На прошлом уроке мы доказали с помощью опытов существование силы, действующей на тела, погруженные в жидкость или газ — выталкивающей силы. Также мы теперь знаем, что ее можно рассчитать по формуле: $F_{выт} = gm_ж = P_ж$. Но какое еще есть значение у этой силы? На этом уроке мы более подробно рассмотрим выталкивающую силу.
Выталкивающая сила и вес тела
Как можно на опыте определить, с какой силой тело, погруженное целиком в жидкость, выталкивается из жидкости?
Давайте познакомимся с таким опытом. Он представлен на рисунке 1.
Подвесим на пружину небольшую емкость для жидкости и тело цилиндрической формы ниже. На конце пружины у нас расположена стрелка-указатель. Она отмечает растяжение пружины на штативе (рисунок 1, а). Таким образом, мы видим вес тела в воздухе.
Теперь опустим наше тело в большой сосуд. Сосуд имеет трубку для слива и наполнен жидкостью до уровня этой трубки (рисунок 1, б).
Когда мы полностью опустим тело в сосуд, часть жидкости из него выльется через трубку для слива в стакан. Объем этой жидкости будет равен объему тела. Мы уже знаем, что на тело действует выталкивающая сила: пружина сокращается, стрелка-указатель поднимается, вес тела в жидкости становится меньше.
А теперь возьмем жидкость, которая вылилась в стакан. Зальем ее в емкость, которая также подвешена к пружине (рисунок 1, в). Теперь стрелка-указатель вернулась к своему изначальному положению.
Так чему равна эта сила? Сделаем вывод из данного опыта.
Сила, выталкивающая целиком погруженное в жидкость тело, равна весу жидкости в объеме этого тела.
Если провести подобный опыт с газом, а не с жидкостью, то мы получим, что сила, выталкивающая тело из газа, равна весу газа, взятого в объеме тела.
Сила Архимеда
Как называют силу, которая выталкивает тела, погруженные в жидкости и газы?
Теперь мы добавим, что эту выталкивающую силу называют архимедовой силой. Архимед (рисунок 2) — древнегреческий ученый и инженер, сделавший множество открытий и в математике, и в физике. Именно он первый обнаружил наличие выталкивающей силы и рассчитал ее значение.
Как подсчитать архимедову силу?
В прошлом уроке мы получили формулу $F_{выт} = P_ж = g m_ж$. Теперь мы будем называть эту силу архимедовой $F_A$.
Из выше рассмотренных опытов мы можем выразить массу вытесненной жидкости через ее плотность и объем тела, который эту жидкость вытеснил (они одинаковы): $m_ж = rho_ж cdot V_т$. Получим формулу для архимедовой силы.
$F_A = g rho_ж V_т$.
От чего зависит архимедова сила?
Взгляните еще раз на формулу: $F_A = g rho_ж V_т$.
Ясно видно, что архимедова сила зависит только от плотности жидкости и от объема тела, которое мы погружаем в эту жидкость.
Если мы будем погружать в одну и ту же жидкость тела разной плотности и разной формы (рисунок 3), то значение силы меняться не будет (при условии, что эти тела будут обладать одинаковым объемом).
Определение веса тела, погруженного в жидкость или газ
На тело, погруженное в жидкость (или в газ), действуют две силы: сила тяжести и архимедова сила. Направлены они в противоположные стороны. Вес тела в жидкости $P_1$ будет меньше веса тела в вакууме $P$ на архимедову силу $F_A$. То есть:
$P_1 = P space − space F_A = gm space − space gm_ж$.
Если тело погружено в жидкость или газ, то его вес уменьшается на вес вытесненной им жидкости или газа.
Пример задачи
Определите выталкивающую силу, которая будет действовать на камень объемом $2.6 space м^3$, лежащий на морском дне.
Дано:
$V_т = 2.6 space м^3$
$rho_ж = 1030 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$
$F_A — ?$
Посмотреть решение и ответ
Скрыть
Решение:
Сила Архимеда рассчитывается по формуле:
$F_A = g rho_ж V_т$.
Подставим численные значения величин и рассчитаем эту силу:
$F_A = 9.8 frac {Н}{кг} cdot 1030 frac{кг}{ м^3} cdot 2.6 space м^3 approx 26 244 space Н approx 26.2 space кН$.
Ответ: $F_A approx 26,2 space кН$.
Забавное дополнение: легенда об Архимеде
Архимед, великий изобретатель, шокировал своих современников гениальными открытиями. Его имя упоминается во множестве легенд, но одна из них стала наиболее известной: легенда о том, как Архимед пришел к открытию выталкивающей силы.
Царь Гиерон поручил Архимеду проверить работу мастера, который изготовил для него золотую корону.
Долгое время ученый не мог найти ответ: как определить количество некачественных примесей? Проблема заключалась в том, что определить ее объем — сложная задача. По легенде озарение настигло Архимеда, когда он принимал ванну.
Ученый заметил, что из ванны вылилась вода, когда он залез в нее. И здесь его посетила гениальная мысль. Все вы слышали его известную цитату: «Эврика! Эврика!» (в переводе означает: «Нашел! Нашел!»).
Так Архимед победно выкрикивал свою фразу, потрясенный своим открытием, что она дошла в виде легенды и до наших времен.
Упражнения
Упражнение №1
К коромыслу весов подвешены два цилиндра одинаковой массы: свинцовый и алюминиевый (рисунок 4). Весы находятся в равновесии. Нарушится ли равновесие весов, если оба цилиндра одновременно погрузить в воду; в спирт? Ответ обоснуйте. Проверьте его на опыте. Как зависит выталкивающая сила от объема тела?
Посмотреть ответ
Скрыть
Ответ:
Когда мы погрузим цилиндры в жидкость, на каждый их них будет действовать сила Архимеда. Если эти силы будут равны, то весы останутся в равновесии.
Запишем формулы архимедовой силы для каждого цилиндра.
Для свинцового цилиндра:
$F_{A1} = g rho_ж V_1$.
Для алюминиевого цилиндра:
$F_{A2} = g rho_ж V_2$.
Мы видим, что равенство этих сил зависит от объемов цилиндров. Они равны? Нет, они имеют одинаковые массы, но разные плотности. Цилиндр из алюминия будет обладать большим объемом, чем свинцовый цилиндр ($V = frac{m}{rho}$). Значит, на алюминиевый цилиндр будет действовать большая выталкивающая сила, чем на свинцовый.
Если мы проверим это на опыте, то увидим подтверждение нашим выводам (рисунок 5).
При этом весы выйдут из равновесия в случае и с водой (рисунок 5, а), и со спиртом (рисунок 5, б). Так как мы опускаем цилиндры одновременно в один и тот же тип жидкости, значение архимедовой силы, действующей на цилиндры, будет различаться только в зависимости от объемов этих цилиндров — свинцовый перевесит алюминиевый в любой жидкости.
Заметим, что в случае погружения в воду, архимедова сила будет больше, чем в случае погружения в спирт. Это объясняется тем, что вода имеет большую плотность, чем спирт.
Упражнение №2
К коромыслу весов подвешены два алюминиевых цилиндра одинакового объема. Нарушится ли равновесие весов, если один цилиндр погрузить в воду, а другой — в спирт? Ответ обоснуйте. Зависит ли выталкивающая сила от плотности жидкости?
Посмотреть ответ
Скрыть
Ответ:
Если один цилиндр погрузить в воду, а другой — в спирт, то равновесие весов нарушится (рисунок 6). На цилиндр, находящийся в воде, будет действовать большая архимедова сила.
Так происходит, потому что архимедова сила зависит от объема погруженного тела (а они у нас одинаковые: $V_1 = V_2 = V$) и от плотности жидкости:
$F_А = g rho_ж V$.
Плотность спирта ($800 frac{кг}{м^3}$) меньше плотности воды ($1000 frac{кг}{м^3}$). Значит, на цилиндр, погруженный в воду, будет действовать большая архимедова сила, чем на тот, что погружен в спирт.
Упражнение №3
Объем куска железа равен $0.1 space дм^3$. Какая выталкивающая сила будет на него действовать при полном его погружении в воду; в керосин?
Дано:
$V = 0.1 space дм^3$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 800 frac{кг}{м^3}$
СИ:
$V = 0.1 cdot 10^{-3} space м^3$
$F_{А1} — ?$
$F_{А2} — ?$
Посмотреть решение и ответ
Скрыть
Решение:
Рассчитаем архимедову силу, которая будет действовать на кусок железа в воде:
$F_{А1} = g rho_1 V$,
$F_{А1} = 9.8 frac{Н}{кг} cdot 1000 frac{кг}{м^3} cdot 0.1 cdot 10^{-3} space м^3 = 0.98 space Н approx 1 space Н$.
Теперь рассчитаем архимедову силу, которая будет действовать на кусок железа в керосине:
$F_{А2} = g rho_2 V$,
$F_{А2} = 9.8 frac{Н}{кг} cdot 800 frac{кг}{м^3} cdot 0.1 cdot 10^{-3} space м^3 = 0.784 space Н approx 0.8 space Н$.
Ответ: $F_{А1} approx 1 space Н$, $F_{А2} approx 0.8 space Н$.
Упражнение №4
Бетонная плита объемом $2 space м^3$ погружена в воду. Какую силу необходимо приложить, чтобы удержать ее в воде; в воздухе?
Дано:
$V = 2 space м^3$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1000 frac{кг}{м^3}$
$rho_2 = 1.29 frac{кг}{м^3}$
$rho_б = 2300 frac{кг}{м^3}$
$F_1 — ?$
$F_2 — ?$
Посмотреть решение и ответ
Скрыть
Решение:
Бетонная плита находится в воде. На нее действует сила тяжести и архимедова сила. Они направлены противоположно друг другу и будут иметь разные величины. Разность этих сил — и будет искомая сила $F_1$, которую нужно приложить, чтобы удержать бетонную плиту в воде (чтобы она не опускалась на дно и не всплывала):
$F_1 = F_{тяж} space − space F_{А1}$.
Сила тяжести рассчитывается по формуле:
$F_{тяж} = gm$.
Массу бетонной плиты мы можем выразить через ее плотность и объем:
$m = rho_б V$,
$F_{тяж} = g rho_б V$.
Архимедова сила, действующая на бетонную плиту в воде:
$F_{А1} = g rho_1 V$.
Подставим силу тяжести и архимедову силу в формулу и рассчитаем $F_1$:
$F_1 = F_{тяж} space − space F_{А1} = g rho_б V space − space g rho_1 V = gV cdot (rho_б space − space rho_1)$,
$F_1 = 9.8 frac {Н}{кг} cdot 2 space м^3 cdot (2300 frac{кг}{м^3} space − space 1000 frac{кг}{м^3}) = 25 space 480 space Н approx 25 space кН$.
Используем ту же формулу для того, чтобы рассчитать силу $F_2$, которую нужно приложить, чтобы удержать бетонную плиту в воздухе:
$F_2 = gV cdot (rho_б space − space rho_2)$,
$F_2 = 9.8 frac {Н}{кг} cdot 2 space м^3 cdot (2300 frac{кг}{м^3} space − space 1.29 frac{кг}{м^3}) approx 45 space 054 space Н approx 45 space кН$.
Ответ: $F_1 approx 25 space кН$, $F_2 approx 45 space Н$.
Упражнение №5
Предположив, что корона царя Гиерона в воздухе весит $20 space Н$, а в воде — $18.75 space Н$, вычислите плотность вещества короны. Полагая, что к золоту было подмешано только серебро, определите, сколько в короне было золота и сколько серебра. При решении задачи плотность золота считайте равной $20 space 000 frac{кг}{м^3}$, плотность серебра — $10 space 000 frac{кг}{м^3}$. Каков был бы объем короны из чистого золота?
Дано:
$P_1 = 20 space Н$
$P_2 = 18.75 space Н$
$rho_з = 20 space 000 frac{кг}{м^3}$
$rho_с = 10 space 000 frac{кг}{м^3}$
$g = 9.8 frac{Н}{кг}$
$rho_1 = 1.29 frac{кг}{м^3}$
$rho_2 = 1000 frac{кг}{м^3}$
$rho — ?$
$m_з — ?$
$m_с — ?$
$V_1 — ?$
Посмотреть решение и ответ
Скрыть
Решение:
Вес короны в воздухе $P_1$ будет меньше веса тела в вакууме $P$ на архимедову силу $F_{A1}$. То есть:
$P_1 = P space − space F_{A1}$.
Значит, вес короны в вакууме будет равен сумме ее веса в воздухе и архимедовой силы:
$P = P_1 space + space F_{А1}$,
$gm = P_1 space + space g rho_1 V$.
Теперь запишем такое же уравнение для веса короны в воде:
$gm = P_2 space + space g rho_2 V$.
Левые части уравнений у нас равны, поэтому мы можем приравнять правые части друг к другу:
$P_1 space + space g rho_1 V = P_2 space + space g rho_2 V$.
Перенесем элементы, содержащие неизвестный объем вправо:
$P_1 space − space P_2 = g rho_2 V space − space g rho_1 V$,
$P_1 space − space P_2 = gV (rho_2 space − space rho_1)$.
Выразим отсюда объем короны и рассчитаем его:
$V = frac{P_1 space − space P_2}{g (rho_2 space − space rho_1)}$,
$V = frac{20 space Н space − space 18.75 space Н}{9.8 frac{Н}{кг} (1000 frac{кг}{м^3} space − space 1.29 frac{кг}{м^3})} = frac{1.25}{9787} space м^3 = 12.8 cdot 10^{-5} space м^3$.
Используем одно из первых уравнений для веса короны в вакууме и в воздухе:
$gm = P_1 space + space g rho_1 V$.
Выразим отсюда массу короны и рассчитаем ее:
$m = frac{P_1 space + space g rho_1 V}{g}$,
$m = frac{20 space Н space + space 9.8 frac{Н}{кг} cdot 1.29 frac{кг}{м^3} cdot 12.8 cdot 10^{-5} space м^3}{9.8 frac{Н}{кг}} approx 2.04 space кг$.
Теперь мы знаем массу и объем короны. Рассчитаем ее плотность:
$rho = frac{m}{V}$,
$rho = frac{2.04 space кг}{12.8 cdot 10^{-5} space м^3} approx 16 space 000 frac{кг}{м^3}$.
Корона состоит из серебра и золота. Это означает, что ее общий объем мы можем записать в виде суммы объемов серебра и золота, ее составляющих:
$V = V_с space + space V_з$.
То же самое с общей массой короны:
$m = m_с space + space m_з$.
Запишем объемы через массы и плотности (а также выразим массу золота через общую массу короны и массу серебра):
$V_с = frac{m_с}{rho_с}$,
$V_з = frac{m_з}{rho_з} = frac{m space − space m_с}{rho_з}$.
Подставим эти объемы в формулу для общего объема короны и выразим из нее массу серебра:
$V = frac{m_с}{rho_с} space + space frac{m space − space m_с}{rho_з} = frac{m_с (rho_з space − space rho_с) space + space rho_с m}{rho_с rho_з} = m_с cdot frac{rho_з space − space rho_с}{rho_с rho_з} space + space frac{m}{rho_з}$,
$m_с = frac{V space − space frac{m}{rho_з}}{frac{rho_з space − space rho_с}{rho_с rho_з}} = frac{rho_с (V rho_з space − space m)}{rho_з space − space rho_с}$.
Рассчитаем массу серебра, содержащегося в короне:
$m_с = frac{10 space 000 frac{кг}{м^3} (12.8 cdot 10^{-5} space м^3 cdot 20 space 000 frac{кг}{м^3} space − space 2.04 space кг)}{20 space 000 frac{кг}{м^3} space − space 10 space 000 frac{кг}{м^3}} = frac{5200 frac{кг^2}{м^3}}{10 space 000 frac{кг}{м^3}} = 0.52 space кг$.
Теперь мы можем вычислить и количество золота в короне:
$m_з = m space − space m_с$,
$m_з = 2.04 space кг space − space 0.52 space кг = 1.52 space кг$.
Если бы вся корона была из золота, то ее объем был бы равен:
$V_1 = frac{m}{rho_з}$,
$V_1 = frac{2.04 space кг}{20 space 000 frac{кг}{м^3}} = 10.2 cdot 10^{-5} space м^3$.
Ответ: $rho approx 16 space 000 frac{кг}{м^3}$, $m_з = 1.52 space кг$, $m_с = 0.52 space кг$, $V_1 = 10.2 cdot 10^{-5} space м^3$.
Упражнение №6
По мелким камешкам ходить босыми ногами больно. Почему человек не испытывает боли, если ходит по таким же камням в воде?
Посмотреть ответ
Скрыть
Ответ:
Что означает фраза «ходить по камням»? Со стороны физики, когда мы наступаем на камни, мы давим на них своим весом: $p = frac{F}{S} = frac{P}{S}$.
Когда мы оказываемся в воде, наш вес уменьшается. Это следствие действия на нас архимедовой силы. Уменьшается вес — уменьшается и давление наших стоп на камни.
Видеоурок: закон Архимеда
Зако́н Архиме́да — закон гидростатики и аэростатики: на тело, погружённое в жидкость или газ, действует выталкивающая сила, численно равная весу объема жидкости или газа, вытесненного телом. Закон открыт Архимедом в III веке до н. э. Выталкивающая сила также называется архимедовой силой или гидростатической подъёмной силой[1][2] (её не следует путать с аэро- и гидродинамической подъёмной силой, возникающей при обтекании тела потоком газа или жидкости).
Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.
В соответствии с законом Архимеда для выталкивающей силы выполняется[3]:
где:
Описание[править | править код]
Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.
Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.
Плавание тела. Сила Архимеда () уравновешивает вес тела ():
ρж g Vж = ρт g Vт
Например, воздушный шарик объёмом , наполненный гелием, летит вверх из-за того, что плотность гелия () меньше плотности воздуха ():
Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление () и сила давления (), действующие на верхнюю грань тела, равны:
где:
Давление () и сила давления (), действующие на нижнюю грань тела, равны:
где:
Сила давления жидкости или газа на тело определяется разностью сил и :
где:
Разница давлений:
В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.
Обобщения[править | править код]
Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.
Вывод закона Архимеда для тела произвольной формы[править | править код]
Вывод через мысленный эксперимент[править | править код]
Если мысленно заменить погружённое в жидкость тело той же жидкостью, мысленно размещённая в том же объёме порция воды будет находиться в равновесии и действовать на окружающую воду с силой, равной силе тяжести, действующей на порцию воды. Так как перемешивания частиц воды не происходит, можно утверждать, что окружающая вода действует на выделенный объём с той же силой, но направленной в противоположном направлении, то есть с силой, равной [4][5][6].
Расчёт силы[править | править код]
Гидростатическое давление на глубине , оказываемое жидкостью с плотностью на тело, есть . Пусть плотность жидкости () и напряжённость гравитационного поля () — постоянные величины, а — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат , причём выберем направление оси z совпадающим с направлением вектора . Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку . На неё будет действовать сила давления жидкости, направленная внутрь тела, . Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:
При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.
Получаем, что модуль силы Архимеда равен , и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.
Вывод через закон сохранения энергии[править | править код]
Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:
где — масса вытесненной части жидкости, — перемещение её центра масс. Отсюда модуль вытесняющей силы:
По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:
- где — объем погружённой части тела.
Таким образом, для силы Архимеда имеем:
Условие плавания тел[править | править код]
Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести и силы Архимеда , которые действуют на это тело. Возможны следующие три случая:
- — тело тонет;
- — тело плавает в жидкости или газе;
- — тело всплывает до тех пор, пока не начнёт плавать.
Другая формулировка (где — плотность тела, — плотность среды, в которую тело погружено):
- — тело тонет;
- — тело плавает в жидкости или газе;
- — тело всплывает до тех пор, пока не начнёт плавать.
Примечания[править | править код]
- ↑ Архимеда закон : [арх. 1 января 2023] // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 331. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
- ↑ Архимеда закон // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 123. — 707 с. — 100 000 экз.
- ↑ Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, к полю, действующему вблизи поверхности планеты).
- ↑ Перышкин А. , Оригинальное доказательство закона Архимеда. Дата обращения: 28 сентября 2020. Архивировано 20 июля 2020 года.
- ↑ Доказательство закона Архимеда для тела произвольной формы. Дата обращения: 28 сентября 2020. Архивировано 21 сентября 2020 года.
- ↑ Buoyancy (англ.). Архивировано 14 июля 2007 года.
Ссылки[править | править код]
- Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
- Закон Архимеда // Энциклопедия «Кругосвет».
Архимедова сила — выталкивающая сила, равная весу газа или жидкости в объёме погружённой части тела.
Опыт. Нам понадобятся ёмкость с ручкой и груз в форме цилиндра.
- Растяжение пружины динамометра отметим стрелкой на штативе (рис. (A)), она показывает вес тела в воздухе.
- Подставим сосуд, наполненный жидкостью, до уровня отливной трубки (рис. (B)) и поместим в него цилиндр.
- После погружения цилиндра вода выливается в мерный стакан. Её объём равен объёму цилиндрического груза (рис. (B)).
- Стрелка динамометра поднимается вверх, растяжение пружины уменьшается, что соответствует уменьшению веса тела в жидкости (рис. (C)). В этом случае на цилиндр действует сила тяжести и сила Архимеда, направленная вверх.
- Если в ведёрко вылить вытесненную из отливного стаканчика жидкость, то стрелка динамометра возвратится в начальное положение (рис. (D)).
Вывод: выталкивающая сила, действующая на погружённое в жидкость тело, равна весу жидкости, вытесненной этим телом.
Сила, выталкивающая тело из газа, также равна весу газа, взятого в объёме тела. Это и есть закон Архимеда.
Формулу можно записать в другом виде.
Выразим массу жидкости, вытесняемую телом, через её плотность и объём тела, погружённого в жидкость, тогда получим:
Согласно полученной формуле, на тело, погружённое в жидкость, действует выталкивающая сила (сила Архимеда), равная произведению плотности жидкости, ускорения свободного падения и объёма тела (или той его части, которая погружена в жидкость).
Эта формула позволяет рассчитать выталкивающую силу для тела, находящегося в газе. В этом случае плотность жидкости заменяют плотностью газа.
План урока:
Сила Архимеда – выталкивающая сила
О жидкости, в которой нельзя утонуть
Почему не тонут корабли?
Воздухоплавание
Сила Архимеда – выталкивающая сила
Сидит на берегу рыбак с удочкой, внимательно смотрит на поплавок, ждет, когда рыбка клюнет. Вряд ли задумываются любители рыбной ловли над тем, какие законы физики используются для изготовления рыболовных снастей. Кроме лески и крючков берутся поплавок и грузило. Предназначение их совершенно противоположное. Поплавок должен плавать на поверхности воды, подергиваться при клеве. Грузило, наоборот, должно затонуть и опустить крючки на глубину, где плавает рыба.
Поплавок и грузило Источник
Простейшие явления, происходящие на воде, которые часто встречаются в жизни и взрослых, и детей, объясняются наличием внутри воды (да и любой жидкости тоже) выталкивающей силы.
Любой мяч, наполненный воздухом, будет плавать на поверхности. Не затонет и большой шар в зорбинге, даже если внутри него находится человек. Зорбинг – это современный экстремальный аттракцион на воде, иначе его называют «Водный шар». Сам шар – зорб. Однако, пройтись пешком по воде человек не сможет, хотя выталкивающая сила действует на человека тоже.
Зорбинг
Простой лабораторный опыт. Если взять динамометр, прикрепить к нему металлический цилиндр (пружина растянется под весом цилиндра), а затем опустить его в воду, показания динамометра уменьшатся. Это значит, что появилась сила, выталкивающая тело из воды, направленная вверх. Результирующая двух сил стала меньше.
Источник
Выталкивающая сила всегда направлена вверх. Какова же причина возникновения такой силы и ее происхождение?
Пусть в стакане с водой находится правильное тело – параллелепипед. Пусть площадь его основания S и высота H.
Все грани параллелепипеда находятся под водой, верхняя – на глубине h1, нижняя – h2. Сверху давление p1 = ρ g h1, а снизу – p2 = ρ g h2.. Давление p2 больше p1, так как h2 больше h1. На вертикальные грани параллелепипеда действуют одинаковые давления, стремящиеся его сжать. Значит, сила давления снизу больше силы давления сверху. Разность этих сил и является силой, выталкивающей тело из жидкости. После алгебраических преобразований получается правило вычисления выталкивающей силы.
F = F2 – F1 = p2 S – p1 S = ρж g h2 S – ρж g h1 S = ρж g S (h2 – h1). Из рисунка видно, что разность h2 – h1 равна высоте параллелепипеда H, но произведение S∙H равно объему данной фигуры Vт. Тогда, F = ρж g S H = ρж g Vт. Результирующая сила, по которой вычисляют выталкивающую силу, запишется в следующем виде:
FA = ρж g Vт
ρж – плотность жидкости.
«Эврика!» – воскликнул Архимед, понимая, от чего зависит сила, выталкивающая тела из жидкости. Конечно, это легенда, но сила носит название архимедовой, потому что Архимед впервые определил эту силу.
Источник
Легенда такова: правитель города Сиракузы на острове Сицилия был родственником Архимеда. Однажды он приказал мастеру изготовить золотую корону. Когда корона была готова, Гирон засомневался в честности мастера, заподозрив, что мастер заменил частично золото серебром или другими примесями. Герон потребовал от Архимеда установить истину.
Чтобы решить эту проблему, надо знать объем короны и объем золота той же массы. Если они совпадут, то мастер – молодец, в противном случае он – лжец.
Объем тела неправильной формы находят с помощью мензурки. Корону в мензурку не поместить. Архимед придумал, как найти объем большого тела, когда сам погрузился в ванну с водой. Он увидел, что часть воды вытекла. Возглас Архимеда «Эврика!», что значит «Нашел!», вошел во все языки мира.
Определенные таким способом объемы куска золота и короны оказались различными. Изготовитель короны был нечестен.
Случай с Архимедом послужил толчком для его дальнейших исследований поведения тела в жидкости. В его сочинении «О плавающих телах» был сформулирован закон, позволяющий определить архимедову силу. Впоследствии закону дали имя: закон Архимеда. Этот закон устанавливает связь выталкивающей силы с весом вытесненной телом жидкости.
В формуле FA = ρж g Vт произведение ρж Vт = m – это масса вытесненной жидкости, объем ее равен объему тела, вытесняющему эту жидкость. Значит,
FA = Pт, т.е. тела выталкиваются из жидкости с силой, такой же, как и вес вытесненной жидкости.
Закон легко доказывается опытным путем:
Источник
Для опыта берется ведерко Архимеда, состоящее из двух частей: полое ведерко 2 и тяжелый цилиндр 3 такого же объема, что и ведерко. Ведерко и цилиндр вместе подвешиваются к динамометру 1, показания динамометра фиксируются (рис.а). Под цилиндр помещается сливной стакан 4 (стакан с носиком, направленным вниз для слива жидкости). Жидкость в стакан первоначально налита точно до сливного носика.
В тот момент, когда цилиндр помещается в воду, она вытесняется цилиндром и сливается в сосуд 5. На цилиндр вверх действует архимедова сила, показания динамометра уменьшаются (рис.б), т.е. вес цилиндра становится меньше.
Из сосуда 5 вытесненная жидкость выливается в пустое ведерко 2 (рис. в). Когда вся вода перелита в ведерко, динамометр фиксирует первоначальный вес (рис. г). Это означает, что при помещении в воду цилиндр потерял вес, равный весу жидкости, которая вытесняется из сливного стакана.
Итак,
- на все тела, помещенные в жидкость, оказывает действие направленная вверх архимедова сила;
- архимедова сила связана с давлением, а значит, с плотностью жидкости, и объемом тела, помещенного в жидкость;
- архимедова сила не зависит от плотности изучаемого тела и глубины погружения.
О жидкости, в которой нельзя утонуть
В воде одни тела сразу тонут, а другие плавают. Тот же поплавок у рыбака держится на поверхности, а грузило плавает. Не тонет сухая древесина, но, если она долго пробудет в воде, пропитается ею, то окажется на дне. Существуют древесные породы, например, бакаут[1] (железное дерево) и черное дерево[2], тонущие в воде в сухом виде. Почему одни тела свободно плавают, а другие тонут?
На тело, помещенное в жидкость, вниз действует сила тяжести и вверх – архимедова сила. Которая из двух сил преобладает, туда и направлена равнодействующая. Тело переместится в сторону равнодействующей силы:
Источник
Следует особо обратить внимание на разницу двух из приведенных случаев. Обычно говорят, что тело плавает, независимо, где оно плавает: внутри жидкости или на поверхности. Но, если Fтяж = FA, тело плавает внутри. Если Fтяж ˂ FA, тело плавает на поверхности (тело не может выпрыгнуть из жидкости и повиснуть над ней, сила тяжести вернет его).
При сравнении формул обеих сил просматривается объяснение, при каком условии силы различны или одинаковы.
FA = ρж g Vт Fтяж = mg = ρт Vт g.
В обеих формулах есть одинаковые множители: g и Vт. Отличие в плотностях. Видно, что, если ρт ˂ ρж, то сила тяжести меньше архимедовой – тело поднимается к поверхности жидкости. Если ρт ˃ ρж, то сила тяжести больше выталкивающей – тело идет на дно. Если ρт = ρж, силы тоже равны – тело плавает между дном и поверхностью (внутри) жидкости.
Именно поэтому поплавок, который обычно полый внутри (плотность воздуха 1,29 кг/м3), плавает на воде (плотность воды 1000 кг/м3). Свинцовое грузило (плотность свинца 11 300 кг/м3) тонет.
Конечно, условия такого плавания подходят для сплошных тел. Например, стекло с плотностью 2600 кг/м3 тонет в воде, а закупоренная стеклянная бутылка плавает, потому что весь объем закрытой бутылки занимает воздух с небольшой плотностью.
Способность бутылки плавать издавна использовали мореплаватели для передачи посланий о крушениях на землю. В пустую бутылку вкладывали свиток с текстом, бутылку закупоривали и бросали за борт. Долго бутылка путешествовала по морским просторам, но когда-то все равно волнами приливов прибивалась к суше.
Средняя плотность тела человека находится в пределах от 1030 до 1070 кг/м3. Значит, в чистой воде человек без умения плавать тонет.
Есть Мертвое море, где нельзя утонуть. В этом море, как и в воде залива Кара-Богаз-Гол (в Каспийском море) и озера Эльтон не утонуть, так как в них вода содержит около 27 % солей. Соли повышают плотность воды до 1180 кг/м3, что больше плотности человеческого тела. В обычной морской воде солей 2-3 % и плотность этой морской воды 1030 кг/м3.
Мертвое море
Некоторые домохозяйки используют для определения свежести купленных куриных яиц (плотность примерно 1090 кг/м3) простой способ. Через мелкие поры в тонкой скорлупе часть жидкости сырого яйца испаряется, замещаясь воздухом. Плотность такого яйца уменьшается. Свежее более плотное яйцо в чистой воде затонет, несвежее – всплывет.
Другой пример из жизни домохозяек. Они наливают в кастрюлю с водой, где отваривают макароны, растительное масло, чтобы макароны не слипались. Как бы ни размешивали смесь масла и воды, масло всплывает наверх. Объяснить просто. Плотность масла 930 кг/м3, меньше плотности воды. Стоит ли наливать масло? Не стоит. Масло будет плавать поверх воды. Большая часть макарон будет находиться в чистой воде. Поэтому масло никак не повлияет на макароны.
Нефть, мазут, бензин всегда находятся на поверхности воды, что представляет угрозу для окружающей среды при водных катастрофах, связанных с этими веществами.
Нефть на воде
Жидкости менее плотные плавают сверху, а более плотные опускаются вниз. В жидкой ртути плавает большинство металлов, только наиболее плотные (осмий, вольфрам, иридий, золото и некоторые другие) тонут.
Интересный пример плавания представляет подводная лодка. Она может плавать на поверхности воды, внутри ее и может залечь на дно. Можно схематически показать, как это происходит.
Источник
Конструкция лодки двухкорпусная: внутренний и внешний корпусы. Внутренний корпус предназначен для технических устройств, оборудования, людей. Между внешним и внутренним корпусами находятся балластные цистерны. Когда лодке требуется погружение, открываются кингстоны – отверстия, через которые забортная вода поступает между внутренним и внешним отсеками, заполняя балластные цистерны. Сила тяжести возрастает и становится больше архимедовой. Лодка погружается.
Чтобы прекратить погружение или всплыть, цистерны под большим давлением продуваются компрессорами, вода вытесняется в океан, ее место занимает воздух. Сила тяжести уменьшается. В момент равенства силы тяжести и архимедовой лодка будет плавать внутри воды. При дальнейшем заполнении цистерн воздухом лодка всплывает.
Почему не тонут корабли?
Теперь следует объяснить плавание судов. Понятно, что корабли, изготовленные из строительного деревянного материала, плавают по волнам, так как плотность дерева меньше плотности воды. Условие плавания здесь срабатывает безоговорочно. Современные корабли изготовлены преимущественно из металлов, у которых большая плотность. Почему металлический гвоздь тонет, а корабль нет?
Кораблю придают специальную форму, чтобы он как можно больше вытеснял воды, вес которой превосходит силу тяжести судна. Этот вес равен выталкивающей (архимедовой) силе, и значит, она больше силы тяжести. Из металла делают основной корпус судна, а остальной его объем заполнен воздухом. Корпусом корабль вытесняет значительное количество воды, достаточно глубоко погружаясь в нее.
Источник
Глубину погружения судна моряки называют осадкой. После загрузки корабля его осадка увеличивается. Перегружать корабль нельзя, иначе нарушится условие плавания, корабль может затонуть. Рассчитывается максимальная осадка, на судне проводится красная линия, которую называют ватерлинией, ниже ее корабль оседать не должен.
Вес корабля с максимально взятым грузом называется водоизмещением.
Мореплавание и судостроение неразрывно связаны с историей человечества. От плотов и лодок глубокой древности к каравеллам Колумба и Магеллана, Васко де Гамы и первому российскому военному кораблю «Орел» (1665г.), от первого парохода «Клермонт», построенного Р. Фультоном в США в 1807 году, до ледокола «Арктика», созданного в России в 1975 году.
Суда используются в различных целях: для пассажирских и грузовых перевозок, для научно-исследовательских работ, для охраны границ государства.
К сожалению, с кораблями происходят и неприятности. Во время шторма или других катастроф они могут затонуть. Опять приходит на помощь закон Архимеда.
Со спасательного судна[3] на прочных стропах опускают полые цилиндры большого объема. Чтобы они затонули, их заполняют водой. Водолазы закрепляют эти цилиндры на корпусе корабля. Сжатым воздухом под большим давлением, подаваемым по шлангам, вода из цилиндров вытесняется, заменяется воздухом. Вес цилиндров резко уменьшается. Они начинают выталкиваться из воды и вместе с кораблем всплывают на поверхность.
Спасение затонувшего корабля
В судоходстве, мореплавании, спасении судов помогает закон Архимеда, как один из самых важных законов природы.
Воздухоплавание
Красивое зрелище: цветные воздушные шары на разной высоте голубого неба. Какая сила поднимает их вверх?
5 июня 1783 года во Франции братья Монгольфьер наполнили дымом оболочку шара диаметром 10 м, и он стремительно полетел ввысь. Впервые официально было зарегистрировано изобретение, показавшее путь к воздухоплаванию. 27 августа 1783 года на Марсовом поле Парижа профессор Жак Шарль наполнил шар водородом, плотность которого 0,09 кг/м3. Около трехсот тысяч зрителей увидели, как шар стремительно поднялся вверх и стал вскоре невидимым. Началась история воздухоплавания.
Человек издавна мечтал освоить воздушный океан, как птица, поднявшись в небеса. Мечта стала явью благодаря открытой архимедом силе, действующей во всех жидкостях и газах. На все тела на Земле оказывает действие выталкивающая их из воздуха сила. Для твердых тел она значительно меньше силы тяжести, на практике ее не учитывают. Для газов эта сила имеет существенное значение.
Подъемная сила летящих воздушных шаров – это разность между весом воздуха, вытесненного шаром, и весом газа в оболочке. Что значит «вытесненного газом» и откуда вытесненного. Корабль вытесняет воду из моря. Это для моря как «комар для слона», но, тем не менее, это так. Человек вытесняет воду из ванны, что уже очень заметно. Так и воздушный шар вытесняет воздух из атмосферы.
А вот имеет ли воздух вес, проверяется очень легко, даже в домашних условиях: найти середину ровной палочки или линейки, вколотить туда маленький гвоздик так, чтобы палочка могла свободно вокруг него поворачиваться. Можно подвесить палочку на нитке за середину. На края палочки повесить два одинаково надутых шара. Палочка располагается горизонтально, т.е. наблюдается равновесие. Выпустить воздух из одного шарика. Равновесие нарушается. Шарик с воздухом перевешивает.
Источник
Опыт в лабораторных условиях проводится также легко и понятно. Находится масса открытого (значит, там есть воздух) стеклянного шара (рис. а). Затем насосом откачивается из шара воздух (рис.б) и шар плотно закрывается пробкой. Новое определение массы показывает, что масса шара без воздуха меньше (рис. в). Зная массу можно найти вес воздуха.
Источник
Газ в оболочке шара должен иметь плотность заметно меньшую плотности воздуха, как и плотность тела на поверхности какой-либо жидкости меньше плотности самой жидкости. Плотность гелия 0,18 кг/м3, водорода 0,09 кг/м3, а плотность воздуха 1,29 кг/м3. Поэтому для наполнения оболочек шаров используются подобные газы.
Создать подъемную силу для воздушного шара можно уменьшением плотности воздуха.
Из анализа таблицы зависимости плотности воздуха от температуры следует вывод: с ростом температуры снижается плотность воздуха. Соответственно с повышением температуры разница между архимедовой силой и силой тяжести возрастает. Эта разница сил и является подъемной силой шара.
При подъеме температура воздуха в оболочке шара снижается. Воздух приходится нагревать, что небезопасно.
Подогрев воздуха в шаре
Полет на таких шарах осуществляется недолго. Чтобы продлить его, используют балласт – дополнительный груз, который крепится на гондоле[4] (устройство, где находятся люди и приборы для работы). Сбрасывая балласт, можно подниматься выше. Спуская воздух из оболочки, можно опускаться вниз. Спускаясь или поднимаясь в разные слои атмосферы, можно уловить движение воздушных масс и двигаться в их направлении. Но подобрать нужное направление достаточно сложно. Таким способом можно лишь немного влиять на направление движения. Поэтому воздушные шары обычно движутся по направлению ветра.
Источник
На гигантских по своим размерам шарах (20 000 – 30 000 м3) удавалось достигать стратосферы. Такие шары называют стратостатами. Гондола стратостата должна иметь пригодный для жизни человека микроклимат. Воздух и температура в стратосфере не соответствуют условиям жизни человека. Приходится специально обустраивать гондолы стратостатов.
Другие, более простые, воздушные шары называют аэростатами. Если к гондоле шара пристроить двигатель, то получится управляемый человеком аэростат, называемый дирижаблем.
Дирижабль
К сожалению, полеты аэростатов зависят от капризов природы. Однако эти устройства обладают неоспоримыми преимуществами:
- огромная подъемная сила;
- экологически чистые аппараты;
- не нуждаются в больших количествах топлива;
- зрелищны.
Поэтому эти аппараты еще долго будут служить человеку.
Словарь
1. Бакаут (железное дерево) – вечнозеленое дерево тропиков с плотностью древесина близкой к плотности чугуна.
2. Черное эбеновое дерево – вечнозеленое тропическое дерево, в ядре которого не видны годичные кольца. Ядро твердое, тяжелое. Плотность дерева 1300 кг/м3.
3. Спасательное судно – судно специального (вспомогательного) назначения, служащее для подъема на поверхность затонувших объектов или для помощи кораблям, терпящим бедствие.
4. Гондола – устройство, крепящееся к воздушному шару для помещения туда людей, различных вещей и аппаратуры.
Калькулятор написан по запросу пользователя, который звучал так: “расчет веса цилиндра в жидкости”.
В данном случае понятно, что речь идет о законе Архимеда
“На тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу вытесненной этим телом жидкости (называемая силой Архимеда)“
Дальше текст капитана Очевидность.
Понятно, что на тело действует сила тяжести, равная или . Если тело погрузить в воду, то сила Архимеда начнет компенсировать силу тяжести. И как видно из формулы, все будет зависеть от плотности тела. Если плотность тела больше плотности жидкости – оно утонет, если меньше – будет выскакивать из воды, пока силы не уравновесятся (сила Архимеда будет уменьшаться за счет уменьшения объема тела погруженного в жидкость). Часть объема, оставшегося под водой, будет определяться соотношением плотностей – если плотность тела в два раза меньше плотности жидкости, погрузится только половина объема. Ну тут все тривиально.
Теперь с весом – вес будет уменьшаться на величину силы Архимеда. Уже есть, что посчитать. Мы можем не знать плотности тела, но зная его объем можно найти силу Архимеда, на которую и будет уменьшен вес. А поскольку под весом у нас обычно понимают массу, заодно расчитаем, какая масса воды была вытеснена, т.е. на сколько килограмм “уменьшилась” масса тела, погруженного в жидкость.
Сила Архимеда
Объем погруженного тела, м3
Ускорение св. падения, м/с2
Ускорение свободного падения, м/с2
Точность вычисления
Знаков после запятой: 2
Масса вытесненной воды, кг