Как найти вес груза подвешенного к пружине

Задачи на закон Гука

(F=kx ) .

(F)- Сила, растягивающая или сжимающая пружину

(k)- коэффициент жесткости пружины

(x)- удлинение пружины (насколько растянулась пружина)


Репетитор по физике

+7 916 478 10 32

Задача 1. ( Закон Гука )

Пружина, с коэффициентом жесткости (k=100 Н/м ), растянулась на (x=0,1 м) после приложения к свободному концу
этой пружины силы (F.)

Найти силу (F), приложенную к этой пружине.

Показать ответ
Показать решение
Видеорешение



Задача 2. ( Закон Гука )

К пружине с коэффициентом жесткости (k=100 Н/м ) была приложена сила (F) , вследствии чего она удлиннилась на 10 сантиметров.
Найти силу (F), вызвавшую это удлинение.


Показать ответ
Показать решение
Видеорешение


Задача 3. ( Закон Гука )

Сила (F=50Н ) растягивает пружину на (x=0,5 м.)
Найти коэффициент жесткости этой пружины.

Показать ответ
Показать решение
Видеорешение


Задача 4. ( Закон Гука )

Найти коэффициент жесткости пружины, если сила (F=200Н), может растянуть эту пружину на 5 сантиметров.


Показать ответ
Показать решение
Видеорешение


Задача 5. ( Закон Гука )

На сколько растянется пружина с коэффициентом жесткости ( k=25Н/м ), если к ее будет растягивать сила
(F=10Н )

Показать ответ
Показать решение
Видеорешение


Задача 6. ( Закон Гука )

Найти растяжение пружины жесткостью ( k=600Н/м ), если к ее свободному концу приложить силу (F=30Н .)
Ответ дать в сантиметрах.

Показать ответ
Показать решение
Видеорешение


Задача 7. Приведено решение для тех, кому тяжело понять

Один конец пружины жесткостью ( k=400Н/м ) прикрепляют к потолку, а к другому ее концу
подвешивают груз массой (m=1 кг .)

На сколько сантиметров удлиннится пружина?
(g=10 Н/кг )

Закон Гука

Показать ответ
Показать решение
Видеорешение


Задача 7. Приведено решение для тех, кто хочет научиться решать сложные задачи

Один конец пружины жесткостью ( k=400Н/м ) прикрепляют к потолку, а к другому ее концу
подвешивают груз массой (m=1 кг .)

На сколько сантиметров удлиннится пружина?
(g=10 Н/кг .)

Закон Гука

Показать ответ
Показать решение
Видеорешение



Задача 8. Приведено решение для тех, кому тяжело понять

К свободному концу пружины жесткостью ( k=800Н/м ) прикрепляют груз массой (m=4 кг .)
Найти растяжение пружины.
Дать ответ в сантиметрах. (g=10 Н/кг . )

Закон Гука

Показать ответ
Показать решение
Видеорешение


Задача 8. Приведено решение для тех, кто хочет научиться решать сложные задачи

Один конец пружины жесткостью ( k=800Н/м ) прикрепляют к потолку, а к другому ее концу
подвешивают груз массой (m=4 кг .)

На сколько сантиметров удлиннится пружина?
Дать ответ в сантиметрах. (g=10 Н/кг .)

Закон Гука

Показать ответ
Показать решение
Видеорешение



Задача 9. Приведено решение для тех, кому тяжело понять

К пружине, закрепленной у потолка, подвешивают груз, при этом пружина растягивается на (x=0,08 м.)
Коэффициент жесткости пружины ( k=500Н/м ).
Найти массу груза, подвешенного к пружине.

(g=10 Н/кг . )

Закон Гука

Показать ответ
Показать решение
Видеорешение


Задача 9. Приведено решение для тех, кто хочет научиться решать сложные задачи

К пружине, закрепленной у потолка, подвешивают груз, при этом пружина растягивается на (x=0,08 м.)
Коэффициент жесткости пружины ( k=500Н/м ).
Найти массу груза, подвешенного к пружине.

(g=10 Н/кг . )

Закон Гука

Показать ответ
Показать решение
Видеорешение



Задача 10. Приведено решение для тех, кому тяжело понять

К пружине, закрепленной у потолка, подвешивают груз, при этом пружина растягивается на (x=0,01 м.)
Коэффициент жесткости пружины ( k=150Н/м ).
Найти массу груза, подвешенного к пружине.Дать ответ в граммах.

(g=10 Н/кг . )

Закон Гука

Показать ответ
Показать решение
Видеорешение


Задача 10. Приведено решение для тех, кто хочет научиться решать сложные задачи

К пружине, закрепленной у потолка, подвешивают груз, при этом пружина растягивается на (x=0,08 м.)
Коэффициент жесткости пружины ( k=500Н/м ).
Найти массу груза, подвешенного к пружине. Дать ответ в граммах.

(g=10 Н/кг . )

Закон Гука

Показать ответ
Показать решение
Видеорешение




Закон Гука

Задача 11. ( Закон Гука )

Найти коэффициент жесткости пружины, если груз массой (m=5 кг ) растягивает ее на 2 сантиметра.


Показать ответ
Показать решение
Видеорешение


Сила упругости широко используется в технике. Эта сила возникает в упругих телах при их деформации. Деформация – это изменение формы тела, под действием приложенных сил.

Виды деформации

Деформация – это изменение формы, или размеров тела.

Есть несколько видов деформации:

  • сдвиг;
  • кручение;
  • изгиб;
  • сжатие/растяжение;

Деформация сдвига возникает, когда одни части тела сдвигаются относительно других его частей. Если подействовать на верхнюю часть картонного ящика, наполненного различными предметами, горизонтальной силой, то вызовем сдвиг верхней части ящика относительно его нижней части.

Сжатие или растяжение легко представить на примере прямоугольного куска тонкой резины. Такая деформация используется, к примеру, в резинках для одежды.

Примеры изгиба и кручения показаны на рисунке 1. Пластиковая линейка, деформированная изгибом, представлена на рис. 1а, а на рисунке 1б – эта же линейка, деформируемая кручением.

Деформация изгиба – а) и кручения – б)

Рис. 1. пластиковая линейка, деформированная изгибом – а) и кручением – б)

В деформируемом теле возникают силы, имеющие электромагнитную природу и препятствующие деформации.

Растяжение пружины

Рассмотрим подробнее деформацию растяжения на примере пружины.

Давайте прикрепим пружину к некоторой поверхности (рис. 2). На рисунке слева указана начальная длина (L_{0}) пружины.

Сравнивая длину свободной пружины и длину пружины нагруженной, можно найти удлинение

Рис. 2. Сравнивая длину свободной пружины с длиной нагруженной, можно найти ее удлинение

Подвесим теперь к пружине груз. Пружина будет иметь длину (L), указанную на рисунке справа.

Сравним длину нагруженной пружины с длиной свободно висящей пружины.

[ large L_{0} + Delta L = L ]

Найдем разницу (разность) между длинами свободно висящей пружины и пружины с грузом. Вычтем для этого из обеих частей этого уравнения величину (L_{0}).

[ large boxed{ Delta L = L — L_{0} }]

( L_{0} left(text{м} right) )  – начальная длина пружины;

( L left(text{м} right) )  – конечная длина растянутой пружины;

( Delta L left(text{м} right) )  – кусочек длины, на который растянули пружину;

Величину ( Delta L ) называют удлинением пружины.

Иногда рассчитывают относительное удлинение. Это относительное удлинение часто выражают десятичной дробью. Или дробью, в знаменателе которой находится число 100 — такую дробь называют процентом.

Примечание: Отношение – это дробь. Относительное – значит, дробное.

[ large boxed{ frac{Delta L }{ L_{0}} = frac{ L — L_{0}}{L_{0} } = varepsilon } ]

( varepsilon ) – это отношение (доля) растяжения пружины к ее начальной длине. Измеряют в процентах и называют относительным удлинением.

Расчет силы упругости

Если растягивать пружину вручную, мы можем заметить: чем больше мы растягиваем пружину, тем сильнее она сопротивляется.

Значит, с удлинением пружины связана сила, которая сопротивляется этому удлинению.

Конечно, если пружина окажется достаточно упругой, чтобы сопротивляться. Например, разноцветная пружина-игрушка (рис. 3), изготовленная из пластмассы, сопротивляться растяжению, увеличивающему ее длину в два раза, практически не будет.

Пластмассовая пружина-игрушка слабо сопротивляется растяжению

Разноцветная пластмассовая пружина-игрушка растяжению сопротивляется слабо

Закон Гука

Английский физик Роберт Гук, живший во второй половине 17-го века, установил, что сила сопротивления пружины и ее удлинение связаны прямой пропорциональностью. Силу, с которой пружина сопротивляется деформации, он назвал ( F_{text{упр}} ) силой упругости.

[ large boxed{ F_{text{упр}} = k cdot Delta L }]

Эту формулу назвали законом упругости Гука.

( F_{text{упр}} left( H right) ) – сила упругости;

( Delta L left(text{м} right) )  – удлинение пружины;

( displaystyle k left(frac{H}{text{м}} right) )  – коэффициент жесткости (упругости).

Какие деформации называют малыми

Закон Гука применяют для малых удлинений (деформаций).

Если убрать деформирующую силу и тело вернется к первоначальной форме (размерам), то деформации называют малыми.

Если же тело к первоначальной форме не вернется – малыми деформации назвать не получится.

Как рассчитать коэффициент жесткости

Груз, прикрепленный к концу пружины, растягивает ее (рис. 4). Измерим удлинение пружины и составим силовое уравнение для проекции сил на вертикальную ось. Вес груза направлен против оси, а сила упругости, противодействующая ему – по оси.

Сила упругости равна весу груза, подвешенного на пружине

Рис. 4. Вес подвешенного на пружине груза уравновешивается силой упругости

Так как силы взаимно компенсируются, в правой части уравнения находится ноль.

[ large F_{text{упр}} — m cdot g = 0 ]

Подставим в это уравнение выражение для силы упругости

[ large k cdot Delta L — m cdot g = 0 ]

Прибавим к обеим частям вес груза и разделим на измеренное изменение длины (Delta L ) пружины. Получим выражение для коэффициента жесткости:

[ large boxed{ k = frac{ m cdot g }{Delta L} }]

(g) – ускорение свободного падения, оно связано с силой тяжести.

Соединяем две одинаковые пружины

В задачниках по физике и пособиях для подготовки к ЕГЭ встречаются задачи, в которых одинаковые пружины соединяют последовательно, либо параллельно.

Параллельное соединение пружин

На рисунке 5а представлена свободно висящая пружина. Нагрузим ее (рис. 5б), она растянется на величину (Delta L). Соединим две такие пружины параллельно и подвесим груз в середине перекладины (рис. 5в). Из рисунка видно, что конструкция из двух параллельных пружин под действием груза растянется меньше, нежели единственная такая пружина.

Деформация двух одинаковых пружин, соединенных параллельно, меньше деформации единственной пружины

Рис. 5. Две пружины, соединенные параллельно, деформируются меньше одной такой пружины

Сравним растяжение двух одинаковых пружин, соединенных параллельно, с растяжением одной пружины. К пружинам подвешиваем один груз весом (mg).

Одна пружина:

[ large k_{1} cdot Delta L = m cdot g ]

Две параллельные пружины:

[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= m cdot g ]

Так как правые части уравнений совпадают, левые части тоже будут равны:

[ large k_{text{параллел}} cdot Delta L cdot frac{1}{2}= k_{1} cdot Delta L ]

Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:

[ large k_{text{параллел}} cdot frac{1}{2}= k_{1} ]

Умножим обе части полученного уравнения на число 2:

[ large boxed{ k_{text{параллел}} = 2k_{1} } ]

Коэффициент жесткости (k_{text{параллел}}) двух пружин, соединенных параллельно, увеличился вдвое, в сравнении с одной такой пружиной

Последовательное соединение пружин

Рисунок 6а иллюстрирует свободно висящую пружину. Нагруженная пружина (рис. 6б), растянута на длину (Delta L). Теперь возьмем две такие пружины и соединим их последовательно. Подвесим груз к этим (рис. 6в) пружинам.

Практика показывает, что конструкция из двух последовательно соединенных пружин под действием груза растянется больше единственной пружины.

На каждую пружину в цепочке действует вес груза. Под действием веса пружина растягивается и передает далее по цепочке этот вес без изменений. Он растягивает следующую пружину. А та, в свою очередь, растягивается на такую же величину (Delta L).

Примечание: Под действием силы пружина растягивается и передает эту растягивающую силу далее по цепочке без изменений

Общая деформация двух одинаковых пружин, соединенных последовательно, больше деформации единственной пружины

Рис. 6. Система, состоящая из двух одинаковых пружин, соединенных последовательно, деформируются больше одной пружины

Сравним растяжение двух одинаковых последовательно соединенных пружин и растяжение единственной пружины. В обоих случаях к пружинам подвешиваем одинаковый груз весом (mg).

Одна пружина:

[ large k_{1} cdot Delta L = m cdot g ]

Две последовательные пружины:

[ large k_{text{послед}} cdot Delta L cdot 2 = m cdot g ]

Так как правые части уравнений совпадают, левые части тоже будут равны:

[ large k_{text{послед}} cdot Delta L cdot 2 = k_{1} cdot Delta L ]

Обе части уравнения содержат величину (Delta L ). Разделим обе части уравнения на нее:

[ large k_{text{послед}} cdot 2 = k_{1} ]

Разделим обе части полученного уравнения на число 2:

[ large boxed{ k_{text{послед}} = frac{k_{1}}{2} } ]

Коэффициент жесткости (k_{text{послед}}) двух пружин, соединенных последовательно, уменьшится вдвое, в сравнении с одной такой пружиной

Потенциальная энергия сжатой или растянутой пружины

Пружина сжатая (левая часть рис. 7), или растянутая (правая часть рис. 7) на длину (Delta L ) обладает потенциальной возможностью вернуться в первоначальное состояние и при этом совершить работу,  например, по перемещению груза. В таких случаях физики говорят, что пружина обладает потенциальной энергией.

Сжатая или растянутая пружина обладает потенциальной энергией

Рис. 7. Деформированная — сжатая или растянутая пружина обладает потенциальной энергией

Эта энергия зависит от коэффициента жесткости пружины и от ее удлинения (или укорочения при сжатии).

Чем больше жесткость (упругость) пружины, тем больше ее потенциальная энергия. Увеличив удлинение пружины получим повышение ее потенциальной энергии по квадратичному закону:

[ large boxed{ E_{p} = frac{k}{2} cdot  left( Delta L right)^{2} }]

( E_{p} left( text{Дж} right)) – потенциальная энергия сжатой или растянутой пружины;

( Delta L left(text{м} right) )  – удлинение пружины;

( displaystyle k left(frac{H}{text{м}} right) )  – коэффициент жесткости (упругости) пружины.

Выводы

  1. Упругие тела – такие, которые сопротивляются деформации;
  2. Во время деформации в упругих телах возникает сила, она препятствует деформации, ее называют силой упругости;
  3. Деформация – изменение формы, или размеров тела;
  4. Есть несколько видов деформации: изгиб, кручение, сдвиг, растяжение/сжатие;
  5. Удлинение пружины – это разность ее конечной и начальной длин;
  6. Сжатая или растянутая пружина обладает потенциальной энергией (вообще, любое упруго деформированное тело обладает потенциальной энергией);
  7. Система, состоящая из нескольких одинаковых пружин, будет иметь коэффициент жесткости, отличный от жесткости единственной пружины;
  8. Если пружины соединяют параллельно – коэффициент жесткости системы увеличивается;
  9. А если соединить пружины последовательно – коэффициент жесткости системы уменьшится.

Дано ответов: 2

Fупр=Fтяж

Fупр=40*0,08=3,2

m=F/g

m=3,2/9,8=0,326 кг=326 грамм








rusfela_zn


29 Май, 20


x= 8см= 0.08м

Fупр= 0.08×40=3.2Н

m= 3.2/10= 0.32кг= 320г








Mamedov12_zn


29 Май, 20


Определить массу тела, подвешенного на пружине жесткостью 500 н / м, если пружина растянулась на 5м Записать : дано, решение Желательно фото!

На этой странице сайта, в категории Физика размещен ответ на вопрос
Определить массу тела, подвешенного на пружине жесткостью 500 н / м, если пружина растянулась на 5м Записать : дано, решение Желательно фото?. По уровню сложности вопрос рассчитан на учащихся
10 – 11 классов. Чтобы получить дополнительную информацию по
интересующей теме, воспользуйтесь автоматическим поиском в этой же категории,
чтобы ознакомиться с ответами на похожие вопросы. В верхней части страницы
расположена кнопка, с помощью которой можно сформулировать новый вопрос,
который наиболее полно отвечает критериям поиска. Удобный интерфейс
позволяет обсудить интересующую тему с посетителями в комментариях.

artuomchumakov

artuomchumakov

+15

Решено

1 год назад

Физика

5 – 9 классы

Найти массу груза, подвешенного к пружине жёсткостью 50Н/м, если она Удленилась на 2см.ПОЖАЛУСТА!

Смотреть ответ

Ответ

5
(2 оценки)

1

o2784913
1 год назад

Светило науки – 1885 ответов – 5408 раз оказано помощи

Дано:

k=50 Н/м

x=0,02 м

g=10 H/кг

m-?

Решение:

F=kx

F=mg

mg=kx

m=kx/g

m=50*0,02/10=0,1 (кг)

(2 оценки)

Остались вопросы?

Задай вопрос

Найди нужный

Новые вопросы по предмету Математика

каково действующее значение напряжения в цепи переменного тока если максимальное значение 141

Человек стоит на весах и держит в руках связку воздушных шариков, наполненных гелием.1. Верёвка с шарами перекинута через блок.2. Человек прост …

В Ш-образную трубку налита вода, и во все три колена вставлены поршни А, В и С.Поршни могут легко скользить в трубках, но щели между трубками и …

На тренировке по перетягиванию каната команда тянет канат, привязанный к столбу, вбитому в землю.На соревнованиях эта же команда встретилась с …

Есть два рычага, которые могут свободно качаться.На каждом из них висят два бруска – один объёмом 1 литр, а второй – объёмом 2 литра, как показ …

Найти массу груза, подвешенного к пружине жёсткостью 50Н/м, если она Удленилась на 2см.ПОЖАЛУСТА!

Добавить комментарий