Из-за притяжения Земли все тела имеют вес.
Сила, с которой тело давит на опору или растягивает подвес, называют весом.
Рис. (1). Тело на опоре, тело на подвесе
Вес тела обозначают (P) и измеряют в ньютонах ((H)).
Вес неподвижного тела равен
P=mg
.
Формула определения веса неподвижного тела точно такая же, как и формула силы тяжести (см. предыдущую тему «Сила. Сила тяжести»). Однако вес тела и сила тяжести — не одно и то же.
Рис. (2). Сила тяжести и вес тела
Например, сила тяжести свободно падающего трёхкилограммового кирпича приблизительно составляет (30) (H), ((F = mg)), а его вес (P) в момент падения равен (0) (H) (так как кирпич находится в состоянии невесомости).
Если помещённое на опору или подвешенное тело неподвижно по отношению к Земле или находится в равномерном движении вверх или вниз, тогда вес тела не меняется.
Вес меняется, когда тело перемещается вверх или вниз с ускорением.
Во время поездки в лифте, если мы двигаемся с ускорением вверх, наш вес увеличивается, хотя сила тяжести остаётся неизменной.
Состояние невесомости — это состояние, когда тело не давит на опору и не растягивает подвес. Такое происходит, когда тело свободно падает под воздействием только силы гравитации.
Почему в космическом корабле есть состояние невесомости?
Потому что космический корабль, обращаясь вокруг Земли, находится в свободном падении (он всё время как бы падает на Землю, но пролетает мимо). Это происходит, когда космический корабль достигает 1-й космической скорости — 7,9 км/с.
Если скорость космического корабля была бы меньше, он упал бы на Землю, а если корабль достиг бы 2-й космической скорости — 11,2 км/с, он стал бы искусственным спутником Солнца.
Если скорость космического корабля достигнет 3-й космической скорости — 16,7 км/с, тогда корабль направится из Солнечной системы к другим звёздам.
К сожалению, до ближайшей звёздной системы Альфа Центавра нужно лететь (18000) лет, так как она находится на расстоянии (4) световых лет.
Интересно, что для того, чтобы достичь Луны, ракета должна развить скорость, равную (0,992) от второй космической скорости.
Источники:
Рис. 1. Тело на опоре, тело на подвесе. © ЯКласс.
Рис. 2. Сила тяжести и вес тела. © ЯКласс.
На предыдущих уроках мы узнали определение понятия силы, познакомились с силой тяжести и силой упругости.
Возможно, вы заметили, что рассматривая примеры и сравнивая тела с разными массами, мы избегали выражения “одно тело весит больше другого”. В повседневном жизни же мы часто используем подобные фразы, как и само слово “вес”.
На данном уроке мы узнаем о понятии веса со стороны физики.
Что такое вес?
Вспомним опыт, когда мы ставим тело (гирю) на опору (рисунок 1).
Мы уже говорили, что на гирю действует сила тяжести. Из-за этого начинает прогибаться доска — происходит ее деформация.
Возникает сила упругости, направленная вертикально вверх. Доска перестает прогибаться, когда сила тяжести и сила упругости уравновешивают друг друга.
Обратите внимание, что гиря и доска взаимодействуют друг с другом, но:
- Cила тяжести — это результат взаимодействия гири с Землей, а не с доской
- по всем изученным нами принципам должна быть еще одна сила, которая возникает со стороны гири
Подобная ситуация происходит в случае, если мы будем рассматривать тело, подвешенное на нити. Возникает некая сила, действующая на подвес.
Эта сила и называется весом тела.
Что называют весом тела?
Вес тела — это сила, с которой тело вследствие притяжения к Земле действует на опору или подвес.
Характеристики веса
- Вес тела — это векторная физическая величина и обозначается буквой $vec{P}$
- Модуль веса тела обозначается буквой $P$
- Вес тела численно равен силе тяжести, если тело и опора/подвес неподвижны или движутся прямолинейно и равномерно.
$P=F_{тяж}$
- Вес тела приложен к опоре или подвесу и направлен перпендикулярно опоре или вдоль подвеса (рисунки 2, 3).
Сравните с изображением силы тяжести (рисунок 4). Следует помнить, что сила тяжести приложена к самому телу.
Вес как частный случай силы упругости
Когда мы ставим тело на опору — оно деформирует ее. Когда мы подвешиваем тело — оно деформирует подвес. Не всегда эта деформация видна как в наших предыдущих опытах.
Когда вы кладёте учебник на парту, что происходит? Учебник (тело) деформирует парту (опору). Но такая деформация не видна невооруженным глазом. Тем не менее, она существует. Если бы деформация не происходила, то не возникала бы сила упругости. Тогда ничего бы не препятствовало движению вашего учебника к самому центру Земли.
Так, парта в свою очередь деформирует учебник, что тоже незаметно.
Давайте рассмотрим опыт, где деформация тела будет заметна. Взгляните на рисунок 5.
У нас есть штатив и резиновый шнур длиной $l_0$ (рисунок 5, а). На шнур мы подвешиваем небольшой мешок с песком (рисунок 5, б).
Шнур растягивается и останавливается, когда сила тяжести становится равна возникшей в шнуре силе упругости. Длина шнура изменилась и стала равна $l$.
У нас провзаимодействовали два тела: шнур и мешок. Оба тела деформировались.
Теперь мы отрежем прикрепленный шнур (рисунок 5, в). Во время падения на мешок с песком действует только сила тяжести, он восстанавливает свою форму. Шнурок также восстанавливает свою форму.
Когда же мешок падает на рабочую поверхность (рисунок 5, г), то он снова деформируется. Теперь взаимодействует опора и тело.
В данном случае не видно, как деформируется опора, но, если бы мы подставили доску на брусьях, она бы прогнулась. Так мы наглядно показали, что при взаимодействии происходит деформация обоих тел.
Под действием опоры или подвеса происходит деформация тела. Опора сжимает нижнюю часть тела, а подвес растягивает его верхнюю часть.
Именно эта деформация тела вызывает появление в теле силы упругости. В данном случае сила упругости и будет весом тела.
Чем отличается вес тела от силы тяжести?
Вы уже знаете, что вес тела будет равен силе тяжести, если тело и опора/подвес неподвижны или движутся прямолинейно и равномерно. Также сила тяжести приложена к центру тела, а вес — к опоре или подвесу.
Но важнее помнить, из-за чего возникают эти две силы. Сила тяжести возникает из-за взаимодействия физического тела и Земли. А вес возникает в результате взаимодействия тела и опоры (подвеса). А это взаимодействие возникает тоже из-за взаимодействия тела и Земли. При этом тела деформируются, что приводит к возникновению силы упругости.
Вес тела
4.2
Средняя оценка: 4.2
Всего получено оценок: 100.
Обновлено 16 Июля, 2021
4.2
Средняя оценка: 4.2
Всего получено оценок: 100.
Обновлено 16 Июля, 2021
Понятие «вес тела» очень часто используется в повседневной жизни. Многие продукты и материалы покупаются, исходя из измеренного веса. Как правило, в быту понятие веса отождествляется с понятием массы тела. Однако в физике это не одно и то же. Более того, эти величины не равны. Рассмотрим эту тему подробнее, приведём определение и формулу веса тела.
Вес тела
Чтобы понять физическую природу веса тела, достаточно вспомнить, как происходит взвешивание на пружинных весах. На чашку весов укладывается тело, под действием силы тяжести оно сжимает пружину, и по степени этого сжатия можно судить о том, сколько весит тело.
То есть сила, с которой тело воздействует на опору, называется весом.
Найдём величину этой силы. На тело, имеющее опору, действует сила тяжести $m overrightarrow {mathrm{g}}$ и сила реакции опоры $ overrightarrow {N}$.
По третьему закону Ньютона, тело также действует на опору с равной силой $ overrightarrow {P}= – overrightarrow {N}$ (противоположной по направлению). Эта сила и есть вес тела.
Если опора (и тело вместе с ней) движется вверх с ускорением $ overrightarrow {a}$, то по второму закону Ньютона имеем:
$$overrightarrow {N}+ m overrightarrow {mathrm{g}} = m overrightarrow {a}$$
Учитывая равенство веса и его противоположную направленность относительно реакции опоры, после проецирования на ось координат, направленную вниз, можно записать:
$$P = m (mathrm{g} – a)$$
Это и есть формула веса тела массой $m$, существующего в условиях гравитации (ускорение свободного падения $mathrm{g}$), имеющего опору, которая двигается вверх с ускорением $a$.
Свойства веса тела
Из вышесказанного можно сделать важные выводы.
- Во-первых, как физическая величина, вес является силой. Поэтому единица измерения веса в физике — ньютон.
- Во-вторых, вес — фактически, это проявление сил упругости. Вес появляется в результате взаимодействия тела с опорой.
- В-третьих, вес зависит от ускорения, с которым движется опора. Если опора неподвижна (или движется равномерно и прямолинейно), то вес равен силе тяжести.
Последнее свойство показывает, что вес — это величина непостоянная, и может быть как меньше, так и больше силы тяжести, в зависимости от движения опоры.
Невесомость и перегрузки
Таким образом, вес без опоры не существует. Говорят, что тело, у которого нет опоры, находится в состоянии невесомости.
Обратите внимание, состояние невесомости не зависит от того, действует ли на тело гравитационная сила или нет. Предмет во время свободного падения, кабина лифта в момент начала спуска, когда натяжение троса исчезло, человек во время прыжка — всё это примеры состояния невесомости, которое появляется, несмотря на действие силы тяжести.
Из формулы веса тела следует, что если опора движется с ускорением, у тела появляется вес, который может быть даже больше, чем сила тяжести. В этом случае говорят о возникновении перегрузок.
Поскольку в формулу веса входит масса и сумма ускорения, перегрузку можно измерять в единицах $mathrm{g}$. Для нахождения перегрузки используется формула:
$$k= {m(mathrm{g} + a) over mmathrm{g}}=1+{aover mathrm{g}}$$
Фактически перегрузка показывает, во сколько раз вес тела больше силы тяжести, действующей на тело на Земле. Перегрузка $k=1$ означает обычный вес тела, перегрузка $k=2$ означает, что вес тела вдвое больше, чем сила тяжести и так далее.
Что мы узнали?
Вес тела — это сила, с которой тело действует на опору. Фактически это проявление силы упругости. Тело, у которого нет опоры, находится в состоянии невесомости. Если опора тела двигается с ускорением, тело испытывает перегрузки.
Тест по теме
Доска почёта
Чтобы попасть сюда – пройдите тест.
Пока никого нет. Будьте первым!
Оценка доклада
4.2
Средняя оценка: 4.2
Всего получено оценок: 100.
А какая ваша оценка?
Загрузить PDF
Загрузить PDF
Вес — сила, с которой тело действует на опору (или другой вид крепления), возникающая в поле силы тяжести. Масса связана с энергией и импульсом тела и эквивалентна энергии его покоя. Масса не зависит от силы тяжести (точнее от ускорения свободного падения). Поэтому тело, на Земле имеющее массу 20 кг, на Луне будет иметь массу 20 кг, но совсем другой вес (потому что ускорение свободного падения на Луне в 6 раз меньше, чем на Земле).
-
1
Для вычисления веса используйте формулу . Вес — это сила, с которой тело действует на опору, и его можно рассчитать, зная массу тела. В физике используется формула .[1]
-
2
Определите массу тела. Так как ускорение свободного падения — это стандартная величина, то необходимо знать массу тела, чтобы найти его вес. Масса должна быть выражена в килограммах.
-
3
Узнайте величину ускорения свободного падения. На Земле, как уже было сказано выше, g = 9,8 м/с2. В других местах Вселенной эта величина меняется.[3]
- Ускорение свободного падения на поверхности Луны приблизительно равно 1,622 м/с2 (примерно в 6 раз меньше, чем на поверхности Земли). Поэтому ваш вес на Луне будет в 6 раз меньше вашего земного веса.[4]
- Ускорение свободного падения на Солнце приблизительно равно 274,0 м/с2 (примерно в 28 раз больше, чем на Земле). Поэтому ваш вес на Солнце будет в 28 раз больше вашего земного веса (если, конечно, вы выживете на Солнце, что еще не факт!).[5]
- Ускорение свободного падения на поверхности Луны приблизительно равно 1,622 м/с2 (примерно в 6 раз меньше, чем на поверхности Земли). Поэтому ваш вес на Луне будет в 6 раз меньше вашего земного веса.[4]
-
4
Подставьте значения в формулу . Теперь, когда вы знаете массу и ускорение свободного падения , подставьте их значения в формулу . Так вы найдете вес тела (измеряется в ньютонах, Н).
Реклама
-
1
Задача № 1. Найдите вес тела массой 100 кг на поверхности Земли.
-
2
Задача № 2. Найдите вес тела массой 40 кг на поверхности Луны.
-
3
Задача № 3. Найдите массу тела, которое на поверхности Земли весит 549 Н.
Реклама
-
1
Не путайте массу и вес. Самая распространенная ошибка — перепутать вес и массу (что немудрено, ведь в повседневной жизни мы обычно называем массу весом). Но в физике все не так. Запомните, масса — это постоянное свойство объекта, то, сколько в нем вещества (килограммов), где бы он ни находился. Вес — это сила, с которой объект всеми своими килограммами давит на поверхность, и эта сила на разных небесных телах будет различной.
- Масса измеряется в килограммах или граммах. Запомните, что в этих словах, как и в слове «масса», есть буква «м».
-
2
Используйте правильные единицы измерения. В задачах по физике вес или силу измеряют в ньютонах (Н), ускорение свободного падения — в метрах на секунду в квадрате (м/с2), а массу — в килограммах (кг). Если для какой-либо из этих величин вы возьмете не ту единицу измерения, воспользоваться формулой будет нельзя. Если масса в условиях задачи указана в граммах или тоннах, не забудьте перевести ее в килограммы.
Реклама
Приложение: вес, выраженный в кгс
- Ньютон — это единица измерения силы в международной системе единиц СИ. Нередко сила выражается в килограмм-силах, или кгс (в системе единиц МКГСС). Эта единица очень удобна для сравнения весов на Земле и в космосе.
- 1 кгс = 9,8166 Н.
- Разделите вес, выраженный в ньютонах, на 9,80665.
- Вес космонавта, который «весит» 101 кг (то есть его масса равна 101 кг), составляет 101,3 кгс на Северном полюсе и 16,5 кгс на Луне.
- Международная система единиц СИ — система единиц физических величин, которая является наиболее широко используемой системой единиц в мире.
Советы
- Самая трудная задача — уяснить разницу между весом и массой, так как в повседневной жизни слова «вес» и «масса» используются как синонимы. Вес — это сила, измеряемая в ньютонах или килограмм-силах, а не в килограммах. Если вы обсуждаете ваш «вес» с врачом, то вы обсуждаете вашу массу.
- Ускорение свободного падения также может быть выражено в Н/кг. 1 Н/кг = 1 м/с2.
- Плечевые весы измеряют массу (в кг), в то время как весы, работа которых основана на сжатии или расширении пружины, измеряют вес (в кгс).
- Вес космонавта, который «весит» 101 кг (то есть его масса равна 101 кг), составляет 101,3 кгс на Северном полюсе и 16,5 кгс на Луне. На нейтронной звезде он будет весить еще больше, но он, вероятно, этого не заметит.
- Единица измерения «Ньютон» применяется намного чаще (чем удобная «кгс»), так как можно найти множество других величин, если сила измеряется в ньютонах.
Реклама
Предупреждения
- Выражение «атомный вес» не имеет ничего общего с весом атома, это масса. В современной науке оно заменено на выражение «атомная масса».
Реклама
Об этой статье
Эту страницу просматривали 113 356 раз.
Была ли эта статья полезной?
Понятие и определения
Массой (обозначается буквой m) называют одну из физических величин, таких, как объём, определяющих количество вещества в объекте. Существует несколько явлений, которые позволяют её оценить. Среди теоретиков есть мнение, что некоторые из этих явлений могут быть независимы друг от друга, но в ходе экспериментов не обнаружено различий в результатах от способа измерений массы:
- Инерционная. Определяется сопротивлением тела ускорению силой.
- Активная и пассивная гравитационные. Измеряется силой взаимодействия гравитационных полей объектов.
Человек чувствует свою массу находясь в контакте с другой поверхностью. Это может быть стулом, земной твердью, креслом космонавта во время ускорения в ракете. В этих примерах речь идёт о величине, которую физики называют весом, а субъективно воспринимающимся как кажущийся вес.
Он равен фактической измеряемой массе почти во всех бытовых случаях, за следующими исключениями:
- Тело получает ускорение с вертикальной составляющей по отношению к земле. Например, в лифте или самолёте.
- Кроме гравитации Земли, на тело действуют другие силы — центробежная, гравитационная другого от тела, архимедова.
Гравитационный подход
В большинстве случаев при определении понятия веса (принятое обозначение — P, по-латински пишется как pondus) оперируют так называемым гравитационным определением. В учебниках физики формула веса для тела описывает величину как силу, действующую на объект в результате земного притяжения. На языке математики это определяется выражением P=mg, где:
- m — масса;
- g — гравитационное ускорение.
Из формулы вытекает, в чём измеряется вес: количественно он рассчитывается в тех же единицах, что и сила. Поэтому, согласно Международной системе единиц (СИ), P измеряется в Ньютонах.
Гравитационное поле Земли не является однородным и варьируется в пределах 0,5% по поверхности планеты. Соответственно, величина g также непостоянна. Общепринятым считается значение, называемое стандартным и равное 9,80665 м/с2. В различных местах на поверхности Земли фактическое ускорение свободного падения составляет (м/с2):
- экватор — 9,7803;
- Сидней — 9,7968;
- Москва — 9,8155;
- Северный полюс — 9,8322.
В 1901 году третья Генеральная конференция по весам и мерам установила: вес означает количество такой же природы, что и сила, То есть определила его как вектор, так как сила — векторная величина. Тем не менее некоторые школьные учебники физики и сейчас принимают P за скаляр.
Контактное определение
Другой подход описывает явление с позиции понимания какую силу называют весом тела. В этом случае P определяется процедурой взвешивания и означает силу, с которой объект действует на опору. Этот подход предполагает различие результатов в зависимости от деталей.
Например, объект в свободном падении оказывает незначительное воздействие на опору, однако, нахождение в невесомости не меняет вес в соответствии с гравитационным определением. Следовательно, подобный подход требует нахождения исследуемого тела в состоянии покоя, под действием стандартной гравитации без влияния центробежной силы вращения Земли.
Кроме того, контактное определение не исключает искажения от плавучести, которое уменьшает измеренный вес объекта. В воздухе на тела также действует сила, аналогичная влияющей на погружённое в воде. Для объектов с низкой плотностью эффект влияния становится более заметен. Примером тому может служить наполненный гелием воздушный шар, обладающий отрицательным весом. В общем смысле любое воздействие оказывает искажающий эффект на контактный вес, например:
- Центробежная сила. Поскольку Земля вращается, объекты на поверхности подвергаются воздействию центробежных сил, более выраженных к экватору.
- Гравитационное влияние других астрономических тел. Солнце и Луна притягивают объекты на земной поверхности в той или иной степени в зависимости от расстояния. Это влияние незначительно на бытовом уровне, но находит заметное отражение в таких явлениях, как морские приливы и отливы.
- Магнетизм. Сильные магнитные поля способны заставить левитировать некоторые подверженные влиянию объекты.
История понятия
Понятия тяжести и лёгкости в качестве неотъемлемых свойств физических тел упоминаются ещё древнегреческими философами. Платон описывал вес как естественную тенденцию предметов к поиску себе подобных. Для Аристотеля лёгкость была свойством в восстановлении порядка основных элементов: воздуха, земли, огня и воды. Архимед рассматривал вес как качество, противоположное плавучести. Первое контактное определение было дано Евклидом, описывающее величину как лёгкость одной вещи по сравнению с другой, измеряемую балансом.
Когда средневековые учёные обнаружили, что на практике скорость падающего предмета со временем возрастала. Они изменили концепцию веса для сохранения причинно-следственных связей между явлениями. Понятие было разделено для тел в состоянии покоя и находящихся в гравитационном падении.
Значительных результатов в теории добился Галилей, пришедший к выводу, что величина пропорциональна количеству вещества в объекте, а не скорости его движения, как предполагала Аристотелева физика. Открытие Ньютоном закона всемирного тяготения привело к принципиальному отделению веса от фундаментального свойства объектов, связанных с инерцией. Факторы окружающей среды и плавучесть учёный считал искажением условий измерения. Для подобных обстоятельств он ввёл термин кажущийся вес.
В XX веке ньютоновские концепции абсолютного времени и пространства были поставлены под сомнение работами Эйнштейна. Теория относительности поставила всех наблюдателей, движущихся и ускоряющихся, в разные условия. Это привело к двусмысленности относительно того, что именно подразумевается под массой, которая вместе с гравитационной силой стала по существу зависящей от системы отсчёта величиной.
Неоднозначности, порождённые относительностью, привели к серьёзным дебатам в педагогическом сообществе о том, как определять вес для учеников и что им должно называться. Выбор стал лежать между пониманием его как силы, вызванной гравитацией Земли, и контактным определением, вытекающим из акта взвешивания.
Различия с массой
Путаница в понимании того, чем отличается масса от веса, свойственна для людей, не изучающих физику подробно. Этому есть простое объяснение — как правило, эти термины используются в повседневной жизни взаимозаменяемо. В общем случае, если тело находится на поверхности земли и неподвижно, значение массы будет равно скаляру веса в килограммах. Таблица, проясняющая разницу между понятиями, выглядит так:
Масса | Вес |
Является свойством материи. Постоянна всегда. | Зависит от действия силы тяжести. |
У материального объекта никогда не бывает равна нулю. | Может быть равен нулю при определённых условиях. |
Не меняется в зависимости от местоположения. | Уменьшается или увеличивается в разных местах Земли или в зависимости от высоты над её поверхностью. |
Является скалярной величиной. | Вектор с направлением к центру земли или к другому гравитационному центру. |
Может быть измерена с помощью баланса | Измеряется с помощью пружинных весов. |
Как правило, измеряется в граммах и килограммах. | Единица у силы и веса одна — Ньютон (обозначается как Н) |
Главное отличительное свойство массы заключается в том, что для классической динамики она является конкретной инвариантной величиной для каждого тела. Общая теория относительности описывает переход массы в энергию и наоборот.
Обычно численное значение между m и P на Земле строго пропорционально. На бытовом уровне чтобы узнать вес тела с известной массой, достаточно помнить, что объекты обычно весят в ньютонах приблизительно в 10 раз больше значения m в килограммах.
Способы измерения
Фактически вес можно измерить как силу реакции опоры на массу, появляющуюся в точке приложения. Величина возникновения этой силы по значению равна искомому P. Определить её можно с помощью пружинных весов. Поскольку сила тяжести, вызывающая фиксируемое отклонение на шкале, может варьироваться в разных местах, значения также будут отличаться. Для стандартизации измерительные приборы такого типа всегда калибруются на 9,80665 м/с2 в заводских условиях, а затем повторно в том месте, где будут использоваться.
Для измерения массы применяют рычажный механизм. Поскольку любые изменения в гравитации будут одинаково воздействовать на известные и неизвестные массы, балансный способ позволяет иметь в результате одинаковые значения в любом месте Земли. Весовые коэффициенты в этом случае калибруются и маркируются в единицах массы, поэтому балансировочный рычаг позволяет найти массу, сравнивая воздействие притяжения на искомый объект с воздействием на эталон.
При отсутствии гравитационного поля вдали от крупных астрономических тел, баланс рычага работать не будет, но, например, на Луне он покажет те же значения, что и на Земле. Некоторые подобные инструменты могут быть размечены в единицах веса, но, поскольку они калибруются на заводе-изготовителе для стандартной гравитации, то будут показывать P для условий, под которые они настроены.
Это значит, что рычажные весы не предназначены для измерения локальной силы тяжести, воздействующей на объект. Точный вес можно определить расчётным путём, умножив массу на значение локальной гравитации из соответствующих таблиц.
На других планетах
В отличие от массы, вес тела в разных местах варьируется в зависимости от изменения значения гравитационного ускорения. Величина силы притяжения на других планетах, как и на Земле, зависит не только от их массы, но и от того, насколько удалена поверхность от центра тяжести.
В таблице ниже приведены сравнительные гравитационные ускорения на других планетах, Солнце и Луне. Под поверхностью для газовых гигантов (Юпитер, Сатурн, Уран и Нептун) подразумеваются их внешние облачные слои, для Солнца — фотосфера. Значения в таблице указаны без учёта центробежного вращения и отражают фактическую гравитацию, наблюдаемую вблизи полюсов.
Астрономический объект | Насколько гравитация превышает земную | Поверхностное ускорение м/с2 |
Солнце | 27,9 | 274,1 |
Меркурий | 0,377 | 3,703 |
Венера | 0,9032 | 8,872 |
Земной шар | 1 | 9,8226 |
Луна | 0,1655 | 1,625 |
Марс | 0,3895 | 3,728 |
Юпитер | 2,64 | 25,93 |
Сатурн | 1,139 | 11,19 |
Уран | 0,917 | 9,01 |
Нептун | 1,148 | 11,28 |
Для того чтобы получить собственный вес на другой планете, необходимо просто умножить его на число кратности из соответствующего столбика. Чем ближе к центру планеты делать замер, тем значение будет выше, и наоборот. Поэтому, несмотря на то что сила притяжения Юпитера из-за огромной массы в 316 раз превышает земную, вес на уровне облаков, из-за большой их удалённости от центра масс, выглядит не таким впечатляющим, как можно было бы ожидать.
Ещё один интересный эффект, называемый невесомостью, характерный не только для космоса. Его можно наблюдать при различных обстоятельствах и на Земле. Например, при свободном падении нет опоры, к которой была бы приложена сила, а значит вес будет равен нулю, несмотря на присутствие ускорения силы тяжести и массы.
Подобный феномен происходит с космонавтами Международной космической станции на орбите Земли. Фактически она всегда падает вместе со своими обитателями на поверхность планеты, поэтому её обитатели постоянно находятся в состоянии невесомости.
Таким образом, главное правило, объясняющее наблюдаемые феномены и позволяющее избежать путаницы с массой, выглядит так: значение P всегда измеряется с помощью контактных весов, помещённых между объектом и опорной поверхностью. Именно поэтому тело, размещённое на весах и падающее вместе с ними, не будет давить на прибор, а шкала, соответственно, покажет нулевое значение.
>