Как найти внешнее сопротивление проводника

Содержание

  • 1 Что такое внутреннее сопротивление источника тока?
  • 2 Что такое внешнее сопротивление цепи?
  • 3 Что понимают под полным сопротивлением замкнутой цепи?
  • 4 Как гласит закон Ома?
  • 5 Что такое внутреннее сопротивление аккумулятора?
  • 6 Как найти внутреннее сопротивление источника тока?
  • 7 Что называют внешним сопротивлением?
  • 8 Что такое сопротивление?
  • 9 Чему равно полное сопротивление?
  • 10 Как формулируется закон Ома для замкнутой цепи?
  • 11 Что называется полным сопротивлением цепи?
  • 12 Что такое эдс для чайников?
  • 13 Как легко понять закон Ома?
  • 14 В чем суть закона Ома?

Что такое внутреннее сопротивление источника тока?

В электрической цепи, состоящей из источника тока и проводников с электрическим сопротивлением R, ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Электрическое сопротивление источника тока называется внутренним сопротивлением.

Что такое внешнее сопротивление цепи?

ВНЕШНЕЕ СОПРОТИВЛЕНИЕ, сопротивление электрической цепи, в к-рую включен генератор электрической энергии. При отсутствии в самой цепи электродвижущей силы, внешнее сопротивление равно частному от деления электрического напряжения на концах цепи на силу тока, проходящего через нее.

Что понимают под полным сопротивлением замкнутой цепи?

ЭДС (электродвижущая сила) — работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению, потенциалу). Полное сопротивление цепи — R+r. где величина — падение напряжения внутри источника тока.

Как гласит закон Ома?

Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. … Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой: I = U/R.

Что такое внутреннее сопротивление аккумулятора?

Внутренее сопротивление аккумуляторов — параметр, позволяющий оценить «здоровье» аккумулятора … Омическое сопротивление является суммой сопротивлений сепараторов аккумулятора, электродов, положительного и отрицательного выводов, мостовых сварных соединений между элементами и электролита.

Как найти внутреннее сопротивление источника тока?

Нужно определить внутреннее сопротивление аккумулятора.

  1. По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
  2. Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.

Что называют внешним сопротивлением?

Закон Ома для полной цепи

Внутренний участок цепи — это источник тока. Его сопротивление называется внутренним сопротивлением источника тока и обозначается буквой r. Все, что подключено к источнику тока, называется внешним участком электрической цепи, сопротивление которого обозначается R.

Что такое сопротивление?

Сопротивление — это величина, которая отражает противодействие движению тока в электрической цепи. Сопротивление измеряется в омах, для обозначения которых используется греческая буква омега (Ω).

Чему равно полное сопротивление?

Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е. Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

Как формулируется закон Ома для замкнутой цепи?

Закон Ома для полной замкнутой цепи формулируется так: сила тока в замкнутой цепи прямо пропорциональна ЭДС в цепи и обратно пропорциональна общему сопротивлению цепи. Под общим сопротивлением подразумевается сумма внешнего и внутреннего сопротивлений.

Что называется полным сопротивлением цепи?

Обычно цепь переменного тока включает в себя и активное сопротивление, и емкость, и индуктивность. Полное сопротивление (Z) — это векторная сумма всех сопротивлений: активного, емкостного и индуктивного. … — полное сопротивление определяет силу тока в цепи по закону Ома.

Что такое эдс для чайников?

Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил (то есть любых сил, кроме электростатических и диссипативных) действующих в квазистационарных цепях постоянного или переменного тока.

Как легко понять закон Ома?

Формулировка и объяснение закона Ома

Он гласит: Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению. … Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

В чем суть закона Ома?

Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году (опубликован в 1827 году) и назван в его честь.

Закон Ома

  1. Главная
  2. /
  3. Физика
  4. /
  5. Закон Ома

Чтобы посчитать Закон Ома воспользуйтесь нашим очень удобным онлайн калькулятором:

Закон Ома для участка цепи

Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

Онлайн калькулятор

Найти силу тока

Напряжение: U =В
Сопротивление: R =Ом

Сила тока: I =

0

А

Сила тока

Формула

I = U/R

Пример

Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:

Сила тока на этом участке I = 12/2= 6 А

Найти напряжение

Сила тока: I =A
Сопротивление: R =Ом

Напряжение: U =

0

В

Напряжение

Формула

U = I ⋅ R

Пример

Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:

Напряжение на этом участке U = 6⋅2 = 12 В

Найти сопротивление

Напряжение: U =В
Сила тока: I =A

Сопротивление: R =

0

Ом

Сопротивление

Формула

R = U/I

Пример

Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:

Электрическое сопротивление на этом участке R = 12/6 = 2 Ом

Закон Ома для полной цепи

Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

Онлайн калькулятор

Найти силу тока

ЭДС: ε
Сопротивление всех внешних элементов цепи: R =Ом
Внутреннее сопротивление источника напряжения: r =Ом

Сила тока: I =

0

А

Формула

I = ε/R+r

Пример

Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

Сила тока I = 12/4+2 = 2 А

Найти ЭДС

Сила тока: I =А
Сопротивление всех внешних элементов цепи: R =Ом
Внутреннее сопротивление источника напряжения: r =Ом

ЭДС: ε =

0

В

Формула

ε = I ⋅ (R+r)

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

ЭДС ε = 2 ⋅ (4+2) = 12 В

Найти внутреннее сопротивление источника напряжения

Сила тока: I =А
ЭДС: ε
Сопротивление всех внешних элементов цепи: R =Ом

Внутреннее сопротивление источника напряжения: r =

0

Ом

Формула

r = ε/I R

Пример

Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:

Внутреннее сопротивление источника напряжения r = 12/2 – 4 = 2 Ом

Найти сопротивление всех внешних элементов цепи

Сила тока: I =А
ЭДС: ε
Внутреннее сопротивление источника напряжения: r =Ом

Сопротивление всех внешних элементов цепи: R =

0

Ом

Формула

R = ε/I – r

Пример

Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:

Сопротивление всех внешних элементов цепи: R = 12/2 – 2 = 4 Ом

См. также

Закон Ома для замкнутой цепи

Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I – Сила тока в цепи.

– Электродвижущая сила (ЭДС) – величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника. r – Внутреннее сопротивление источника питания.

Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR. Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания. С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы. По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = – I*r. Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U. Если ток в цепи равен нулю, следовательно, = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U ) независимо от сопротивления внешней цепи R. Такой источник питания называют источником напряжения.

Основные понятия

Электрический ток течёт, когда замкнутый контур позволяет электронам перемещаться от высокого потенциала к более низкому в цепи. Иначе говоря, ток требует источника электронов, обладающего энергией для приведения их в движение, а также точки их возвращения отрицательных зарядов, для которой характерен их дефицит. Как физическое явление ток в цепи характеризуется тремя фундаментальными величинами:

  • напряжение;
  • сила тока;
  • сопротивление проводника, по которому движутся электроны.

Сила и напряжение

Сила тока (I, измеряется в Амперах) есть объём электронов (заряд), перемещающихся через место в цепи за единицу времени. Иными словами, измерение I — это определение количества электронов, находящихся в движении. Важно понимать, что термин относится только к движению: статические заряды, например, на клеммах неподсоединённой батареи, не имеют измеряемого значения I. Ток, который протекает в одном направлении, называется постоянным (DC), а периодически изменяющий направление — переменным (AC).

Вольт — единица измерения, применяемая для электрической разницы потенциалов, самого потенциала и электродвижущей силы. Термин напряжение (U) относится к электрической разности потенциалов между точками. Любые статические заряды имеют значение в Вольтах, а величина их разности определяется как U.

Напряжение можно проиллюстрировать таким явлением, как давление, или как разность потенциальной энергии предметов под воздействием гравитации. Для того чтобы создать этот дисбаланс, нужно затратить предварительно энергию, которая и будет реализована в движении при соответствующих обстоятельствах. Например, в падении груза с высоты реализуется работа по его подъёму, в гальванических батареях разность потенциалов на клеммах образуется за счёт преобразования химической энергии, в генераторах — в результате воздействия электромагнитного поля.

Вам это будет интересно Последовательность в открытии электричества

Сопротивление проводников

Независимо от того, насколько хорош обычный проводник, он никогда не будет пропускать сквозь себя электроны без какого-либо сопротивления их движению. Можно рассматривать сопротивление как аналог механического трения, хотя это сравнение не будет совершенным. Когда ток протекает через проводник, некоторая разность потенциалов преобразуется в тепло, поэтому всегда будет падение напряжения на резисторе. Электрические обогреватели, фены и другие подобные устройства предназначены исключительно для рассеивания электрической энергии в виде тепла.

Упрощённо сопротивление (обозначается как R) является мерой того, насколько поток электронов тормозится в цепи. Оно измеряется в Омах. Проводимость резистора или другого элемента определяется двумя свойствами:

  • геометрией;
  • материалом.

Форма имеет важнейшее значение, это очевидно на гидравлической аналогии: протолкнуть воду через длинную и узкую трубу гораздо тяжелее, чем через короткую и широкую. Материалы играют определяющую роль. Например, электроны могут свободно перемещаться в медном проводе, но не способны протекать вообще через такие изоляторы, как каучук, независимо от их формы. Кроме геометрии и материала, существуют и другие факторы, влияющие на проводимость.

Закон Ома для переменного тока

При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление. В таком случае запись Закона Ома будет иметь вид:

I = U/Z

Здесь Z – полное (комплексное) сопротивление цепи – импеданс. В него входит активная R и реактивная X составляющие. Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи. Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс.

С учётом сдвига фаз φ, созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме:

Нелинейные элементы и цепи

Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников. Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы. Такие элементы и цепи, в которых они используются, называют нелинейными.

Напряжение, ток и сопротивление

Электрическая цепь образуется, когда создается проводящий путь, позволяющий электрическому заряду непрерывно перемещаться. Это непрерывное движение электрического заряда по проводникам цепи называется током, и о нем часто говорят как о «потоке», как о потоке жидкости через полую трубу.

Сила, побуждающая носители заряда «течь» по цепи, называется напряжением. Напряжение – это особая мера потенциальной энергии, которая всегда относительна между двумя точками. Когда мы говорим об определенной величине напряжения, присутствующего в цепи, мы имеем в виду измерение потенциальной энергии для перемещения носителей заряда из одной конкретной точки этой цепи в другую конкретную точку. Без упоминания двух конкретных точек термин «напряжение» не имеет значения.

Ток, как правило, проходит через проводники с некоторой степенью трения или противодействия движению. Это противодействие движению правильнее называть сопротивлением. Величина тока в цепи зависит от величины напряжения и величины сопротивления в цепи, препятствующего прохождению тока. Как и напряжение, сопротивление – это величина, измеряемая между двумя точками. По этой причине величины напряжения и сопротивления часто указываются как «между» двумя точками в цепи.

Внешнее и внутреннее сопротивление

Все батареи и генераторы обладают внутренним сопротивлением: электроды и электролиты неабсолютные проводники, как и провода обмоток электрических машин. Оно может варьироваться от тысячных долей ома до нескольких ом. Этот физический параметр является ключевым в законе Ома для всей цепи. В качестве математических моделей для рассмотрения и иллюстрации электрических процессов различают:

  • Идеальный источник тока (ИИТ). Генерирует электрический ток, не зависящий от изменений напряжения. Внутреннее сопротивление ИИТ бесконечно, напряжение полностью определяется подключённой схемой. Ни один физический источник тока не может работать в условиях разрыва цепи, поэтому ИИТ возможен только в качестве абстрактной модели.
  • Идеальный источник напряжения (ИИН). Представляет собой устройство, поддерживающее постоянное выходное напряжение независимо от тока, протекающего по контуру. Обладает нулевым внутренним сопротивлением. ИИН удобен для моделирования практических источников, которые можно представить как ИНН с подключённым резистором.

Внутренне сопротивление источника электрической энергии является фактором обеспечения максимальной мощности для подключённой к нему нагрузки. Наиболее эффективный перенос энергии происходит, когда внешнее сопротивление значительно превышает внутреннее у источника.

Например, свинцово-кислотные аккумуляторы автомобиля, благодаря низкому внутреннему сопротивлению, способны создавать относительно высокие токи при сравнительно низком напряжении. Однако, с другой стороны, высоковольтные источники должны иметь высокое внутренне сопротивление, чтобы ограничить количество тока, протекающего в результате случайного короткого замыкания.

Вам это будет интересно Какой мультиметр лучше выбрать для дома и автомобиля

Кулон и электрический заряд

Одна из основных единиц электрических измерений, которую часто преподают в начале курсов электроники, но нечасто используют впоследствии, – это кулон – единица измерения электрического заряда, пропорциональная количеству электронов в несбалансированном состоянии. Один кулон заряда соответствует 6 250 000 000 000 000 000 электронов. Символом количества электрического заряда является заглавная буква «Q», а единица измерения кулонов обозначается «Кл». Единица измерения тока, ампер, равна 1 кулону заряда, проходящему через заданную точку в цепи за 1 секунду. В этом смысле, ток – это скорость движения электрического заряда через проводник.

Как указывалось ранее, напряжение – это мера потенциальной энергии на единицу заряда, доступная для стимулирования протекания тока из одной точки в другую. Прежде чем мы сможем точно определить, что такое «вольт», мы должны понять, как измерить эту величину, которую мы называем «потенциальной энергией». Общей метрической единицей измерения энергии любого вида является джоуль, равный количеству работы, совершаемой силой в 1 ньютон при движении на 1 метр (в том же направлении). В этих научных терминах 1 вольт равен 1 джоулю электрической потенциальной энергии на (деленному на) 1 кулон заряда. Таким образом, 9-вольтовая батарея выделяет 9 джоулей энергии на каждый кулон заряда, проходящего через цепь.

Эти единицы и символы электрических величин станут очень важны, когда мы начнем исследовать отношения между ними в цепях.

Формула закона Ома

Основное открытие Ома заключалось в том, что величина электрического тока, протекающего через металлический проводник в цепи, при любой заданной температуре прямо пропорциональна напряжению, приложенному к нему. Ом выразил свое открытие в виде простого уравнения, описывающего взаимосвязь напряжения, тока и сопротивления:

[E=IR]

В этом алгебраическом выражении напряжение (E) равно току (I), умноженному на сопротивление (R). Используя алгебру, мы можем преобразовать это уравнение в других два варианта, решая его для I и R соответственно:

От чего зависит сопротивление резистора

Температура и последовательность включения – два главных фактора, которые определяют сопротивление в цепи. Но помимо этих показателей есть и допуски. Как же измерять? В большинстве электрических или электронных цепей большой 20% -ный допуск на один и тот же резистор, как правило, не является проблемой, но если для высокоточных цепей, таких как фильтры, генераторы или усилители и т. д., требуются резисторы с малым допуском, то необходимо использовать резистор с правильным допуском. Так как резистор с допуском 20% обычно не может использоваться для замены типа допуска 2% или даже 1%.

Цветовой код пяти- и шестиполосного резистора чаще всего ассоциируется с высокопрецизионными типами пленок 1% и 2%, в то время как универсальные садовые разновидности 5% и 10% общего назначения обычно используют четырехполосный цветовой код резистора. Резисторы имеют различные допуски, но наиболее распространенными являются E12 и E24 .

Е12 серия поставляется в двенадцати значений сопротивления за десятилетие (А десятилетие , представляющее кратные 10, то есть 10, 100, 1000 и т.д.), в то время как Е24 серия приходит в двадцать четыре значений за десятилетие и E96 серии девяносто шесть значений за десятилетие. Серия E192 с очень высокой точностью теперь доступна с допусками до ± 0,1%, что дает массивные 192 значения отдельных резисторов за десятилетие.

Советуем изучить Управляемый стабилизатор напряжения tl431 (on semiconductor)

Как зависит от температуры

Чем выше температура, тем выше сопротивление. Это связано с быстрой скоростью движения атомов внутри твердого тела. Обратное явление – сверхпроводимость при низких температурах. Опять же, не забываем про погрешность.

От других параметров

Если резистор подключен в сложную цепь с множеством преобразующих, защитных, трансформирующих, компрессирующих устройств, то он будет иметь другое, отличное от стандартного, сопротивление, так как часть напряжения все равно будет проходить через него в нескомпрессированном виде, что не позволит ему отработать как следует. Чтобы более точно узнать удельный ток и сопротивление, показатель, полученный в расчетах, нужно уменьшить или увеличить на заданную величину.

Метода треугольника закона Ома

Закон Ома – очень простой и полезный инструмент для анализа электрических цепей. Он так часто используется при изучении электричества и электроники, что студент должен запомнить его. Если вы не очень хорошо умеете работать с формулами, то для его запоминания существует простой прием, помогающий использовать его для любой величины, зная две других. Сначала расположите буквы E, I и R в виде треугольника следующим образом:

Рисунок 5 – Треугольник закона Ома

Если вы знаете E и I и хотите определить R, просто удалите R с картинки и посмотрите, что осталось:

Рисунок 6 – Закон Ома для определения R

Если вы знаете E и R и хотите определить I, удалите I и посмотрите, что осталось:

Рисунок 7 – Закон Ома для определения I

Наконец, если вы знаете I и R и хотите определить E, удалите E и посмотрите, что осталось:

Рисунок 8 – Закон Ома для определения E

В конце концов, вам придется научиться работать с формулами, чтобы серьезно изучать электричество и электронику, но этот совет может облегчить запоминание ваших первых вычислений. Если вам удобно работать с формулами, всё, что вам нужно сделать, это зафиксировать в памяти E = IR и вывести из нее две другие формулы, когда они вам понадобятся!

Что нам дает параллельное и последовательное соединение?

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

  • Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
  • Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга. Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя. Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения.

    Практическое применение закона Ома: можно создавать источники питания с нужным напряжением и силой тока

    Практическое применение закона Ома: можно создавать источники питания с нужным напряжением и силой тока

В общем, это наиболее распространенные варианты использования этих соединений.

Заказать решение ТОЭ

  • Метрология Электрические измерения
  • Пигарев А.Ю. РГЗ по электротехнике и электронике в Multisim
  • Теория линейных электрических цепей ТЛЭЦ — Теория линейных электрических цепей железнодорожной автоматики, телемеханики и связи: задание на контрольные работы № 1 и 2 с методическими указаниями для студентов IV курса специальности Автоматика, телемеханика и связь на железнодорожном транспорте — Контрольная работа №1
  • — Контрольная работа №2
  • Электротехника и основы электроники
      — Электротехника и основы электроники: Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей высших учебных заведений / Соколов Б.П., Соколов В.Б. – М.: Высш. шк., 1985. – 128 с, ил — Контрольная работа № 1 Электрические цепи
  • — Контрольная работа № 2 Трансформаторы и электрические машины
  • — Контрольная работа № 3 Основы электроники
  • Теоретические основы электротехники ТОЭ
      — Артеменко Ю.П., Сапожникова Н.М. Теоретические основы электротехники: Пособие по выполнению курсовой работы МГТУ ГА 2009
  • — Переходные процессы Переходные процессы в электрических цепях
  • — Теоретические основы электротехники Методические указания и контрольные задания для студентов технических специальностей вузов — Задание 1 Линейные электрические цепи постоянного и синусоидального тока — Задача 1.1 Линейные электрические цепи постоянного тока
  • — Задача 1.2 Линейные электрические цепи синусоидального тока
  • — Задание 2 Четырехполюсники, трехфазные цепи, периодические несинусоидальные токи, электрические фильтры, цепи с управляемыми источниками
  • — Теоретические основы электротехники сб. заданий Р.Я. Сулейманов Т.А. Никитина Екатеринбург УрГУПС 2010
  • — Трехфазные цепи. Расчет трехфазных цепей
  • — УГТУ-УПИ Решение ТОЭ Билеты по ТОЭ
  • — Электромагнитное поле Электростатическое поле Электростатическое поле постоянного тока в проводящей среде Магнитное поле постоянного тока
  • Советуем изучить Устройство осциллятора для сварочных работ

    Параллельное и последовательное соединение

    В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

    Закон Ома для параллельного и последовательного соединения

    Закон Ома для параллельного и последовательного соединения

    Параллельное соединение

    Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

    Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

    Законы для параллельного соединения

    Законы для параллельного соединения

    Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

    Электродвижущая сила

    Перемещение электронов в любом источнике создаётся с помощью сторонних сил. Их природа может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов. В генераторах тока они появляются как результат движения проводников в магнитном поле. Источник тока в электрической схеме играет ту же роль, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

    Вам это будет интересно Классификация воздушных и подземных ЛЭП и их назначение

    Под воздействием внешних сил заряды двигаются внутри источника тока против сил электростатического поля. Это позволяет поддерживать постоянный ток в замкнутом контуре до тех пор, пока работают внешние силы. Физическая величина, равная отношению затраченной энергии сторонних сил на перемещение заряда, называется электродвижущей силой источника тока. Она может быть представлена формулой ℰ = A/q. В этом выражении:

    • ℰ — ЭДС в вольтах;
    • A — работа в джоулях;
    • q — заряд в кулонах.

    По аналогии с замкнутой гидравлической системой и насосом, электрические заряды протекают непрерывно по всему контуру, и привести их в движение могут только внешние силы. Это означает, что работу по перемещению заряда любым источником можно рассматривать как ЭДС и измерять в вольтах. Вывод о модели цепи с источником, в которой протекает ток, как о замкнутом контуре крайне важен для понимания закона Ома для полного участка цепи.

    Содержание

    1. Закон Ома для участка цепи и полной цепи: формулы и определения
    2. Закон Ома для участка цепи:
    3. Определение единицы сопротивления — Ом
    4. Закон Ома для полной цепи
    5. Как запомнить формулы закона Ома
    6. Закон Ома для полной цепи
    7. Внешнее и внутреннее сопротивление
    8. Электродвижущая сила аккумулятора
    9. Закон Ома
    10. Закон Ома для участка цепи
    11. Онлайн калькулятор
    12. Найти силу тока
    13. Формула
    14. Пример
    15. Найти напряжение
    16. Формула
    17. Пример
    18. Найти сопротивление
    19. Формула
    20. Пример
    21. Закон Ома для полной цепи
    22. Онлайн калькулятор
    23. Найти силу тока
    24. Формула
    25. Пример
    26. Найти ЭДС
    27. Формула
    28. Пример
    29. Найти внутреннее сопротивление источника напряжения
    30. Формула
    31. Пример
    32. Найти сопротивление всех внешних элементов цепи
    33. Формула
    34. Пример
    35. Закон Ома для полной цепи
    36. Идеальный источник ЭДС
    37. Внутреннее сопротивление источника ЭДС
    38. Закон Ома для полной цепи
    39. Просадка напряжения
    40. Как найти внутреннее сопротивление источника ЭДС
    41. Вывод
    42. ЭДС. Закон Ома для полной цепи
    43. Сторонняя сила
    44. Закон Ома для полной цепи
    45. КПД электрической цепи
    46. Закон Ома для неоднородного участка

    Закон Ома для участка цепи и полной цепи: формулы и определения

    Немецкий физик Георг Симон Ом (1787—1854) открыл основной закон электрической цепи.

    Закон Ома для участка цепи:

    Определение: Cила тока I на участке электрической цепи прямо пропорциональна напряжению U на концах участка и обратно пропорциональна его сопротивлению R.

    1. I — сила тока (в системе СИ измеряется — Ампер)
      • Сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
      • Формула: I=frac
      • U — напряжение (в системе СИ измеряется — Вольт)
        • Падение напряжения на участке проводника равно произведению силы тока в проводнике на сопротивление этого участка.
        • Формула: U=IR
      • R— электрическое сопротивление (в системе СИ измеряется — Ом).
        • Электрическое сопротивление R это отношение напряжения на концах проводника к силе тока, текущего по проводнику.
        • Формула R=frac

    Определение единицы сопротивления — Ом

    1 Ом представляет собой электрическое сопротивление участка проводника, по которому при напряжении 1 (Вольт) протекает ток 1 (Ампер).

    Закон Ома для полной цепи

    Определение: Сила тока в цепи пропорциональна действующей в цепи ЭДС и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника

    Формула I=frac <varepsilon>

    • varepsilon — ЭДС источника напряжения, В;
    • I — сила тока в цепи, А;
    • R — сопротивление всех внешних элементов цепи, Ом;
    • r — внутреннее сопротивление источника напряжения, Ом.

    Как запомнить формулы закона Ома

    Треугольник Ома поможет запомнить закон. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисления.

    .Треугольник Ома

    Закон Ома

    • U — электрическое напряжение;
    • I — сила тока;
    • P — электрическая мощность;
    • R — электрическое сопротивление

    Смотри также:

    Для закрепления своих знаний решай задания и варианты ЕГЭ по физике с ответами и пояснениями.

    Источник

    Закон Ома для полной цепи

    Закон Ома для полной цепи, определение которого касается значения электрического тока в реальных цепях, находится в зависимости от источника тока и от сопротивления нагрузки. Этот закон носит и другое название – закон Ома для замкнутых цепей. Принцип действия данного закона заключается в следующем.

    Закон Ома для полной цепи

    В качестве самого простого примера, электрическая лампа, являющаяся потребителем электрического тока, совместно с источником тока есть не что иное, как замкнутая электрическая цепь. Данная электрическая цепь наглядно показана на рисунке.

    Электроток, проходя через лампочку, также проходит и через сам источник тока. Таким образом, во время прохождения по цепи, ток испытает сопротивление не только проводника, но и сопротивление, непосредственно, самого источника тока. В источнике сопротивление создается электролитом, находящимся между пластинами и пограничными слоями пластин и электролита. Отсюда следует, что в замкнутой цепи, ее общее сопротивление будет состоять из суммы сопротивлений лампочки и источника тока.

    Внешнее и внутреннее сопротивление

    Сопротивление нагрузки, в данном случае лампочки, соединенной с источником тока, носит название внешнего сопротивления. Непосредственное сопротивление источника тока называется внутренним сопротивлением. Для более наглядного изображения процесса, все значения необходимо условно обозначить. I – сила тока, R – внешнее сопротивление, r – внутреннее сопротивление. Когда по электрической цепи протекает ток, то для того, чтобы поддерживать его, между концами внешней цепи должна присутствовать разность потенциалов, которая имеет значение IхR.

    Но, протекание тока наблюдается и во внутренней цепи. Значит, для того, чтобы поддержать электроток во внутренней цепи, также необходима разность потенциалов на концах сопротивления r. Значение этой разности потенциалов равно Iхr.

    Электродвижущая сила аккумулятора

    Аккумулятор должен иметь следующее значение электродвижущей силы, способной поддерживать необходимый ток в цепи: Е=IхR+Iхr. Из формулы видно, что электродвижущая сила аккумулятора составляет сумму внешнего и внутреннего напряжения. Значение тока нужно вынести за скобки: Е=I(r+R). Иначе можно представить: I=Е/(r+R). Двумя последними формулами выражается закон Ома для полной цепи, определение которого звучит следующим образом: в замкнутой цепи сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений этой цепи.

    Источник

    Закон Ома

    Закон Ома для участка цепи

    Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).

    Онлайн калькулятор

    Найти силу тока

    Напряжение: U = В
    Сопротивление: R = Ом

    Сила тока

    Формула

    Пример

    Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:

    Сила тока на этом участке I = 12 /2= 6 А

    Найти напряжение

    Сила тока: I = A
    Сопротивление: R = Ом

    Напряжение

    Формула

    Пример

    Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:

    Напряжение на этом участке U = 6⋅2 = 12 В

    Найти сопротивление

    Напряжение: U = В
    Сила тока: I = A

    Сопротивление

    Формула

    Пример

    Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:

    Электрическое сопротивление на этом участке R = 12 /6 = 2 Ом

    Закон Ома для полной цепи

    Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.

    Онлайн калькулятор

    Найти силу тока

    ЭДС: ε = В
    Сопротивление всех внешних элементов цепи: R = Ом
    Внутреннее сопротивление источника напряжения: r = Ом

    Формула

    Пример

    Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

    Сила тока I = 12 /4+2 = 2 А

    Найти ЭДС

    Сила тока: I = А
    Сопротивление всех внешних элементов цепи: R = Ом
    Внутреннее сопротивление источника напряжения: r = Ом

    Формула

    Пример

    Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:

    ЭДС ε = 2 ⋅ (4+2) = 12 В

    Найти внутреннее сопротивление источника напряжения

    Сила тока: I = А
    ЭДС: ε = В
    Сопротивление всех внешних элементов цепи: R = Ом

    Внутреннее сопротивление источника напряжения: r =

    Формула

    Пример

    Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:

    Внутреннее сопротивление источника напряжения r = 12/2 — 4 = 2 Ом

    Найти сопротивление всех внешних элементов цепи

    Сила тока: I = А
    ЭДС: ε = В
    Внутреннее сопротивление источника напряжения: r = Ом

    Сопротивление всех внешних элементов цепи: R =

    Формула

    Пример

    Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:

    Сопротивление всех внешних элементов цепи: R = 12/2 — 2 = 4 Ом

    Источник

    Закон Ома для полной цепи

    Если закон Ома для участка цепи знают почти все, то закон Ома для полной цепи вызывает затруднения у школьников и студентов. Оказывается, все до боли просто!

    Идеальный источник ЭДС

    Давайте вспомним, что такое ЭДС. ЭДС – это что-то такое, что создает электрический ток. Если к такому источнику напряжения подцепить любую нагрузку (хоть миллиард галогенных ламп, включенных параллельно), то он все равно будет выдавать такое же напряжение, какое-бы он выдавал, если бы мы вообще не цепляли никакую нагрузку.

    Короче говоря, какая бы сила тока не проходила через цепь резистора, напряжение на концах источника ЭДС будет всегда одно и тоже. Такой источник ЭДС называют идеальным источником ЭДС.

    Но как вы знаете, в нашем мире нет ничего идеального. То есть если бы в нашем аккумуляторе был идеальный источник ЭДС, тогда бы напряжение на клеммах аккумулятора никогда бы не проседало. Но оно проседает и тем больше, чем больше силы тока потребляет нагрузка. Что-то здесь не так. Но почему так происходит?

    Внутреннее сопротивление источника ЭДС

    Дело все в том, что в аккумуляторе “спрятано” сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой “r “.

    Выглядит все это в аккумуляторе примерно вот так:

    Итак, что у нас получается в чистом виде?

    Лампочка – это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:

    Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.

    На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .

    Теперь вспоминаем статью делитель тока. Сила тока, протекающая через последовательно соединенные сопротивления везде одинакова.

    Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что

    Закон Ома для полной цепи

    Итак, последнее выражение носит название “закон Ома для полной цепи”

    закон Ома для полной цепи формула

    Е – ЭДС источника питания, В

    R – сопротивление всех внешних элементов в цепи, Ом

    I – сила ток в цепи, А

    r – внутреннее сопротивление источника питания, Ом

    Просадка напряжения

    Итак, знакомьтесь, автомобильный аккумулятор!

    автомобильный аккумулятор

    Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус

    Наш подопечный готов к бою.

    Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на “ближний” свет.

    Первым делом давайте замеряем напряжение на клеммах аккумулятора

    12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.

    Подключаем галогенную лампу к аккумулятору и снова замеряем напряжение:

    Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!

    А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:

    Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр – силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.

    Смотрим на показания приборов:

    Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.

    Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла

    Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.

    Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.

    Как найти внутреннее сопротивление источника ЭДС

    Давайте снова вернемся к этой фотографии

    Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае ЭДС=12,09 Вольт.

    Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем сопротивлении и на нагрузке, в данном случае на лампочке:

    Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем сопротивлении падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r

    Вывод

    Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.

    Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.

    Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.

    Источник

    ЭДС. Закон Ома для полной цепи

    Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

    Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

    До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

    Как мы знаем, положительный заряд :

    • уходит во внешнюю цепь с положительной клеммы источника;

    • перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

    • приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

    Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е. против направления тока).

    Сторонняя сила

    Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1 ).

    Рис. 1. Сторонняя сила

    Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

    Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

    Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

    Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

    Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

    Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

    Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

    Закон Ома для полной цепи

    Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

    Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2 ).

    Рис. 2. Полная цепь

    Наша задача — найти силу тока в цепи и напряжение на резисторе .

    За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

    Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

    Итак, , и мы приравниваем правые части формул (2) и (3) :

    После сокращения на получаем:

    Вот мы и нашли ток в цепи:

    Формула (4) называется законом Ома для полной цепи.

    Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

    Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

    Зная силу тока (формула (4) ), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

    Это напряжение является разностью потенциалов между точками и (рис. 2 ). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

    Мы видим из формулы (5) , что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

    1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

    2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

    Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

    КПД электрической цепи

    Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

    Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

    Если сила тока в цепи равна , то

    Некоторое количество теплоты выделяется также на источнике тока:

    Полное количество теплоты, которое выделяется в цепи, равно:

    КПД электрической цепи — это отношение полезного тепла к полному:

    КПД цепи равен единице лишь в том случае, если источник тока идеальный .

    Закон Ома для неоднородного участка

    Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

    Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

    На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

    Рис. 3. ЭДС «помогает» току:

    Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

    Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

    Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

    Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

    Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

    Подставляем сюда выражения для , и закон Джоуля–Ленца:

    Сокращая на , получаем закон Ома для неоднородного участка цепи:

    или, что то же самое:

    Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

    Отметим два следствия выведенных формул (6) и (7) .

    1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

    2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

    Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

    Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

    Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4 . Здесь ток, идущий от к , направлен против действия сторонних сил источника.

    Рис. 4. ЭДС «мешает» току:

    Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

    Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

    Тогда закон Ома для неоднородного участка примет вид:

    где по-прежнему — напряжение на участке.

    Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

    Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

    Источник

    Что такое внутреннее и внешнее сопротивление цепи?

    Что такое внутреннее сопротивление источника тока?

    В электрической цепи, состоящей из источника тока и проводников с электрическим сопротивлением R, ток совершает работу не только на внешнем, но и на внутреннем участке цепи. Электрическое сопротивление источника тока называется внутренним сопротивлением.

    Что такое внешнее сопротивление цепи?

    ВНЕШНЕЕ СОПРОТИВЛЕНИЕ, сопротивление электрической цепи, в к-рую включен генератор электрической энергии. При отсутствии в самой цепи электродвижущей силы, внешнее сопротивление равно частному от деления электрического напряжения на концах цепи на силу тока, проходящего через нее.

    Что понимают под полным сопротивлением замкнутой цепи?

    ЭДС (электродвижущая сила) — работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению, потенциалу). Полное сопротивление цепи — R+r. где величина — падение напряжения внутри источника тока.

    Как гласит закон Ома?

    Закон Ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. … Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой: I = U/R.

    Что такое внутреннее сопротивление аккумулятора?

    Внутренее сопротивление аккумуляторов — параметр, позволяющий оценить «здоровье» аккумулятора … Омическое сопротивление является суммой сопротивлений сепараторов аккумулятора, электродов, положительного и отрицательного выводов, мостовых сварных соединений между элементами и электролита.

    Как найти внутреннее сопротивление источника тока?

    Нужно определить внутреннее сопротивление аккумулятора.

    Что называют внешним сопротивлением?

    Закон Ома для полной цепи

    Внутренний участок цепи — это источник тока. Его сопротивление называется внутренним сопротивлением источника тока и обозначается буквой r. Все, что подключено к источнику тока, называется внешним участком электрической цепи, сопротивление которого обозначается R.

    Что такое сопротивление?

    Сопротивление — это величина, которая отражает противодействие движению тока в электрической цепи. Сопротивление измеряется в омах, для обозначения которых используется греческая буква омега (Ω).

    Чему равно полное сопротивление?

    Полное сопротивление будет равно корню квадратному из суммы квадратов активного и реактивного сопротивлений, т. е. Способ построения треугольника сопротивлений для этого случая изображен на рис. 4 б.

    Как формулируется закон Ома для замкнутой цепи?

    Закон Ома для полной замкнутой цепи формулируется так: сила тока в замкнутой цепи прямо пропорциональна ЭДС в цепи и обратно пропорциональна общему сопротивлению цепи. Под общим сопротивлением подразумевается сумма внешнего и внутреннего сопротивлений.

    Что называется полным сопротивлением цепи?

    Обычно цепь переменного тока включает в себя и активное сопротивление, и емкость, и индуктивность. Полное сопротивление (Z) — это векторная сумма всех сопротивлений: активного, емкостного и индуктивного. … — полное сопротивление определяет силу тока в цепи по закону Ома.

    Что такое эдс для чайников?

    Электродвижущая сила (ЭДС) — скалярная физическая величина, характеризующая работу сторонних сил (то есть любых сил, кроме электростатических и диссипативных) действующих в квазистационарных цепях постоянного или переменного тока.

    Как легко понять закон Ома?

    Формулировка и объяснение закона Ома

    Он гласит: Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению. … Естественно, чем больше сопротивление участка цепи, тем меньше будет сила тока. Соответственно, чем больше напряжение, тем и ток будет больше.

    В чем суть закона Ома?

    Зако́н О́ма — эмпирический физический закон, определяющий связь электродвижущей силы источника (или электрического напряжения) с силой тока, протекающего в проводнике, и сопротивлением проводника. Установлен Георгом Омом в 1826 году (опубликован в 1827 году) и назван в его честь.

    Источник

    Внешнее сопротивление цепи что такое

    Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

    Закон Ома: кто придумал, определение

    Закон Ома — это основной закон электродинамики, который выводит взаимосвязь между ключевыми понятиями электрической цепи: силой тока, напряжением и сопротивлением.

    Данную взаимозависимость выявил немецкий физик Георг Симон Ом в 1826 году. Несмотря на то, что этот закон является истинным законом природы, точность которого была многократно проверена и доказана позже, публикация работы Ома в 1827 году прошла незамеченной для научной общественности. И лишь в 1830-х гг., когда французский физик Пулье пришел к тем же самым выводам, что и Ом, работа немецкого ученого была оценена по достоинству.

    s18013749

    Установление закономерностей между основными параметрами электроцепи имеет огромное значение для науки. Ведь оно позволило количественно измерить свойства электрического тока.

    Сила тока на участке цепи прямо пропорционально напряжению и обратно пропорциональна сопротивлению.

    Формулировки и основные формулы

    Закон Георга Ома формулируется так: сила тока в проводнике прямо пропорциональна напряжению в проводнике и обратно пропорциональна сопротивлению этого проводника.

    Пояснения к закону:

    Обозначение основных параметров, характеризующих электроцепь, известны всем с уроков физики в школе:

    Объяснение закона Ома в классической теории

    Формула закона, известная всем со школьных лет, выглядит так:

    Из нее легко выводятся формулы для определения UU:

    и для определения RR:

    Единицами измерения силы тока являются амперы, напряжения — вольты, сопротивление измеряется в омах.

    Данный закон верен для линейного участка цепи, на котором зафиксировано стабильное сопротивление.

    s12224539

    Закон Ома для полной (замкнутой) цепи

    Замкнутой или полной называется такая электрическая цепь, по которой проходит электроток.

    Описание формулы этого закона для полной цепи выглядит так:

    где ϵ — это электродвижущая сила или напряжение источника питания, которое не зависит от внешней цепи;

    R — сопротивление внешней цепи;

    r — внутреннее сопротивление источника.

    s49672098

    Использование закона Ома при параллельном и последовательном соединении

    При последовательном соединении элементы цепи подключаются друг за другом последовательно. Так как такая электрическая цепь является неразветвленной, сила тока на каждом ее участке будет одинаковая. Пример последовательного соединения — лампочки в новогодней гирлянде.

    При последовательном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

    Где I — общая сила тока в электроцепи, I1 — сила тока первого участка, I2 — сила тока второго участка, I3 — сила тока третьего участка.

    Где U — общее напряжение, U1 — напряжение первого участка, U2 — напряжение второго участка, U3 — напряжение третьего участка.

    Где R — общее сопротивление в цепи, R1 — сопротивление первого участка, R2 — сопротивление второго участка, R3 — сопротивление третьего участка.

    Подключая элементы в цепь параллельно, получают разветвленную электрическую цепь. Примером такого соединения является стандартная разводка электричества по квартире, когда в комнате одновременно можно включить несколько предметов бытовой техники и верхнее освещение.

    При параллельном соединении элементов основные параметры электроцепи рассчитываются следующим образом:

    Где I — общая сила тока в электроцепи, I1, I2, I3 — сила тока первого, второго и третьего участков соответственно.

    Где U — общее напряжение, U1, U2, U3 — напряжение первого, второго и третьего участков соответственно.

    Где R — общее сопротивление в цепи, R1, R2, R3 — сопротивление первого, второго и третьего участков соответственно.

    Закон Ома для переменного и постоянного тока

    Для цепи постоянного тока правильными будут уже озвученные нами взаимосвязи основных параметров электроцепи:

    s12921121

    При подключении к электроцепи источника переменного тока, сила электротока в цепи будет определяться по формуле:

    где Z — полное сопротивление или импеданс, который состоит из активной (R) и реактивных составляющих (XC — сопротивление емкости и XL — сопротивление индуктивности).

    Реактивное сопротивление цепи зависит:

    s51539464

    Закон Ома для однородного и неоднородного участка цепи

    Закон Ома для однородного участка электроцепи представляет собой классическое выражение зависимости силы от напряжения и сопротивления:

    В этом случае основной характеристикой проводника является сопротивление. От внешнего вида проводника зависит, как выглядит его кристаллическая решетка и какое количество атомов примесей содержит. От проводника зависит поведение электронов, которые могут ускоряться или замедляться.

    Поэтому R зависит от вида проводника, точнее, от его сечения, длины и материала и определяется по формуле:

    где p — удельное сопротивление, l — это длина проводника, а S— площадь его сечения.

    Под неоднородным участком цепи постоянного тока подразумевается такой промежуток цепи, на который помимо электрических зарядов воздействуют другие силы.

    s93376621

    Как можно было убедиться, закон, открытый Георгом Омом, прост только на первый взгляд. Разобраться во всех тонкостях самостоятельно под силу далеко не каждому.

    Где и когда можно применять закон Ома?

    Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).

    Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.

    Значение Закона Ома простыми словами

    Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.

    Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.

    Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.

    Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:

    29255343

    Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.

    Как понять закон Ома?

    Чтобы интуитивно понять закон Ома, обратимся к аналогии представления тока в виде жидкости. Именно так думал Георг Ом, когда проводил опыты, благодаря которым был открыт закон, названный его именем.

    Представим, что ток – это не движение частиц-носителей заряда в проводнике, а движение потока воды в трубе. Сначала воду насосом поднимают на водокачку, а оттуда, под действием потенциальной энергии, она стремиться вниз и течет по трубе. Причем, чем выше насос закачает воду, тем быстрее она потечет в трубе.

    Отсюда следует вывод, что скорость потока воды (сила тока в проводе) будет тем больше, чем больше потенциальная энергия воды (разность потенциалов)

    Сила тока прямо пропорциональна напряжению.

    Теперь обратимся к сопротивлению. Гидравлическое сопротивление – это сопротивление трубы, обусловленное ее диаметром и шероховатостью стенок. Логично предположить, что чем больше диаметр, тем меньше сопротивление трубы, и тем большее количество воды (больший ток) протечет через ее сечение.

    Сила тока обратно пропорциональна сопротивлению.

    Такую аналогию можно проводить лишь для принципиального понимания закона Ома, так как его первозданный вид – на самом деле довольно грубое приближение, которое, тем не менее, находит отличное применение на практике.

    В действительности, сопротивление вещества обусловлено колебанием атомов кристаллической решетки, а ток – движением свободных носителей заряда. В металлах свободными носителями являются электроны, сорвавшиеся с атомных орбит.

    Источник

    Внутренняя и внешняя электрическая цепь

    Элементы электрических цепей классифицируют по различным признакам. К примеру, есть пассивные и активные элементы, линейные и нелинейные и так далее.

    Элементы электрических цепей

    uslovnye oboznacheniya ehlementov ehlektricheskoj cepi

    В каждой электроцепи есть набор определенных устройств и приборов, которые формируют путь для течения электрического тока. Для характеристики их работы существует ряд основных параметров:

    Внешние и внутренние составляющие цепи

    Самая простая электроцепь состоит из источника и приемника, последовательно соединенных проводниками.
    Источник является внутренней составляющей цепи, а приемник в комплексе со всеми приборами измерения, коммутационными устройствами и проводами, их соединяющими, является внешней составляющей электроцепи.

    Не нашли что искали?

    Просто напиши и мы поможем

    Дополнительные элементы электроцепей, такие как переключатели, выключатели, приборы измерения, обладают очень низким сопротивлением и не влияют на величину тока и напряжения, поэтому их обычно не берут во внимание и не наносят на электросхемы.

    При замыкании внешней и внутренней составляющих в замкнутый контур, по нему начинает течь электрический ток, величина которого определяется количеством заряда, протекающего в единицу времени через поперечное сечение проводника. Для постоянного тока его значение определяют по такой формуле:

    Для переменного тока его величина определяется так:

    Протекание электрического тока в цепи связано с непрерывными преобразовательными процессами в ее элементах. Например, при преобразовании других видов энергии в электрическую в источнике питания возникает ЭДС, благодаря которой при замыкании цепи, в которую включен источник, по ней течет ток.

    Так же, как и источник питания, внешняя цепь обладает определенным сопротивлением протеканию электротока. Физическая природа сопротивления заключается в тепловом движении молекул и атомов. То есть, размер сопротивления будет определяться материалом, размерами и формой проводника:

    где (ρ) – удельное сопротивление проводника;

    (l ) – длина проводника;

    (S) – поперечное сечение проводника.

    Величину, обратную сопротивлению, называют проводимостью:

    Основные параметры простой электрической цепи связаны выражением закона Ома:

    Сложно разобраться самому?

    Попробуй обратиться за помощью к преподавателям

    Основополагающие законы для электрических цепей

    Для расчета и анализа работы электроцепей применяют законы Ома, Кирхгофа, Джоуля-Ленца, Фарадея, Ампера.

    Что касается закона Ома, существует два его варианта – для полной цепи и для ее участка. Сила тока участка цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению:

    Для полной цепи сила тока прямо пропорциональна ЭДС источника питания и обратно пропорциональна суммарному сопротивлению цепи:

    Для определения количества тепловой энергии, выделяемого при протекании тока через сопротивление, применяют закон Джоуля-Ленца:

    Закон электромагнитной индукции Фарадея позволяет установить взаимосвязь между:

    Согласно закону Фарадея электродвижущая сила, индуцируемая изменением магнитного потока, что проходит через поверхность, прямо пропорциональна скорости изменения потока:

    где (Ф) – магнитный поток;

    Эквивалентное преобразование цепи – это процесс замещения участков цепи с параллельным или последовательным соединением элементов одним элементом с соответствующим сопротивлением, при котором сила тока и напряжения не меняются. Данный прием используют для упрощения расчетов электроцепей.

    Основной особенностью последовательного подключения элементов является общий ток для всех элементов, но напряжение на каждом из них будет падать в соответствии с сопротивлением. При параллельном подключении равным для всех элементов будет напряжение, а ток будет распределяться в соответствии с сопротивлением.

    Источник

    Закон Ома для полной цепи

    Закон Ома для полной цепи, определение которого касается значения электрического тока в реальных цепях, находится в зависимости от источника тока и от сопротивления нагрузки. Этот закон носит и другое название – закон Ома для замкнутых цепей. Принцип действия данного закона заключается в следующем.

    В качестве самого простого примера, электрическая лампа, являющаяся потребителем электрического тока, совместно с источником тока есть не что иное, как замкнутая электрическая цепь. Данная электрическая цепь наглядно показана на рисунке.
    15930491
    Электроток, проходя через лампочку, также проходит и через сам источник тока. Таким образом, во время прохождения по цепи, ток испытает сопротивление не только проводника, но и сопротивление, непосредственно, самого источника тока. В источнике сопротивление создается электролитом, находящимся между пластинами и пограничными слоями пластин и электролита. Отсюда следует, что в замкнутой цепи, ее общее сопротивление будет состоять из суммы сопротивлений лампочки и источника тока.

    Внешнее и внутреннее сопротивление

    Сопротивление нагрузки, в данном случае лампочки, соединенной с источником тока, носит название внешнего сопротивления. Непосредственное сопротивление источника тока называется внутренним сопротивлением. Для более наглядного изображения процесса, все значения необходимо условно обозначить. I – сила тока, R – внешнее сопротивление, r – внутреннее сопротивление. Когда по электрической цепи протекает ток, то для того, чтобы поддерживать его, между концами внешней цепи должна присутствовать разность потенциалов, которая имеет значение IхR.

    Но, протекание тока наблюдается и во внутренней цепи. Значит, для того, чтобы поддержать электроток во внутренней цепи, также необходима разность потенциалов на концах сопротивления r. Значение этой разности потенциалов равно Iхr.

    Электродвижущая сила аккумулятора

    Аккумулятор должен иметь следующее значение электродвижущей силы, способной поддерживать необходимый ток в цепи: Е=IхR+Iхr. Из формулы видно, что электродвижущая сила аккумулятора составляет сумму внешнего и внутреннего напряжения. Значение тока нужно вынести за скобки: Е=I(r+R). Иначе можно представить: I=Е/(r+R). Двумя последними формулами выражается закон Ома для полной цепи, определение которого звучит следующим образом: в замкнутой цепи сила тока прямо пропорциональна электродвижущей силе и обратно пропорциональна сумме сопротивлений этой цепи.

    Источник

    Что такое сопротивление?

    Электрическое сопротивление является одним из важнейших понятий электротехники. А необходимость его определения составляет одну из главных задач теории цепей.

    Что такое сопротивление?

    В электротехнике под сопротивлением подразумевают свойство материального тела оказывать препятствие прохождению электрического тока. Важное пояснение: обычно здесь всегда вместо «материального тела» указывают «проводника», что вносит путаницу и неразбериху, так как слово «проводник» имеет двоякий смысл:

    Отсюда и второе определение сопротивления – физическая величина, обратная проводимости, вопросам изучения которой посвятил свою научную деятельность выдающийся немецкий учёный Георг Симон Ом. Испытывая разнообразные проводники в собранной схеме, он убедился в их различной проводимости. Это и послужило отправной точкой к появлению такого понятия, как электрическое сопротивление.

    Хотя справедливости ради надо сказать, что сам термин «сопротивление» ввёл ещё раньше русский электротехник Василий Владимирович Петров – физик-экспериментатор. Тем не менее честь открытия эмпирического закона Ома принадлежит физику из Германии, именем которого также названа и единица электрического сопротивления – 1 Ом.

    669 3

    Закон Ома для полной цепи выглядит следующим образом:

    I = E/(R+r)

    E = Ir + IR

    Что означает равенство суммы падений напряжений на внешней цепи и внутреннем сопротивлении источника ЭДС источника.

    Исходя из закона Ома в определённых пределах сопротивление, являющееся постоянным и обозначаемое буквами R или r, можно рассчитать по формуле:

    R = U/I

    где U – напряжение (разность электрических потенциалов) на концах проводника, В; I – сила тока, протекающего из одного конца проводника в другой, А.

    Что касается переменных величин сопротивления, фигурирующего в цепях переменного тока или в изменяющихся электромагнитных полях, то здесь оперируют понятиями импеданса (комплексного сопротивления) и волнового сопротивления. Полное сопротивление цепи переменного тока, включающее в себя активную и реактивную (индуктивную и ёмкостную) составляющие, рассчитывается по формуле:

    Z = √(R^2+X^2)

    Здесь: Z – полное сопротивление, R – активное сопротивление цепи переменного тока. X = XC + XL, – сумма реактивного ёмкостного и индуктивного сопротивлений, проявляющих себя в цепях переменного тока.

    Ещё одним понятием (названием технического изделия, употребляемого в электронике и электротехнике) сопротивления выступают резисторы, несущие на себе активную нагрузку.

    669 2

    Сопротивление проводника

    Сопротивление проводника напрямую зависит от его геометрических размеров, а также материала изготовления. Меньшее сопротивление протеканию электрического тока будет оказывать проводник более толстого сечения и меньшей длины. Математически это выглядит следующим образом:

    R = p l/S

    Самыми меньшими удельными сопротивлениями обладают:

    Наибольшие удельные сопротивления у графита – 13 Ом·мм 2 /м, фарфора – 1019 Ом·мм 2 /м, эбонита – 1020 Ом·мм 2 /м.

    Что такое сопротивление 1 Ом?

    Исходя из закона Ома, очень легко догадаться, что сопротивлением в 1 Ом обладает проводник с приложенным к нему напряжением в 1В, при проходе сквозь него электрического тока величиной в 1А. Также можно задать геометрию (длину, ширину, высоту) конкретных материалов, обладающих сопротивлением в 1 Ом.

    669 1

    Как найти сопротивление цепи?

    Чтобы рассчитать сопротивление электрической цепи, необходимо иметь в наличии:

    Сняв показания этих двух приборов и разделив полученную величину напряжения на величину силы тока (R = U/I), легко определить сопротивление исследуемой цепи.

    Приборы для измерения сопротивления

    Сегодня промышленностью изготавливается множество видов и типов приборов, позволяющих измерять сопротивление (тестеры, мультиметры). Но все они содержат в себе омметр – электроизмерительный прибор, предназначенный для измерения активных (омических) сопротивлений. Изготовленные на базе современной электроники, они позволяют делать замеры как в цепях постоянного, так и переменного тока. В зависимости от диапазонов и величин измеряемых сопротивлений, омметры подразделяются на ряд модификаций:

    Для высокоточных измерений сопротивления используется измерительный мост, в одно из «плеч» которого подключается измерительный элемент. Если нет ни того ни другого, то собрав схему и включив в неё амперметр и вольтметр, сопротивление можно определить расчётно-экспериментальным путём.

    Очень важно при всех этих манипуляциях не попасть под воздействие электрического тока, так как сопротивление тела человека, условно принятого величиной в 1 Ом, не предназначено для подобных воздействий, могущих вызвать необратимые последствия!

    Источник

    Добавить комментарий