, указывающей, насколько часто в среднем должна появляться данная грань при многократном бросании. Очевидно, что вероятности таких событий, как «попадание в цель при выстреле», «выход из строя радиолампы в течение од- одного часа работы» или «пробивание брони осколком снаряда», так- также не могут быть вычислены по формуле (2.2.1) , так как соответствующие опыты к схеме случаев не сводятся. Вместе с тем ясно, что каждое из перечисленных событий обладает определенной степенью объективной возможности, которую в принципе можно измерить численно и которая при повторении подобных опытов будет отражаться в относительной частоте соответствующих событий. Поэтому мы будем считать, что каждое событие, связанное с массой однородных опытов,—сводящееся к схеме случаев или нет,—имеет определенную вероятность, заключенную между нулем и единицей. Для событий, сводящихся к схеме случаев, эта вероятность может быть вычислена непосредственно по формуле B.2.1). Для событий, не сводящихся к схеме случаев, применяются другие способы определения вероятностей. Все эти способы корнями своими уходят в опыт, в эксперимент, и для того чтобы составить представление об этих способах, необходимо уяснить себе понятие частоты события и специфику той органической связи, которая существует между вероятностью и частотой.

[Если произведена серия из п опытов, в каждом из которых могло появиться или не появиться некоторое событие А, то частотой события А в данной серии опытов называется отношение числа опытов, в которых появилось событие А, к общему числу произведен- произведенных опытов.

Частоту события часто называют его статистической вероятностью (в отличие от ранее введенной «математической» вероятности).

Условимся обозначать частоту (статистическую вероятность) со- события А знаком Р* (А). Частота события вычисляется на основании результатов опыта по формуле

Событие вероятность события решение примеры(2.3.1)

где m — число появлений события А; п — общее число произведен- произведенных опытов.

При небольшом числе опытов частота события носит в значительной мере случайный характер и может заметно изменяться от одной группы опытов к другой. Например, при каких-то десяти бросаниях монеты вполне возможно, что герб появится только два раза (частота появления герба будет равна 0,2); при других десяти бросаниях мы вполне можем получить 8 гербов (частота 0,8). Однако при увеличении числа опытов частота события все более теряет свой случайный характер; случайные обстоятельства, свойственные каждому отдельному опыту, в массе взаимно погашаются, и частота проявляет тенденцию стабилизироваться, приближаясь с незначительными колебаниями к некоторой средней, постоянной величине. Например, при многократном бросании монеты частота появления герба будет лишь незначительно уклоняться от Событие вероятность события решение примеры

Это свойство «устойчивости частот», многократно проверенное экспериментально и подтверждающееся всем опытом практической деятельности человечества, есть одна из наиболее характерных за- закономерностей, наблюдаемых в случайных явлениях. Математическую формулировку этой закономерности впервые дал Я. Бернулли в своей теореме, которая представляет собой простейшую форму закона больших чисел. Я. Бернулли доказал, что при неограниченном увеличении числа однородных независимых опытов с практической достоверностью можно утверждать, что частота события будет сколь угодно мало отличаться от его вероятности в отдельном опыте.

Связь между частотой события и его вероятностью — глубокая, органическая связь. Эти два понятия по существу неразделимы. Дей- Действительно, когда мы оцениваем степень возможности какого-либо события, мы неизбежно связываем эту оценку с большей или меньшей частотой появления аналогичных событий на практике. Характеризуя вероятность события каким-то числом, мы не можем придать этому числу иного реального значения и иного практического смысла, чем относительная частота появления данного события при большом числе опытов. Численная оценка степени возможности события посредством вероятности имеет практический смысл именно потому, что более вероятные события происходят в среднем чаще, чем менее вероятные. И если практика определенно указывает на то, что при увеличении числа опытов частота события имеет тенденцию выравниваться, приближаясь сквозь ряд случайных уклонений к некоторому постоянному числу, естественно предположить, что это число и есть вероятность события.

Проверить такое предположение мы, естественно, можем только для таких событий, вероятности которых могут быть вычислены непосредственно, т. е. для событий, сводящихся к схеме случаев, так как только для этих событий существует точный способ вычисления математической вероятности. Многочисленные опыты, производившиеся со времени возникновения теории вероятностей, действительно подтверждают это предположение. Они показывают, что для события, сводящегося к схеме случаев, частота события при увеличении числа опытов всегда приближается к его вероятности. Вполне естественно допустить, что и для события, не сводящегося к схеме случаев, тот же закон остается в силе и что постоянное значение, к которому при увеличении числа опытов приближается частота события, представляет собой не что иное, как вероятность события. Тогда частоту события при достаточно большом числе опытов можно принять за приближенное значение вероятности. Так и поступают на практике, определяя из опыта вероятности событий, не сводящихся к схеме случаев.

Следует отметить, что характер приближения частоты к вероятности при увеличении числа опытов несколько отличается от «стремления к пределу» в математическом смысле слова.

Когда в математике мы говорим, что переменная Событие вероятность события решение примеры с возраста- возрастанием n стремится к постоянному пределу а, то это означает, что разность Событие вероятность события решение примеры становится меньше любого положительного числа Событие вероятность события решение примеры для всех значений п, начиная с некоторого достаточно большого числа.

Относительно частоты события и его вероятности такого категорического утверждения сделать нельзя. Действительно, нет ничего физически невозможного в том, что при большом числе опытов частота события будет значительно уклоняться от его вероятности; но такое значительное уклонение является весьма маловероятным, тем менее вероятным, чем большее число опытов произведено. Например, при бросании монеты 10 раз физически возможно (хотя и маловероятно), что все 10 раз появится герб, и частота появления герба будет равна 1; при 1000 бросаниях такое событие все еще остается физически возможным, но приобретает настолько малую вероятность, что его смело можно считать практически неосуществимым. Таким образом, при возрастании числа опытов частота приближается к вероятности, но не с полной достоверностью, а с большой вероятностью, которая при достаточно большом числе опытов может рассматриваться как практическая достоверность.

В теории вероятностей чрезвычайно часто встречается такой характер приближения одних величин к другим, и для его описания введен специальный термин: «сходимость по вероятности».

Говорят, что величина Событие вероятность события решение примеры сходится по вероятности к величине а, если при сколь угодно малом е вероятность неравенства Событие вероятность события решение примеры с увеличением п неограниченно приближается к единице.

Применяя этот термин, можно сказать, что при увеличении числа опытов, частота события не «стремится.» к вероятности события, а «сходится к ней по вероятности»

Это свойство частоты и вероятности, изложенное здесь пока без достаточных математических оснований, просто на основании практики и здравого смысла, составляет содержание теоремы Бернулли, которая будет доказана нами в дальнейшем (см. гл. 13).

Таким образом, вводя понятие частоты события и пользуясь связью между частотой и вероятностью, мы получаем возможность приписать определенные вероятности, заключенные между нулем и единицей, не только событиям, которые сводятся к схеме случаев, но и тем событиям, которые к этой схеме не сводятся; в последнем случае вероятность события может быть приближенно определена по частоте события при большом числе опытов.

В дальнейшем мы увидим, что для определения вероятности со- события, не сводящегося к схеме случаев, далеко не всегда необходимо непосредственно определять из опыта его частоту. Теория вероятностей располагает многими способами, позволяющими определять вероятности событий косвенно, через вероятности других событий, с ними связанных. В сущности, такие косвенные способы и составляют основное содержание теории вероятностей. Однако и при таких косвенных методах исследования в конечном счете все же приходится обращаться к экспериментальным данным. Надежность и объективная ценность всех практических расчетов, выполненных с применением аппарата теории вероятностей, определяется качеством и количеством экспериментальных данных, на базе которых этот расчет выполняется.

Кроме того, при практическом применении вероятностных методов исследования всегда необходимо отдавать себе отчет в том, действительно ли исследуемое случайное явление принадлежит к категории массовых явлений, для которых, по крайней мере на некотором участке времени, выполняется свойство устойчивости частот. Только в этом случае имеет смысл говорить о вероятностях событий, имея в виду не математические фикции, а реальные характеристики случайных явлений.

Например, выражение «вероятность поражения самолета в воз- воздушном бою для данных условий равна 0,7» имеет определенный конкретный смысл, потому что воздушные бои мыслятся как массовые операции, которые будут неоднократно повторяться в приблизительно аналогичных условиях.

Напротив, выражение «вероятность того, что данная научная про- проблема решена правильно, равна 0,7» лишено конкретного смысла, и было бы методологически неправильно оценивать правдоподобие научных положений метопами теории вероятностей.

Случайная величина

Одним из важнейших основных понятий теории вероятностей является понятие о случайной величине. Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.

Примеры случайных величин: 1) число попаданий при трех выстрелах; 2) число вызовов, поступавших на телефонную станцию за сутки; 3) частота попадания при 10 выстрелах. Во всех трех приведенных примерах случайные величины могут принимать отдельные, изолированные значения, которые можно заранее перечислить.

Так,в примере 1) эти значения: 0, 1, 2, 3; в примере 2): 1, 2, 3, 4, …; в примере 3): 0; 0,1; 0,2; …; 1,0.

Такие случайные величины, принимающие только отделенные друг от друга значения, которые можно заранее перечислить называются прерывными или дискретными случайными величинами.

Существуют случайные величины другого типа, например: 1) абсцисса точки попадания при выстреле; 2) ошибка взвешивания тела на аналитических весах; 3) скорость летательного аппарата в момент выхода на заданную высоту; 4) вес наугад взятого зерна пшеницы.

Возможные значения таких случайных величин не отделены друг от друга; они непрерывно заполняют некоторый промежуток, кото- который иногда имеет резко выраженные границы, а чаще —границы неопределенные, расплывчатые.

Такие случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называются непрерывными случайными величинами.

Такие случайные величины, возможные значения которых непрерывно заполняют некоторый промежуток, называются непрерывными случайными величинами.

Приведем примеры типичных для теории вероятностей приемов перехода от событий к случайным величинам. Производится опыт, в результате которого может появиться или не появиться некоторое событие А. Вместо события А можно рассмотреть случайную величину X, которая равна 1, если событие А происходит, и равна 0, если событие А не происходит. Случайная величина А‘, очевидно, является прерывной; она имеет два возможных значения: 0 и 1. Эта случайная величина называется характеристической случайной величиной события А. На практике часто вместо событий оказывается удобнее оперировать их характеристическими случайными величинами. Например, если производится ряд опытов, в каждом из которых возможно появление события А, то общее число появлений события равно сумме характеристических случайных величин события А во всех опытах. При решении многих практических задач пользование таким приемом оказывается очень удобным.

С другой стороны, очень часто для вычисления вероятности события оказывается удобно связать это событие с какой-то непрерывной случайной величиной (или системой непрерывных величин)

Пусть, например, измеряются координаты какого-то объекта О для того, чтобы построить точку М, изображающую этот объект на панораме (развертке) местности. Нас интересует событие А, состоящее в том, что ошибка R в положении точки М не превзойдет заданного значения Событие вероятность события решение примеры (рис. 2.4.1). Обозначим X, Y случайные ошибки в измерении координат объекта. Очевидно, событие А равносильно попаданию случайной точки М с координатами X, Y в пределы круга радиусаСобытие вероятность события решение примеры с центром в точке О. Другими словами, для выполнения события А случайные величины X и К должны удовлетворять неравенству

Событие вероятность события решение примеры(2.4.1)

Вероятность события А есть не что иное, как вероятность выполнения неравенства B.4.1). Эта вероятность может быть определена, если известны свойства случайных величин X, Y.

Такая органическая связь между событиями и случайными вели- величинами весьма характерна для современной теории вероятностей, которая, где только возможно, переходит от «схемы событий» к «схеме случайных величин». Последняя схема сравнительно с первой представляет собой гораздо более гибкий и универсальный аппарат для решения задач, относящихся к случайным явлениям.

Практически невозможные и практически достоверные события. Принцип практической уверенности

Мы познакомились с понятиями невозможного и достоверного события. Вероятность невозможного события, равная нулю, и вероятность достоверного события, равняя единице, занимают крайние положения на шкале вероятностей.

На практике часто приходится иметь дело не с невозможными и достоверными событиями, а с так называемыми «практически невозможными» и «практически достоверными» событиями.

Практически невозможным событием называется событие, вероятность которого не в точности равна нулю, но весьма близка к нулю.

Рассмотрим, например, следующий опыт: 32 буквы разрезной азбуки смешаны между собой; вынимается одна карточка, изображенная на ней буква записывается, после чего вынутая карточка возвращается обратно, и карточки перемешиваются. Такой опыт производится 25 раз. Рассмотрим событие А, заключающееся в том, после 25 выниманий мы запишем первую строку «Евгения Онегина»:

«Мой дядя самых честных правил».

Такое событие не является логически невозможным; можно под- считать его вероятность, которая равна Событие вероятность события решение примеры но ввиду того что вероятность события А ничтожно мала, можно считать его практически невозможным.

Практически достоверным событием называется событие, вероятность которого не в точности равна единице, но весьма близка к единице.

Если какое-либо событие А в данном опыте практически невозможно, то противоположное ему событие Событие вероятность события решение примеры состоящее в невыполнении события А, будет практически достоверным. Таким образом, с точки зрения теории вероятностей все равно, о каких событиях говорить: о практически невозможных или о практически достоверных, так как они всегда сопутствуют друг другу.

Практически невозможные и практически достоверные события играют большую роль в теории вероятностей; на них основывается все практическое применение этой науки.

В самом деле, если нам известно, что вероятность события в дан- данном опыте равна 0,3, это еще не дает нам возможности предсказать результат опыта. Но если вероятность события в данном опыте ничтожно мала или, наоборот, весьма близка к единице, это дает нам возможность предсказать результат опыта; в первом случае мы не будем ожидать появления события А; во втором случае будем ожидать его с достаточным основанием. При таком предсказании мы руководствуемся так называемым принципом практической уверенности, который можно сформулировать следующим образом.

Если вероятность некоторого события А в данном опыте Е весьма мала, то можно быть практически уверенным в том, что при однократном выполнении опыта Е событие А не произойдет.

Иными словами, если вероятность события А в данном опыте весьма мала, то, приступая к выполнению опыта, можно организовать свое поведение так, как будто это событие вообще невозможно, т. е. не рассчитывал совсем на его появление.

В повседневной жизни мы непрерывно бессознательно пользуемся принципом практической уверенности. Например, выезжая в путешествие по железной дороге, мы все свое поведение организуем, не считаясь с возможностью железнодорожной катастрофы, хотя некоторая, весьма малая, вероятность такого события все же имеется.

Принцип практической уверенности не может быть доказан мате- математическими средствами; он подтверждается всем практическим опытом человечества.

Вопрос о том, насколько мала должна быть вероятность события, чтобы его можно было считать практически невозможным, выходит за рамки математической теории и в каждом отдельном случае ре- решается из практических соображений в соответствии с той важностью, которую имеет для нас желаемый результат опыта.

Например, если вероятность отказа взрывателя при выстреле равна 0,01, мы еще можем помириться с этим и считать отказ взрывателя практически невозможным событием. Напротив, если вероятность отказа парашюта при прыжке также равна 0,01, мы, очевидно, не можем считать этот отказ практически невозможным событием и должны добиваться большей надежности работы парашюта.

Одной из важнейших задач теории вероятностей является выявление практически невозможных (или практически достоверных) событий, дающих возможность предсказывать результат опыта, и выявление условий, при которых те или иные события становятся практически невозможными (достоверными). Существует ряд теорем теории вероятностей — так называемых предельных теорем, в которых устанавливается существование, событий, становящихся практически невозможными (достоверными) при увеличении числа опытов или при увеличении числа случайных величин, участвующих в задаче.

Примером такой предельной теоремы является уже сформулированная выше теорема Бернулли (простейшая форма закона больших чисел). Согласно теореме Бернулли при большом числе опытов событие, заключающееся в том, что разность между частотой события и его вероятностью сколь угодно мала, становится практически достоверным.

Наряду с практически невозможными (достоверными) событиями, которые позволяют с уверенностью предсказывать исход опыта, не- несмотря на наличие случайности, в теории вероятностей большую роль играют особого типа случайные величины, которые, хотя и являются случайными, но имеют такие незначительные колебания, что практически могут рассматриваться как не случайные. Примером такой «почти не случайной» величины может служить частота события при большом числе опытов. Эта величина, хотя и является случайной, но при большом числе опытов практически может колебаться только в очень узких пределах вблизи вероятности события.

Такие «почти не случайные» величины дают возможность пред- предсказывать численный результат опыта, несмотря на наличие в нем элементов случайности, оперируя с этим результатом столь же уверенно, как мы оперируем с данными, которые доставляются обычными методами точных наук.

Решение заданий и задач по предметам:

  • Теория вероятностей
  • Математическая статистика

Дополнительные лекции по теории вероятностей:

  1. Случайные события и их вероятности
  2. Случайные величины
  3. Функции случайных величин
  4. Числовые характеристики случайных величин
  5. Законы больших чисел
  6. Статистические оценки
  7. Статистическая проверка гипотез
  8. Статистическое исследование зависимостей
  9. Теории игр
  10. Теорема умножения вероятностей
  11. Формула полной вероятности
  12. Теорема о повторении опытов
  13. Нормальный закон распределения
  14. Определение законов распределения случайных величин на основе опытных данных
  15. Системы случайных величин
  16. Нормальный закон распределения для системы случайных величин
  17. Вероятностное пространство
  18. Классическое определение вероятности
  19. Геометрическая вероятность
  20. Условная вероятность
  21. Схема Бернулли
  22. Многомерные случайные величины
  23. Предельные теоремы теории вероятностей
  24. Оценки неизвестных параметров
  25. Генеральная совокупность

Добавить комментарий