В основании пирамиды лежит равнобедренный треугольник с боковой стороной b и углом при основании β. все боковые грани образуют с основанием угол φ.
Решение.
Поскольку в основании пирамиды лежит равнобедренный треугольник, то для нахождения площади равнобедренного треугольника, воспользуемся приведенными в соответствующем уроке формулами.
При желании можно разбить треугольник ABC на два прямоугольных треугольника AKB и AKC. Но в результате формулы будут все равно тождественны. Действительно,
AK = AB sin ß = b sin β
BK = AB cos β = b cos β
SABK = AK * BK / 2 = b 2 sin β cos β / 2
откуда
SABС = 2SABK = b 2 sin β cos β
(примем за искомую площадь основания, далее справочно приведем к той же формуле, которая указана по ссылке выше)
Если воспользоваться основными тригонометрическими тождествами, то
b 2 sin β cos β = 1/2 b 2 sin 2β = 1/2 b 2 sin 2β
или как по основной формуле (площади равнобедренного треугольника)
1/2 b 2 sin 2β = 1/2 b 2 sin (180 – α) = 1/2 b 2 sin α
Теперь найдем площадь боковой поверхности пирамиды.
Сначала найдем высоту боковых граней, прилежащих к равным сторонам равнобедренного треугольника, лежащего в основании пирамиды. При этом учтем, что высота пирамиды проецируется в точку О основания, которая одновременно является центром вписанной окружности. Вместе с радиусом вписанной окружности, высота боковой грани образует прямоугольный треугольник. Откуда высота боковой грани пирамиды равна:
h = r / sin φ
Учитывая, что BC = 2BK, то BC = 2b cos β
откуда
p = ( b + b + 2b cos β ) / 2
p = ( 2b + 2b cos β ) / 2
p = 2b ( 1 + cos β ) / 2
p = b ( 1 + cos β )
Таким образом, радиус вписанной окружности в основание пирамиды будет равен
r = S / p
r = b 2 sin β cos β / b ( 1 + cos β ) = b sin β cos β / ( 1 + cos β )
Теперь определим высоту боковых граней пирамиды. Зная, что
l / r = cos φ, то
l = r cos φ
Тогда площадь грани пирамиды, прилегающей к равным сторонам основания (а в основании пирамиды у нас лежит равнобедренный треугольник) будет равна:
S1 = lb / 2
S1 = r cos φ * b / 2
S1 = b sin β cos β / ( 1 + cos β ) cos φ * b / 2
S1 = b 2 sin β cos β / ( 1 + cos β ) cos φ / 2
S1 = b 2 sin β cos β cos φ / ( 2 ( 1 + cos β ) )
Площадь боковой грани, прилегающей к основанию, равна:
S2 = BC * l / 2
S2 = 2b cos β * r cos φ / 2
S2 = b cos β * r cos φ
S2 = b cos β * b sin β cos β / ( 1 + cos β ) * cos φ
S2 = b 2 cos 2 β sin β cos φ / ( 1 + cos β )
Площадь боковой поверхности пирамиды равна:
Sбок = 2S1 + S2
Sбок = 2 * b 2 sin β cos β / ( 2 ( 1 + cos β ) cos φ ) + b 2 cos 2 β sin β cos φ / ( 1 + cos β )
Sбок = b 2 sin β cos β cos φ / ( 1 + cos β ) + b 2 cos 2 β sin β cos φ / ( 1 + cos β )
Sбок = ( b 2 sin β cos β cos φ + b 2 cos 2 β sin β cos φ ) / ( 1 + cos β )
Sбок = b 2 sin β cos β cos φ ( 1 + cos β ) / ( 1 + cos β )
Sбок = b 2 sin β cos β cos φ
Откуда площадь полной поверхности пирамиды с равнобедренным треугольником в основании составит:
S = Sбок + Sосн
S = b 2 sin β cos β cos φ + b 2 cos 2 β sin β cos φ / ( 1 + cos β )
Решение задач с использованием свойств различных видов пирамид
Разделы: Математика
Изучение пирамиды и ее элементов представляет широкие возможности для составления и решения задач на различных видах пирамид по следующим темам:
- Пирамиды, в которых основание высоты является центром описанной или вписанной окружности основания пирамиды.
- Пирамиды, в которых одна или две боковые грани перпендикулярны плоскости основания.
- Пирамиды, в которых заданы расстояния между точками и элементами пирамиды.
Действующие учебники геометрии либо не содержат , либо содержат в недостаточном количестве задачи по этим темам.
Как показала практика, учащиеся с большим интересом принимают участие не только в решении данных задач, но и в их составлении. Они с удовольствием предлагают различные решения придуманных ими задач.
К этому учащихся необходимо подводить хорошо продуманной системой теоретических положений и практических упражнений.
Учебники Л.С. Атанасяна и др. “Геометрия 10–11” и А.В.Погорелова “Геометрия 10–11” содержат опорный теоретический материал по теме “Пирамида и ее элементы”.
В дополнение к нему можно рассмотреть следующие свойства часто встречающихся видов пирамид.
Теория.
Теоремы о пирамидах, в которых основание высоты является центром описанной или вписанной окружности основания пирамиды.
- Если все боковые ребра пирамиды составляют с плоскостью основания равные углы, то:
а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды;
б) все боковые ребра пирамиды равны между собой.
- Если основание высоты пирамиды совпадает с центром окружности, описанной около ее основания, то:
а) все боковые ребра пирамиды образуют с плоскостью основания равные углы;
в) все боковые ребра пирамиды равны между собой.
- Если все боковые ребра пирамиды равны, то:
а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды;
б) все боковые ребра пирамиды составляют с плоскостью ее основания равные между собой углы.
- Если высота пирамиды пересекает ее основание и все боковые грани пирамиды образуют с плоскостью основания равные двугранные углы, то основание высоты пирамиды совпадает с центром окружности, вписанной в ее основание.
- Если вершина пирамиды проектируется в центр окружности, вписанной в основание пирамиды, то боковые грани пирамиды образуют с плоскостью основания равные двугранные углы.
- Если у треугольной пирамиды все боковые ребра равны, а в основании лежит прямоугольный треугольник, то грань, содержащая его гипотенузу, перпендикулярна основанию. Основание высоты данной пирамиды является середина гипотенузы.
Теоремы о пирамидах, в которых одна или две боковые грани перпендикулярны плоскости основания.
- Если пирамида содержит ровно одну боковую грань, которая перпендикулярна плоскости основания, то высота такой пирамиды лежит в этой боковой грани.
- Если пирамида содержит две смежные боковые грани, перпендикулярные плоскости основания, то высотой такой пирамиды является боковое ребро, общее для этих граней.
- Если в пирамиде две не смежные боковые грани перпендикулярны плоскости основания, то высота такой пирамиды лежит на прямой пересечения плоскостей этих граней.
- Если боковое ребро пирамиды перпендикулярно основанию, то и боковые грани, содержащие это ребро, перпендикулярны основанию.
- Если в четырехугольной пирамиде в основании ромб, и две смежные боковые грани перпендикулярны основанию, то боковые грани данной пирамиды – две пары равных треугольников.
Задачи для решения.
Задания из книги “Самостоятельные и контрольные работы по геометрии для 11-го класса” Ершовой А.П., Голобородько В.В.
Пирамиды, в которых основание высоты является центром описанной или вписанной окружности основания пирамиды.
Вариант А.
- Основание пирамиды SABCD – прямоугольник АВСД со сторонами 6 и 8 см. Все боковые ребра пирамиды равны 13 см.
а) Опишите построение высоты пирамиды SO.
б) Докажите равенство отрезков АО, ВО, СО и ДО.
в) Обоснуйте положение точки О в прямоугольнике АВСД и найдите длину высоты SO.
- Основание пирамиды – равнобедренный треугольник с основанием а и углом при вершине . Все двугранные углы при основании пирамиды равны .
а) Опишите построение высоты пирамиды, высот боковых граней и их проекций на плоскость основания. Обоснуйте двугранные углы при основании пирамиды.
б) обоснуйте положение основания высоты пирамиды в данном равнобедренном треугольнике.
в) Найдите высоту пирамиды.
Вариант Б.
- Основание пирамиды – равнобедренный треугольник с боковой стороной b и углом при основании . Все боковые ребра пирамиды наклонены к плоскости основания под углом .
а) Обоснуйте положение основания высоты пирамиды в данном равнобедренном треугольнике.
б) Определите, при каких значениях ? высота пирамиды будет находиться вне пирамиды.
в) Найдите высоту пирамиды.
- Основание пирамиды – ромб с большей диагональю d и острым углом . Все двугранные углы при основании пирамиды равны .
а) Обоснуйте данные двугранные углы и положение основания высоты пирамиды в ромбе.
б) Найдите высоту пирамиды.
в) Двумя способами – путем вычисления площадей боковых граней и с помощью теоремы об ортогональной проекции многоугольника – найдите боковую поверхность пирамиды. Сравните полученные результаты.
Вариант В.
- Основание пирамиды – треугольник с углами и . Точка высоты пирамиды, удаленная от плоскости основания на расстояние d, равноудалена от концов бокового ребра. Все боковые ребра пирамиды наклонены к плоскости основания под углом .
а) Обоснуйте положение основания высоты пирамиды.
б) При каких условиях высота пирамиды лежит внутри пирамиды?
в) Найдите высоту пирамиды.
г) Найдите площадь основания пирамиды.
- В основании пирамиды лежит равнобокая трапеция с острым углом . Высота пирамиды равна Н, а все двугранные углы при основании равны .
а) обоснуйте положение основания высоты пирамиды.
б) Найдите высоту трапеции, лежащей в основании пирамиды.
в) Не вычисляя площадей боковых граней, найдите боковую поверхность пирамиды.
Пирамиды, в которых одна или две боковые грани перпендикулярны плоскости основания.
Вариант А.
- Основание пирамиды – равнобедренный треугольник с боковой стороной b и углом при вершине . Боковые грани пирамиды, содержащие стороны данного угла перпендикулярны плоскости основания, а третья боковая грань наклонена к ней под углом .
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте угол .
в) Найдите площадь третьей боковой грани.
г) Найдите боковую поверхность пирамиды.
- Основание пирамиды – правильный треугольник со стороной а. Одна из боковых граней пирамиды перпендикулярна плоскости основания, а две другие – наклонены к ней под углом .
а) Из вершины пирамиды в плоскости грани, перпендикулярной основанию, проведите перпендикуляр к ребру основания и обоснуйте, почему он будет высотой пирамиды.
б) Обоснуйте углы наклона, равные .
в) Докажите, что основание высоты пирамиды равноудалено от двух сторон правильного треугольника, и обоснуйте положение основания высоты на стороне правильного треугольника.
г) Найдите боковую поверхность пирамиды.
Вариант Б.
- Основание пирамиды – квадрат со стороной а, две смежные боковые грани пирамиды перпендикулярны плоскости основания, а две другие – наклонены к ней под углом .
а ) Обоснуйте положение высоты пирамиды.
б ) Обоснуйте углы, равные .
в ) Докажите, что боковые грани пирамиды попарно равны.
г ) Найдите боковую поверхность пирамиды.
- Основание пирамиды – прямоугольный треугольник с гипотенузой с и острым углом . Боковая грань, содержащая катет, противолежащий данному углу , перпендикулярна плоскости основания, а две другие грани наклонены к ней под углом .
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте положение основания высоты пирамиды.
в) Найдите высоту пирамиды.
г) Найдите боковую поверхность пирамиды.
Вариант В.
- Основание пирамиды – ромб с тупым углом . Две боковые грани, содержащие стороны этого угла, перпендикулярны плоскости основания, а две другие – наклонены к ней под углом . Высота пирамиды равна Н.
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте углы, равные .
в) Найдите боковую поверхность пирамиды.
- Основание пирамиды – прямоугольная трапеция с острым углом ? и прилежащей к нему боковой стороной . Боковая грань, содержащая большее основание трапеции, перпендикулярна плоскости основания, а три другие грани наклонены к ней под углом .
а ) Обоснуйте положение высоты пирамиды.
б) Обоснуйте положение основания высоты пирамиды.
в) Найдите площадь основания пирамиды.
г) Найдите боковую поверхность пирамиды.
Пирамиды, в которых заданы расстояния между точками и элементами пирамиды.
Вариант А.
- В правильной треугольной пирамиде боковое ребро наклонено к плоскости основания под углом . Расстояние от середины высоты пирамиды до середины бокового ребра равно d.
б ) Найдите площадь основания пирамиды.
- В правильной четырехугольной пирамиде двугранный угол при основании равен . Расстояние от середины высоты пирамиды до ее апофемы равно l . Найдите боковую поверхность пирамиды.
Вариант Б.
- В правильной четырехугольной пирамиде двугранный угол при основании равен . Расстояние от основания высоты пирамиды до середины апофемы равно l . Найдите полную поверхность пирамиды.
- Основание пирамиды – равнобедренный треугольник с углом при вершине. Все боковые ребра пирамиды наклонены к плоскости основания под углом . Биссектриса этого угла пересекает высоту пирамиды в точке, удаленной от бокового ребра на расстояние d.
б ) Найдите площадь основания пирамиды.
Вариант В.
- Основание пирамиды – равнобедренный треугольник с углом при основании . Все двугранные углы при основании пирамиды равны . Отрезок, соединяющий точки пересечения медиан боковых граней, содержащих боковые стороны треугольника, равен m. Найдите боковую поверхность пирамиды.
- Основание пирамиды – прямоугольный треугольник с острым углом . Боковые грани пирамиды, содержащие катеты треугольника, перпендикулярны плоскости основания, а третья боковая грань наклонена к ней под углом . Расстояние от основания высоты пирамиды до этой грани равно l. Найдите боковую поверхность пирамиды.
Указанный в статье перечень задач может быть расширен Вами и вашими учениками.
[spoiler title=”источники:”]
http://profmeter.com.ua/communication/learning/course/course7/lesson408/
http://urok.1sept.ru/articles/526725
[/spoiler]
Как найти высоту в пирамиде: треугольной, четырехугольной, правильной
Высота основания в пирамиде – тема, на которую часто попадаются задачи на экзаменах и в старших классах. Решать такие задачи просто, если понимать принцип решения и знать формулы.
В нашей статье, вы без лишних формул и теории сможете понять, как решать задачи на нахождение высоты в пирамиде. Обратите внимание, что в разделе «формулы» отсутствуют все формулы правильной пирамиды, так как наша цель – научить решать задачи на нахождение высоты.
Содержание этой статьи:
Теория
Правильная пирамида
Правильная пирамида имеет в основании многоугольник, а высота проходит через центр основания. Боковые грани – равнобедренные треугольники. Напомним, что в равнобедренном треугольнике две стороны равны, следовательно, боковые ребра в правильной пирамиде тоже равны. Многоугольник в основании правильный, т.е. его стороны равны.
Для решения задач понадобится знать теоремы равнобедренного треугольника:
Основные свойства
Четырехугольная пирамида
В основании – многоугольник; остальные грани – треугольники, соединяющиеся в общей вершине.
Треугольная пирамида
В качестве основания можно рассматривать любую грань. Вся фигура состоит из треугольников.
Необходимые знания для нахождения высоты
Когда теория закреплена, можно переходить к формулам.
Формулы для нахождения высоты
Запомните, что маленькая буква h – это апофема, а большая H – высота.
В некоторых задачах, высоту можно найти через объем:
ВИДЕО: Примеры решения задач
Нахождение высоты в правильной пирамиде
Нахождение высоты в правильной пирамиде
Ниже будут представлены текстовые решения часто встречающихся задач.
Треугольная пирамида
Задача 1
В правильной треугольной пирамиде DBAC с вершиной D биссектрисы треугольника BAC пересекаются в точке N. Площадь треугольника BAC равна 4; объем пирамиды равен 12. Найдите длину отрезка DN.
DN – высота, следовательно, объем фигуры можно выразить по формуле:
DN = 3V/S основания = 3*12/4 = 9
Задача 2
DBAC – медианы основания BAC. Они пересекаются в точке N. Площадь ΔBAC равна 18, V = 20; найдите высоту.
Пользуясь формулой объема, получается:
DN = 3V/S ΔBAC = 3*36/18 = 108/18 = 6
Четырехугольная пирамида
Задача 1
Найдите высоту пирамиды, если ML = 10, а DC = 12. В основании квадрат.
ML – это апофема, сторона нам известна, следовательно, можно применить формулу для нахождения OL:
Известно, что MOL – прямоугольный угол. Применим теорему Пифагора:
MO ² = √ML ² — √OL ² = √100- √36 = √64
Задача 2
Известно, что диагональ AC = 20, ML = 10, а сторона DC = 12; найдите MO правильной четырехугольной пирамиды.
Найдем OL
В основании фигуры – квадрат, стороны и углы которого равны. Значит, половина диагонали = 10. Рассмотрим треугольник LOC, он – прямоугольный. Из исходных данный ясно, что LC = 6 (в равнобедренном треугольнике, высота, проведенная из вершины, делит основание на 2 равные части – это свойство р/б треугольника).
Пользуясь теоремой Пифагора, находим OL:
OL² = √OC² — √LC² = √100 – √36 = √64 = 8
Задача 3
Ищем MO
Пользуясь той же теоремой, находим высоту:
MO² = √ML² – √OL² = 100 – 64 = 36
Задача 4
Известно, что в основании ABCD, AB=CD=BC=AD. Треугольник DMC имеет площадь 36см, DC = 4, OL = 6. Определите тип фигуры и найдите высоту.
Исходя из информации про основание, мы сделали вывод, что перед нами правильная пирамида – стороны основания равны. Следовательно, перед нами четырехугольная правильная пирамида.
Из первого вывода следует, что боковые грани – равнобедренные треугольники, а высота и медиана этих треугольников – апофема. Пользуясь формулами, найдем высоту.
Площадь равнобедренного треугольника
Теперь у нас есть апофема, а OL нам было уже давно. MOL – прямоугольный треугольник, 2 стороны которого, мы уже знаем. Следовательно, мы можем посчитать высоту.
MO = ML – OL = 18 – 6 = 12
Часто задаваемые вопросы
Часто в задании не указывают какой тип фигуры, чтобы человек сам догадался и применил нужные формулы. Понять какой тип фигуры легко – начните решение задачи с рассмотрения основания и заучивания свойств фигуры.
Зная определения и свойства, определить тип фигуры очень легко.
Чтобы решать задачи, человек должен включать логику, а не подставлять исходные числа в знакомые формулы. С этим расчетом, в некоторых задачах умышленно добавляют лишние данные, которые могут даже не использоваться при решении. Чаще такое встречается в задачах на ЕГЭ.
Для удобства, человек может не выделять отдельно высоту, а сразу писать, например, BE (если B – вершина, а E – основание). То же с апофемой. Важно, чтобы сам человек осознавал, что это за линия и как ее использовать в решении.
Ключ к пониманию стереометрии – умение визуализировать объекты в пространстве. Если в дополнение к этому умению, знать формулы, свойства и теорию – задачи будут решаться быстро и безошибочно.
Если выразить высоту через формулу объема, то получится следующее:
Пример: объем пирамиды равен 70 куб. см., а площадь боковых граней – 30см²
Типичные ошибки на ЕГЭ
Полезные советы
- Если в задаче указан объем – ищите высоту через него.
- Делите равнобедренные треугольники на прямоугольные – так быстрее и проще решить задачу.
- Учите квадратные корни чисел – так, вы будете быстрее справляться с теоремой Пифагора.
- Не кидайтесь сразу к решению – изучите исходные данные и сделайте правильные выводы.
- Если в заданиях получаются слишком крупные числа (от 1000), то перепроверьте решение – вероятно, вы допустили ошибку. В заданиях в учебнике и на экзамене практически не используются крупные числа.
Чтобы успешно решить задачу для нахождения высоты пирамиды, достаточно знать теорию и формулы. Добавив к своим знаниям немного практики и внимательности, вы легко и быстро будете решать подобные задачи! Если вы не согласны с рейтингом статьи, то просто поставьте свои оценки и аргументируйте их в комментариях. Ваше мнение очень важно для наших читателей. Спасибо!
Онлайн решение Пирамиды по координатам вершин
1) чертёж пирамиды по координатам её вершин;
2) длины и уравнения рёбер, медиан, апофем, высот;
3) площади и уравнения граней;
4) система линейных неравенств, определяющих пирамиду;
5) основания и точка пересечения медиан (центроид);
6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;
7) объём пирамиды;
8) основания, площади и уравнения биссекторов;
9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;
10) параметры и уравнения вписанной и описанной сфер;
Внимание! Этот сервис может не работать в браузере Internet Explorer.
Запишите координаты вершин пирамиды и нажмите кнопку.
Примечание: дробные числа записывайте
через точку, а не запятую.
источники:
http://mathhelpplanet.com/static.php?p=onlayn-resheniye-piramidy
http://dudom.ru/kompjutery/kak-najti-vysotu-piramidy-po-vektoram/
A ( ; ; ), B ( ; ; ), C ( ; ; ), D ( ; ; ) |
Примечание: дробные числа записывайте Округлять до -го знака после запятой. Как найти высоту пирамиды по векторамИнструкция . Для решения подобных задач в онлайн режиме заполните координаты вершин, нажмите Далее . см. также по координатам треугольника найти.
Пример №1 . В пирамиде SABC : треугольник ABC – основание пирамиды, точка S – ее вершина. Даны координаты точек A, B, C, S . Сделать чертеж. Пример №2 . В тетраэдре ABCD вычислить:
A(2, 3, -2), B(3, 1, 0), C(-2, 2, 1), D(6, 1, -1) ОтветПроверено экспертомДаны вершины пирамиды A(3;-2;3)B(-1;0;2)C(-3;1;-1)D(-3;-3;1) . Находим векторы АВ, АС и АД. Вектор АВ = (-4; 2; -1 ), модуль равен √(16+4+1) = √21 ≈ 4,58258. Определяем векторное произведение АВ х АС. -6 3 -4 | -6 3 = -8i + 6j – 12k – 16j + 3i + 12k = -5i – 10j = (-5; -10; 0). Далее находим смешанное произведение (АВ х АС) х АД. (АВ х АС) = (-5; -10; 0), (АВ х АС) х АД = 30 + 10 + 0 = 40. Объем пирамиды равен (1/6) этого произведения: V = (1/6)*40 = (20/3) куб.ед. Высота h пирамиды ABCD, опущенная из вершины D на плоскость основания ABC, равна: h = 3V/S(ABC). Площадь основания АВС равна половине модуля векторного произведения АВ х АС. S(ABC) = (1/2)*√((-5)² + (-10)² + 0²) = (1/2)√(25 + 100) = (5/2)√5 кв.ед. h = (3*20/3)/((5/2)√5) = 8/√5 = 8√5/5 ≈ 3,5777. 1) чертёж пирамиды по координатам её вершин; 2) длины и уравнения рёбер, медиан, апофем, высот; 3) площади и уравнения граней; 4) система линейных неравенств, определяющих пирамиду; 5) основания и точка пересечения медиан (центроид); 6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням; 7) объём пирамиды; 8) основания, площади и уравнения биссекторов; 9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные; 10) параметры и уравнения вписанной и описанной сфер; Внимание! Этот сервис может не работать в браузере Internet Explorer. Запишите координаты вершин пирамиды и нажмите кнопку. |
A ( ; ; ), B ( ; ; ), C ( ; ; ), D ( ; ; ) |
Изучение пирамиды и ее элементов представляет
широкие возможности для составления и решения
задач на различных видах пирамид по следующим
темам:
- Пирамиды, в которых основание высоты является
центром описанной или вписанной окружности
основания пирамиды. - Пирамиды, в которых одна или две боковые грани
перпендикулярны плоскости основания. - Пирамиды, в которых заданы расстояния между
точками и элементами пирамиды.
Действующие учебники геометрии либо не
содержат , либо содержат в недостаточном
количестве задачи по этим темам.
Как показала практика, учащиеся с большим
интересом принимают участие не только в решении
данных задач, но и в их составлении. Они с
удовольствием предлагают различные решения
придуманных ими задач.
К этому учащихся необходимо подводить хорошо
продуманной системой теоретических положений и
практических упражнений.
Учебники Л.С. Атанасяна и др. “Геометрия 10–11” и
А.В.Погорелова “Геометрия 10–11” содержат
опорный теоретический материал по теме
“Пирамида и ее элементы”.
В дополнение к нему можно рассмотреть
следующие свойства часто встречающихся видов
пирамид.
Справочный материал.
Теория.
Теоремы о пирамидах, в которых основание высоты
является центром описанной или вписанной
окружности основания пирамиды.
- Если все боковые ребра пирамиды составляют с
плоскостью основания равные углы, то:
а) основание высоты пирамиды совпадает с
центром окружности, описанной около основания
пирамиды;б) все боковые ребра пирамиды равны между собой.
- Если основание высоты пирамиды совпадает с
центром окружности, описанной около ее
основания, то:
а) все боковые ребра пирамиды образуют с
плоскостью основания равные углы;в) все боковые ребра пирамиды равны между собой.
- Если все боковые ребра пирамиды равны, то:
а) основание высоты пирамиды совпадает с
центром окружности, описанной около основания
пирамиды;б) все боковые ребра пирамиды составляют с
плоскостью ее основания равные между собой углы.
- Если высота пирамиды пересекает ее основание и
все боковые грани пирамиды образуют с плоскостью
основания равные двугранные углы, то основание
высоты пирамиды совпадает с центром окружности,
вписанной в ее основание. - Если вершина пирамиды проектируется в центр
окружности, вписанной в основание пирамиды, то
боковые грани пирамиды образуют с плоскостью
основания равные двугранные углы. - Если у треугольной пирамиды все боковые ребра
равны, а в основании лежит прямоугольный
треугольник, то грань, содержащая его гипотенузу,
перпендикулярна основанию. Основание высоты
данной пирамиды является середина гипотенузы.
Теоремы о пирамидах, в которых одна или две
боковые грани перпендикулярны плоскости
основания.
- Если пирамида содержит ровно одну боковую
грань, которая перпендикулярна плоскости
основания, то высота такой пирамиды лежит в этой
боковой грани. - Если пирамида содержит две смежные боковые
грани, перпендикулярные плоскости основания, то
высотой такой пирамиды является боковое ребро,
общее для этих граней. - Если в пирамиде две не смежные боковые грани
перпендикулярны плоскости основания, то высота
такой пирамиды лежит на прямой пересечения
плоскостей этих граней. - Если боковое ребро пирамиды перпендикулярно
основанию, то и боковые грани, содержащие это
ребро, перпендикулярны основанию. - Если в четырехугольной пирамиде в основании
ромб, и две смежные боковые грани
перпендикулярны основанию, то боковые грани
данной пирамиды – две пары равных треугольников.
Задачи для решения.
Задания из книги “Самостоятельные и
контрольные работы по геометрии для 11-го класса”
Ершовой А.П., Голобородько В.В.
Пирамиды, в которых основание высоты является
центром описанной или вписанной окружности
основания пирамиды.
Вариант А.
- Основание пирамиды SABCD – прямоугольник АВСД со
сторонами 6 и 8 см. Все боковые ребра пирамиды
равны 13 см.
а) Опишите построение высоты пирамиды SO.
б) Докажите равенство отрезков АО, ВО, СО и ДО.
в) Обоснуйте положение точки О в прямоугольнике
АВСД и найдите длину высоты SO.
- Основание пирамиды – равнобедренный
треугольник с основанием а и углом при вершине . Все
двугранные углы при основании пирамиды равны .
а) Опишите построение высоты пирамиды, высот
боковых граней и их проекций на плоскость
основания. Обоснуйте двугранные углы при
основании пирамиды.б) обоснуйте положение основания высоты
пирамиды в данном равнобедренном треугольнике.в) Найдите высоту пирамиды.
Вариант Б.
- Основание пирамиды – равнобедренный
треугольник с боковой стороной b и углом при
основании .
Все боковые ребра пирамиды наклонены к плоскости
основания под углом .
а) Обоснуйте положение основания высоты
пирамиды в данном равнобедренном треугольнике.б) Определите, при каких значениях ? высота
пирамиды будет находиться вне пирамиды.в) Найдите высоту пирамиды.
- Основание пирамиды – ромб с большей диагональю
d и острым углом . Все двугранные углы при основании
пирамиды равны .
а) Обоснуйте данные двугранные углы и положение
основания высоты пирамиды в ромбе.б) Найдите высоту пирамиды.
в) Двумя способами – путем вычисления площадей
боковых граней и с помощью теоремы об
ортогональной проекции многоугольника –
найдите боковую поверхность пирамиды. Сравните
полученные результаты.
Вариант В.
- Основание пирамиды – треугольник с углами и . Точка высоты
пирамиды, удаленная от плоскости основания на
расстояние d, равноудалена от концов бокового
ребра. Все боковые ребра пирамиды наклонены к
плоскости основания под углом .
а) Обоснуйте положение основания высоты
пирамиды.б) При каких условиях высота пирамиды лежит
внутри пирамиды?в) Найдите высоту пирамиды.
г) Найдите площадь основания пирамиды.
- В основании пирамиды лежит равнобокая трапеция
с острым углом . Высота пирамиды равна Н, а все
двугранные углы при основании равны .
а) обоснуйте положение основания высоты
пирамиды.б) Найдите высоту трапеции, лежащей в основании
пирамиды.
в) Не вычисляя площадей боковых граней, найдите
боковую поверхность пирамиды.
Пирамиды, в которых одна или две боковые грани
перпендикулярны плоскости основания.
Вариант А.
- Основание пирамиды – равнобедренный
треугольник с боковой стороной b и углом при
вершине .
Боковые грани пирамиды, содержащие стороны
данного угла перпендикулярны плоскости
основания, а третья боковая грань наклонена к ней
под углом .
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте угол .
в) Найдите площадь третьей боковой грани.
г) Найдите боковую поверхность пирамиды.
- Основание пирамиды – правильный треугольник со
стороной а. Одна из боковых граней пирамиды
перпендикулярна плоскости основания, а две
другие – наклонены к ней под углом .
а) Из вершины пирамиды в плоскости грани,
перпендикулярной основанию, проведите
перпендикуляр к ребру основания и обоснуйте,
почему он будет высотой пирамиды.б) Обоснуйте углы наклона, равные .
в) Докажите, что основание высоты пирамиды
равноудалено от двух сторон правильного
треугольника, и обоснуйте положение основания
высоты на стороне правильного треугольника.г) Найдите боковую поверхность пирамиды.
Вариант Б.
- Основание пирамиды – квадрат со стороной а, две
смежные боковые грани пирамиды перпендикулярны
плоскости основания, а две другие – наклонены к
ней под углом .
а ) Обоснуйте положение высоты пирамиды.
б ) Обоснуйте углы, равные .
в ) Докажите, что боковые грани пирамиды попарно
равны.г ) Найдите боковую поверхность пирамиды.
- Основание пирамиды – прямоугольный
треугольник с гипотенузой с и острым углом . Боковая грань,
содержащая катет, противолежащий данному углу ,
перпендикулярна плоскости основания, а две
другие грани наклонены к ней под углом .
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте положение основания высоты
пирамиды.в) Найдите высоту пирамиды.
г) Найдите боковую поверхность пирамиды.
Вариант В.
- Основание пирамиды – ромб с тупым углом . Две боковые
грани, содержащие стороны этого угла,
перпендикулярны плоскости основания, а две
другие – наклонены к ней под углом . Высота пирамиды равна Н.
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте углы, равные .
в) Найдите боковую поверхность пирамиды.
- Основание пирамиды – прямоугольная трапеция с
острым углом ? и прилежащей к нему боковой
стороной .
Боковая грань, содержащая большее основание
трапеции, перпендикулярна плоскости основания, а
три другие грани наклонены к ней под углом .
а ) Обоснуйте положение высоты пирамиды.
б) Обоснуйте положение основания высоты
пирамиды.в) Найдите площадь основания пирамиды.
г) Найдите боковую поверхность пирамиды.
Пирамиды, в которых заданы расстояния между
точками и элементами пирамиды.
Вариант А.
- В правильной треугольной пирамиде боковое
ребро наклонено к плоскости основания под углом . Расстояние от
середины высоты пирамиды до середины бокового
ребра равно d.
а ) Найдите высоту пирамиды.
б ) Найдите площадь основания пирамиды.
- В правильной четырехугольной пирамиде
двугранный угол при основании равен . Расстояние от
середины высоты пирамиды до ее апофемы равно l .
Найдите боковую поверхность пирамиды.
Вариант Б.
- В правильной четырехугольной пирамиде
двугранный угол при основании равен . Расстояние от
основания высоты пирамиды до середины апофемы
равно l . Найдите полную поверхность пирамиды. - Основание пирамиды – равнобедренный
треугольник с углом при вершине. Все боковые ребра
пирамиды наклонены к плоскости основания под
углом . Биссектриса этого
угла пересекает высоту пирамиды в точке,
удаленной от бокового ребра на расстояние d.
а ) Найдите высоту пирамиды.
б ) Найдите площадь основания пирамиды.
Вариант В.
- Основание пирамиды – равнобедренный
треугольник с углом при основании . Все двугранные углы
при основании пирамиды равны . Отрезок, соединяющий точки пересечения
медиан боковых граней, содержащих боковые
стороны треугольника, равен m. Найдите боковую
поверхность пирамиды. - Основание пирамиды – прямоугольный
треугольник с острым углом .
Боковые грани пирамиды, содержащие катеты
треугольника, перпендикулярны плоскости
основания, а третья боковая грань наклонена к ней
под углом . Расстояние от
основания высоты пирамиды до этой грани равно l.
Найдите боковую поверхность пирамиды.
Указанный в статье перечень задач может быть
расширен Вами и вашими учениками.
Желаем успеха!
Высота правильной треугольной пирамиды.
Основание правильной пирамиды представляет собой правильный многоугольник. Так как мы имеем дело с треугольной пирамидой, то её основанием будет равносторонний треугольник.
Чтобы найти высоту пирамиды SO, достаточно вспомнить, что:
1) AO = BO = CO = R = a√3 / 3. (св-во равностороннего треугольника).
2) SB = AB. (боковое ребро равно длине стороны основания).
По теореме Пифагора высота SO равна:
SO = √(SB² – OB²) = √(a² – a²/3) = √(a²(1 – 1/3)) = √(a² * (2/3) = a√(2/3).
Итак, высота правильной треугольной пирамиды (H) равна произведению длины ребра (a) на корень из 2/3:
Высоту пирамиды также можно найти из формулы объёма:
V = 1 / 3 Sосн * H.
Так как основание пирамиды – это равносторонний треугольник, то Sосн = a² * √3 / 4.
Отсюда V = a² * √3 * H / 12 = a² * H / 4√3.
Остаётся выразить высоту:
V * 4√3 = a² * H.
H = V * (4√3 / a²).
Высота правильной треугольной пирамиды (H) равна дроби – в числителе произведение объёма пирамиды (V) на 4√3, в знаменателе – квадрат ребра (a).
Если же в условии задачи уже известна площадь основания, то высоту найти ещё проще:
H = 3 * V / Sосн.
Пример
Сторона основания правильной треугольной пирамиды равна 4 см, объём равен 10√3.
Нужно найти высоту пирамиды.
Воспользуемся вышеприведённой формулой:
H = V * (4√3 / a²) = 10√3 * 4√3 / 16 = 120 / 16 = 7,5 см.
Главная » Образование » Школа » Как найти высоту в пирамиде: треугольной, четырехугольной, правильной
Как найти высоту в пирамиде: треугольной, четырехугольной, правильной
35881 Просмотров 0
Высота основания в пирамиде – тема, на которую часто попадаются задачи на экзаменах и в старших классах. Решать такие задачи просто, если понимать принцип решения и знать формулы.
В нашей статье, вы без лишних формул и теории сможете понять, как решать задачи на нахождение высоты в пирамиде. Обратите внимание, что в разделе «формулы» отсутствуют все формулы правильной пирамиды, так как наша цель – научить решать задачи на нахождение высоты.
Содержание этой статьи:
- Теория
- Часто задаваемые вопросы
- Типичные ошибки на ЕГЭ
- Полезные советы
Теория
Это интересно: Как оформлять реферат в школе по ГОСТу + образец титульного листа 2019
Правильная пирамида
Правильная пирамида имеет в основании многоугольник, а высота проходит через центр основания. Боковые грани – равнобедренные треугольники. Напомним, что в равнобедренном треугольнике две стороны равны, следовательно, боковые ребра в правильной пирамиде тоже равны. Многоугольник в основании правильный, т.е. его стороны равны.
Для решения задач понадобится знать теоремы равнобедренного треугольника:
Равнобедренный треугольник
Основные свойства
1В правильную пирамиду можно вписать и описать сферу, так как при пересечении диагоналей, основание делится на равные части. Сферу нельзя вписать в любую фигуру.
2Площадь боковой поверхности – половина произведения периметра основания на апофему. Апофема есть на каждой грани, а не только на одной.
Пирамида
Четырехугольная пирамида
В основании – многоугольник; остальные грани – треугольники, соединяющиеся в общей вершине.
Четырехугольная пирамида
Треугольная пирамида
Читайте также: Как решать задачи по математике 5 класс
В качестве основания можно рассматривать любую грань. Вся фигура состоит из треугольников.
Треугольная пирамида
Необходимые знания для нахождения высоты
1Нужно понимать, что из себя представляют треугольники: свойства, формулы, определение. Большинство задач решается через треугольники (боковые грани).
2Понимать, что такое сечение и как оно влияет на геометрическую фигуру.
3Что такое правильные многоугольники: виды, свойства, формулы.
Когда теория закреплена, можно переходить к формулам.
Формулы для нахождения высоты
Формулы
Запомните, что маленькая буква h – это апофема, а большая H – высота.
В некоторых задачах, высоту можно найти через объем:
Объем пирамиды
ВИДЕО: Примеры решения задач
Нахождение высоты в правильной пирамиде
Нахождение высоты в правильной пирамиде
Ниже будут представлены текстовые решения часто встречающихся задач.
Треугольная пирамида
Треугольная пирамида
Задача 1
В правильной треугольной пирамиде DBAC с вершиной D биссектрисы треугольника BAC пересекаются в точке N. Площадь треугольника BAC равна 4; объем пирамиды равен 12. Найдите длину отрезка DN.
DN – высота, следовательно, объем фигуры можно выразить по формуле:
DN = 3V/S основания = 3*12/4 = 9
Ответ: 9
Задача 2
DBAC – медианы основания BAC. Они пересекаются в точке N. Площадь ΔBAC равна 18, V = 20; найдите высоту.
Пользуясь формулой объема, получается:
DN = 3V/S ΔBAC = 3*36/18 = 108/18 = 6
Ответ: 6
Четырехугольная пирамида
Четырехугольная пирамида
Задача 1
Найдите высоту пирамиды, если ML = 10, а DC = 12. В основании квадрат.
ML – это апофема, сторона нам известна, следовательно, можно применить формулу для нахождения OL:
OL = ½*12 = 6
Известно, что MOL – прямоугольный угол. Применим теорему Пифагора:
MO ² = √ML ² — √OL ² = √100- √36 = √64
MO = 8
Задача 2
Известно, что диагональ AC = 20, ML = 10, а сторона DC = 12; найдите MO правильной четырехугольной пирамиды.
Найдем OL
В основании фигуры – квадрат, стороны и углы которого равны. Значит, половина диагонали = 10. Рассмотрим треугольник LOC, он – прямоугольный. Из исходных данный ясно, что LC = 6 (в равнобедренном треугольнике, высота, проведенная из вершины, делит основание на 2 равные части – это свойство р/б треугольника).
Пользуясь теоремой Пифагора, находим OL:
OL² = √OC² — √LC² = √100 – √36 = √64 = 8
Задача 3
Ищем MO
Пользуясь той же теоремой, находим высоту:
MO² = √ML² – √OL² = 100 – 64 = 36
Ответ: 36
Задача 4
Известно, что в основании ABCD, AB=CD=BC=AD. Треугольник DMC имеет площадь 36см, DC = 4, OL = 6. Определите тип фигуры и найдите высоту.
Исходя из информации про основание, мы сделали вывод, что перед нами правильная пирамида – стороны основания равны. Следовательно, перед нами четырехугольная правильная пирамида.
Из первого вывода следует, что боковые грани – равнобедренные треугольники, а высота и медиана этих треугольников – апофема. Пользуясь формулами, найдем высоту.
Площадь равнобедренного треугольника
36 = ½ * 4 *h
36 = 2h
H = 18
Теперь у нас есть апофема, а OL нам было уже давно. MOL – прямоугольный треугольник, 2 стороны которого, мы уже знаем. Следовательно, мы можем посчитать высоту.
MO = ML – OL = 18 – 6 = 12
Ответ: 12
Часто задаваемые вопросы
1Как понять, что пирамида правильная, если в условии это не указано?
Часто в задании не указывают какой тип фигуры, чтобы человек сам догадался и применил нужные формулы. Понять какой тип фигуры легко – начните решение задачи с рассмотрения основания и заучивания свойств фигуры.
Зная определения и свойства, определить тип фигуры очень легко.
2Могут ли быть указаны в задании лишние данные?
Чтобы решать задачи, человек должен включать логику, а не подставлять исходные числа в знакомые формулы. С этим расчетом, в некоторых задачах умышленно добавляют лишние данные, которые могут даже не использоваться при решении. Чаще такое встречается в задачах на ЕГЭ.
3Обязательно ли оформлять высоту большой буквой H? Нужно ли выделять апофему?
Для удобства, человек может не выделять отдельно высоту, а сразу писать, например, BE (если B – вершина, а E – основание). То же с апофемой. Важно, чтобы сам человек осознавал, что это за линия и как ее использовать в решении.
4Как можно быстро изучить стереометрию?
Ключ к пониманию стереометрии – умение визуализировать объекты в пространстве. Если в дополнение к этому умению, знать формулы, свойства и теорию – задачи будут решаться быстро и безошибочно.
4Как искать высоту, если известен объем?
Если выразить высоту через формулу объема, то получится следующее:
H = (3*V)/ S;
Пример: объем пирамиды равен 70 куб. см., а площадь боковых граней – 30см²
H = 3*70/30 = 7см
Типичные ошибки на ЕГЭ
Незнание темы
Когда человек не знает, где находится апофема и что для нее есть определенные формулы, задачу может и можно решить, но тогда необходимо выполнить в 2 раза большей действий.То же обстоит с теорией – если человек не знает свойства многоугольников, то и решить задание он не сможет. Для того, чтобы понимать геометрию, не нужно обладать особенными способностями. Даже при отсутствии способностей к математике, зная теорию, вы будете понимать геометрию.
Отсутствие проверки
Хотите потерять балл на ЕГЭ? – не перепроверяйте решения. Часто, задания решаются хаотично и на листе бумаге разные решения намешаны в кучу. Когда приходит время написать ответ, человек по невнимательности либо забывает выполнить последнее действие, либо вписывает не тот ответ.Решайте задачи по действиям, проставляйте пункты и делайте проверку ответа, каким бы он ни был.
Задачи под копирку
Решая сотни аналогичных задач, человек настолько привыкает, что теряет бдительность, игнорируя многие исходные данные. Придя на экзамен, в задании может быть вопрос с подвохом и человек ошибается в теме, которую он знал идеально. Помните, к каждой задаче нужен индивидуальный подход, как бы хорошо вы в ней не разбирались.
Запись
Структурируйте решения, прописывая каждое действие и каждый полученный вывод. Это необходимо для того, чтобы не запутаться. Решая задания хаотично, можно легко записать неправильное число, не тот ответ, подставить не те числа, и задача уже решена неверно. Обидно получать низкий балл из-за невнимательности.
Подсчеты в уме
На экзамене все нервничают и переживают, а потому зарабатывают баллы ниже, чем планировалось изначально. Когда человек нервничает, уровень концентрации и внимания резко снижается. Он может упустить что-то важное, не поставить запятую или запутаться в ходе размышлений.Считая примеры в столбик, вы обезопасите себя от глупых ошибок.
Незнание структуры экзамена
Очень обидные ошибки допускают люди, пересдающие ЕГЭ через несколько лет, либо обучающиеся в экстернате. Как правило, они плохо знакомы с процедурой заполнения бланков и внесения ответов.Заполнение бланков для части А и С – различно. Внимательно посмотрите, как необходимо их заполнять, так как неправильное внесение ответа (например, запятая и число в одной клетке) будет приравниваться к ошибке и ответ будет не засчитан.Также, если вы самостоятельно готовитесь к экзамену, учитесь рассчитывать время на каждое задание.
Поспешные решения
В случае, если ответ был записан с ошибкой, его можно внести в графе ниже, заменив неправильный ответ на правильный. Однако, клетки для внесения результатов ограничены в количестве, а заданий в общей сложности 19!Несколько раз перепроверьте ответы, прежде чем внести их в бланк ответов.
Незнание степеней числа
В теореме Пифагора будут использованы не только маленькие числа (до 10). В профильной математике, могут быть крупные числа, которые тяжело посчитать в столбик.Также, степени числа могут понадобиться для других заданий. Выучите значение чисел в квадрате и кубе от 1 до 20. Помните, что на профильном экзамене, пользовать методической таблицей нельзя!
Полезные советы
- Если в задаче указан объем – ищите высоту через него.
- Делите равнобедренные треугольники на прямоугольные – так быстрее и проще решить задачу.
- Учите квадратные корни чисел – так, вы будете быстрее справляться с теоремой Пифагора.
- Не кидайтесь сразу к решению – изучите исходные данные и сделайте правильные выводы.
- Если в заданиях получаются слишком крупные числа (от 1000), то перепроверьте решение – вероятно, вы допустили ошибку. В заданиях в учебнике и на экзамене практически не используются крупные числа.
6.5 Total Score
Чтобы успешно решить задачу для нахождения высоты пирамиды, достаточно знать теорию и формулы. Добавив к своим знаниям немного практики и внимательности, вы легко и быстро будете решать подобные задачи!
Если вы не согласны с рейтингом статьи, то просто поставьте свои оценки и аргументируйте их в комментариях. Ваше мнение очень важно для наших читателей. Спасибо!
Достоверность информации
8.5
Актуальность информации
7.5
ПЛЮСЫ
- Благодаря доступной информации можно легко научиться решать задачи по геометрии
МИНУСЫ
- Необходимы знания математики
Добавить отзыв