Как найти внешний диаметр полого цилиндра

Объём стенки цилиндра

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Объём стенки цилиндра

Чтобы посчитать объём стенки цилиндра, то есть объём полого цилиндра, воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Полый цилиндр

Найти чему равен объём полого цилиндра (Vст) можно зная (либо-либо):

  • Высоту цилиндра h, внешний радиус r1 и внутренний радиус r2
  • Высоту цилиндра h, внешний диаметр d1 и внутренний диаметр d2
  • Высоту цилиндра h, внешний радиус r1 и толщину стенки δ
  • Высоту цилиндра h, внутренний радиус r2 и толщину стенки δ
  • Высоту цилиндра h, внешний диаметр d1 и толщину стенки δ
  • Высоту цилиндра h, внутренний диаметр d2 и толщину стенки δ

Зная оба радиуса (диаметра)

Чему равен объём стенки цилиндра Vст если:

Внешний =
Внутренний =
Высота цилиндра h =

Ответ: Vст =

0

Зная толщину стенки

Чему равен объём стенки цилиндра Vст если:

=
Толщина стенки δ =
Высота цилиндра h =

Ответ: Vст =

0

Теория

Чему равен объём полого цилиндра Vст если:

Формулы

Через радиусы или диаметры цилиндра

Vст = π ⋅ (r1² – r2²) ⋅ h , где r1 – внешний радиус, r2 – внутренний радиус , а h – высота

Vст = π ⋅ ((d1/2)² – (d2/2)²) ⋅ h , где d1 – внешний диаметр, d2 – внутренний диаметр, а h – высота

Через толщину стенки цилиндра

Vст = π ⋅ (d2 ⋅ δ + δ²) ⋅ h , где δ – толщина стенки цилиндра, d2 – внутренний диаметр, а h – высота

Vст = π ⋅ ((d1 – 2 ⋅ δ) ⋅ δ + δ²) ⋅ h , где δ – толщина стенки цилиндра, d1 – внешний диаметр, а h – высота

Vст = π ⋅ (2 ⋅ r2 ⋅ δ + δ²) ⋅ h , где δ – толщина стенки цилиндра, r2 – внутренний радиус, а h – высота

Vст = π ⋅ ((2 ⋅ r1 – 2 ⋅ δ) ⋅ δ + δ²) ⋅ h , где δ – толщина стенки цилиндра, r1 – внешний радиус, а h – высота

Пример №1

К примеру, посчитаем каков объём металла в трубе, если её длинна 3 метра, внешний диаметр d1=5 см, а внутренний d2=4.5 см?

Vст = 3.14 ⋅ ((5/2)² – (4.5/2)²) ⋅ 300 = 3.14 ⋅ (6.25 – 5.0625) ⋅ 300 ≈ 1119 см³

Пример №2

Теперь посчитаем объём металла в этой же 3-х метровой трубе, но возьмём внутренний радиус r2 = 2.25 см и толщину стенки δ = 0.25 см (при этом у нас должен получится тот же ответ, что и в предыдущем примере):

Vст = 3.14 ⋅ (2 ⋅ 2.25 ⋅ 0.25 + 0.25²) ⋅ 300 = 3.14 ⋅ 1.1875 ⋅ 300 ≈ 1119 см³

См. также

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,657
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,952
  • разное
    16,904

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Внешний диаметр цилиндра двигателя Решение

ШАГ 0: Сводка предварительного расчета

Используемая формула

Внешний диаметр цилиндра = Внутренний диаметр цилиндра двигателя+2*Толщина стенки цилиндра
Do = Di+2*t
В этой формуле используются 3 Переменные

Используемые переменные

Внешний диаметр цилиндра(Измеряется в метр) – Внешний диаметр цилиндра — это внешний или наружный диаметр цилиндра.
Внутренний диаметр цилиндра двигателя(Измеряется в метр) – Внутренний диаметр цилиндра двигателя — это диаметр внутренней части или внутренней поверхности цилиндра двигателя.
Толщина стенки цилиндра(Измеряется в метр) – Толщина стенки цилиндра – это толщина материала, из которого изготовлен цилиндр.

ШАГ 1. Преобразование входов в базовый блок

Внутренний диаметр цилиндра двигателя: 128.5 Миллиметр –> 0.1285 метр (Проверьте преобразование здесь)
Толщина стенки цилиндра: 8.2 Миллиметр –> 0.0082 метр (Проверьте преобразование здесь)

ШАГ 2: Оцените формулу

Подстановка входных значений в формулу

Do = Di+2*t –> 0.1285+2*0.0082

Оценка … …

Do = 0.1449

ШАГ 3: Преобразуйте результат в единицу вывода

0.1449 метр –>144.9 Миллиметр (Проверьте преобразование здесь)

ОКОНЧАТЕЛЬНЫЙ ОТВЕТ

144.9 Миллиметр <– Внешний диаметр цилиндра

(Расчет завершен через 00.004 секунд)

Толщина стенок полого цилиндра равен 5 мм.

Внутренний диаметр его равен 3 см.

Каков внешний диаметр цилиндра?

На этой странице сайта, в категории Физика размещен ответ на вопрос
Толщина стенок полого цилиндра равен 5 мм?. По уровню сложности вопрос рассчитан на учащихся
5 – 9 классов. Чтобы получить дополнительную информацию по
интересующей теме, воспользуйтесь автоматическим поиском в этой же категории,
чтобы ознакомиться с ответами на похожие вопросы. В верхней части страницы
расположена кнопка, с помощью которой можно сформулировать новый вопрос,
который наиболее полно отвечает критериям поиска. Удобный интерфейс
позволяет обсудить интересующую тему с посетителями в комментариях.

Масса полой детали

Никогда не устану повторять, что масса тела — это его объем V, умноженный на плотность его материала rho (см. таблицы плотностей):
m~=~V~*~rho
Однако, в случае полой или пустотелой детали мы будем иметь дело не с объемом ее тела, а с объемом ее стенок. Объем стенок полой детали проще всего представить как разность объемов двух сплошных тел: с внешними размерами и с внутренними (из полного объема тела вычитается объем внутренней пустоты).
Формулы для объема сплошных тел можно найти в статье «Масса сплошной детали».

Примечание. В приведенных ниже формулах все размеры измеряются в миллиметрах, а плотность — в граммах на кубический сантиметр.
Буквой pi обозначено отношение длины окружности к ее диаметру, составляющее примерно 3,14.


1. Масса трубки (полого цилиндра)

ТрубкаОбъем стенок трубки: V~=~{pi{D^2/4}L}~-~{pi{(D~-~2T)^2/4}L}, где D — внешний диаметр трубки, L — длина трубки, T — толщина стенки.
После упрощения получаем формулу для объема: V~=~pi*(D~-~T)*T*L
Тогда масса трубки:

m~=~{{pi~*~(D~-~T)~*~T~*~L}/1000}~*~rho


2. Масса полого (пустотелого) шара

шарОбъем стенок шара: V~=~{pi/6}*(D^3~-~(D~-~2T)^3), где D — внешний диаметр шара, T — толщина стенки.
Тогда масса:

m~=~pi~*~{{D^3~-~(D~-~2T)^3}/6000}~*~rho


3. Масса полого сегмента шара

сегмент шараОбъем стенок сегмента шара: V={pi/6}H((H^2+{3/4}D^2)~-~((H-T)^2+{3/4}(D-2T)^2)), где D — внешний диаметр основания сегмента, H — высота сегмента, T — толщина стенки*.
После упрощения получаем формулу для объема: V~=~{pi/6}*H*T*(H~+~3D~-~4T)
Тогда масса:

m~=~{{pi~*~H~*~T~*~(H~+~3D~-~4T)}/6000}~*~rho


4. Масса полого усеченного конуса

Усеченный конусОбъем стенок круглого усеченного конуса: V={pi/12}H(D1^2+D1*D2+D2^2-(D1-2T)^2-(D1-2T)(D2-2T)-(D2-2T)^2), где D1 — внешний диаметр большего основания, D2 — внешний диаметр меньшего основания, H — высота конуса, T — толщина стенки*.
После упрощения получаем формулу для объема: V~=~{pi/2}*H*T*(D1~+~D2~-~2T)
Тогда масса:

m~=~{{pi~*~H~*~T~*~(D1~+~D2~-~2T)}/2000}~*~rho


5. Масса полой усеченной пирамиды

Усеченная пирамидаДля простоты рассмотрим усеченную пирамиду с квадратным основанием. Объем ее стенок: V={H/3}(A1^2+A1*A2+A2^2-(A1-2T)^2-(A1-2T)(A2-2T)-(A2-2T)^2), где A1 — внешний размер большего основания, A2 — внешний размер меньшего основания, H — высота пирамиды, T — толщина стенки*.
После упрощения получаем формулу для объема: V~=~{1/3}*H*T*(A1~+~A2~-~2T)
Тогда масса:

m~=~{{H~*~T~*~(A1~+~A2~-~2T)}/3000}~*~rho


* в данном случае T — это не вполне толщина стенки. Строго говоря, мы имеем тут дело с двумя величинами: та T, что стоит в формулах за скобкой, это точно толщина стенки, а та T, которую мы отнимаем от внешнего размера тела, чтобы получить его внутренний размер, — это толщина стенки, деленная на косинус угла наклона образующей. Но в большинстве случаев толщина стенки не превышает нескольких процентов от размеров тела, и ошибкой можно пренебречь. Однако, для толстостенных деталей это обстоятельство нужно учитывать.

Добавить комментарий