Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами
Доказательства теорем об углах, связанных с окружностью
Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.
Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).
Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.
Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).
В этом случае справедливы равенства
и теорема 1 в этом случае доказана.
Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).
В этом случае справедливы равенства
что и завершает доказательство теоремы 1.
Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.
Доказательство . Рассмотрим рисунок 8.
Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства
что и требовалось доказать.
Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.
Доказательство . Рассмотрим рисунок 9.
Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства
что и требовалось доказать.
Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.
Доказательство . Рассмотрим рисунок 10.
Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства
что и требовалось доказать
Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.
Доказательство . Рассмотрим рисунок 11.
Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства
что и требовалось доказать.
Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.
Доказательство . Рассмотрим рисунок 12.
Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство
Внешний угол треугольника
Внешний угол треугольника — это угол, смежный с любым из внутренних углов треугольника.
При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:
Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны.
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:
Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:
Из этого следует, что
Сократив обе части полученного равенства на одно и тоже число (∠4), получим:
Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.
Сумма внешних углов
Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°
Рассмотрим треугольник ABC:
Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:
(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°.
Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:
∠1 + ∠2 + ∠3 = 540° – (∠4 + ∠5 + ∠6) = 540° – 180° = 360°.
Внешний угол треугольника
Углы треугольника бывают внутренние и внешние. Что такое внешний угол треугольника? Как его найти?
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.
Как построить внешний угол треугольника? Нужно продлить сторону треугольника.
∠3 — внешний угол при вершине А,
∠2 — внешний угол при вершине С,
∠1 — внешний угол при вершине В.
Сколько внешних углов у треугольника?
При каждой вершине треугольника есть два внешних угла. Чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. Таким образом получаем 6 внешних углов.
Внешние углы каждой пары при данной вершины равны между собой (как вертикальные):
Поэтому, когда говорят о внешнем угле треугольника, не важно, какую из сторон треугольника продлили.
Чему равен внешний угол?
Теорема (о внешнем угле треугольника)
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Дано : ∆АВС, ∠1 — внешний угол при вершине С.
∠1 и ∠С (∠АСВ) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠С=180º-(180º-(∠А+∠В))=180º-180º+(∠А+∠В)=∠А+∠В.
[spoiler title=”источники:”]
http://izamorfix.ru/matematika/planimetriya/vneshnie_ugly_treug.html
[/spoiler]
Внешний угол треугольника
- Сумма внешних углов
Внешний угол треугольника — это угол, смежный с любым из внутренних углов треугольника.
При каждой вершине треугольника может быть построено по два равных внешних угла. Например, если продолжить все стороны треугольника ABC, то при каждой его вершине получится по два внешних угла, которые равны между собой, как вертикальные углы:
Из данного примера можно сделать вывод, что внешние углы, построенные при одной вершине, будут равны.
Внешний угол треугольника равен сумме двух внутренних углов треугольника, не смежных с ним.
Так как внешний угол (∠1) дополняет внутренний угол (∠4) до развёрнутого угла, то их сумма равна 180°:
∠1 + ∠4 = 180°.
Сумма внутренних углов углов любого треугольника тоже равна 180°, значит:
∠2 + ∠3 + ∠4 = 180°.
Из этого следует, что
∠1 + ∠4 = ∠2 + ∠3 + ∠4.
Сократив обе части полученного равенства на одно и тоже число (∠4), получим:
∠1 = ∠2 + ∠3.
Из этого можно сделать вывод, что внешний угол треугольника всегда больше любого внутреннего угла, не смежного с ним.
Сумма внешних углов
Сумма трёх внешних углов треугольника, построенных при разных вершинах, равна 360°
Рассмотрим треугольник ABC:
Каждая пара углов (внутренний и смежный с ним внешний) в сумме равны 180°. Все шесть углов (3 внутренних и 3 внешних) вместе равны 540°:
(∠1 + ∠4) + (∠2 + ∠5) + (∠3 + ∠6) = 180° + 180° + 180° = 540°.
Значит чтобы найти сумму внешних углов, надо из общей суммы вычесть сумму внутренних углов:
∠1 + ∠2 + ∠3 = 540° – (∠4 + ∠5 + ∠6) = 540° – 180° = 360°.
Углы треугольника бывают внутренние и внешние. Что такое внешний угол треугольника? Как его найти?
Определение.
Внешний угол треугольника при данной вершине — это угол, смежный с внутренним углом треугольника при этой вершине.
Как построить внешний угол треугольника? Нужно продлить сторону треугольника.
На рисунке:
∠3 — внешний угол при вершине А,
∠2 — внешний угол при вершине С,
∠1 — внешний угол при вершине В.
Сколько внешних углов у треугольника?
При каждой вершине треугольника есть два внешних угла. Чтобы построить внешний угол при вершине треугольника, можно продлить любую из двух сторон, на которых лежит данная вершина. Таким образом получаем 6 внешних углов.
Внешние углы каждой пары при данной вершины равны между собой (как вертикальные):
∠1=∠4, ∠2=∠5, ∠3=∠6.
Поэтому, когда говорят о внешнем угле треугольника, не важно, какую из сторон треугольника продлили.
Чему равен внешний угол?
Теорема (о внешнем угле треугольника)
Внешний угол треугольника равен сумме двух внутренних углов, не смежных с ним.
Дано: ∆АВС, ∠1 — внешний угол при вершине С.
Доказать: ∠1=∠А+∠В.
Доказательство:
Так как сумма углов треугольника равна 180º, ∠А+∠В+∠С=180º.
Следовательно, ∠С=180º-(∠А+∠В).
∠1 и ∠С (∠АСВ) — смежные, поэтому их сумма равна 180º, значит, ∠1=180º-∠С=180º-(180º-(∠А+∠В))=180º-180º+(∠А+∠В)=∠А+∠В.
Что и требовалось доказать.
Внешний угол треугольника. Синус и косинус внешнего угла
В некоторых
задачах ЕГЭ требуется найти синус,
косинус или тангенс внешнего
угла
треугольника. А что такое внешний
угол треугольника?
Давайте
вспомним сначала, что такое смежные
углы.
Вот они, на рисунке. У смежных углов
одна сторона общая, а две другие лежат
на одной прямой. Сумма смежных углов
равна
.
Возьмем
треугольник и продолжим одну из его
сторон. Внешний угол
при
вершине
—
это угол, смежный с углом
. Если
угол
острый, то смежный с ним угол —
тупой, и наоборот.
Обратите
внимание, что:
Запомните
эти важные соотношения. Сейчас мы берем
их без доказательств. В разделе
«Тригонометрия», в теме «Тригонометрический
круг»,
мы вернемся к ним.
Легко
доказать, что внешний
угол треугольника равен сумме двух
внутренних углов, не смежных с ним.
1.
В треугольнике
угол
равен
,
.
Найдите тангенс внешнего угла при
вершине
.
Пусть
—
внешний угол при вершине
.
Имеем:
Зная
,
найдем
по формуле
Получим:
2.
В треугольнике
угол
равен
,
.
Найдите синус внешнего угла при вершине
.
Задача
решается за четыре секунды. Поскольку
сумма углов
и
равна
,
.
Тогда и синус внешнего угла при
вершине
также равен
.
Высота в прямоугольном треугольнике
Вспомним,
что высота
треугольника —
это перпендикуляр, опущенный из его
вершины на противоположную сторону.
В
прямоугольном треугольнике катеты
являются высотами друг к другу. Главный
интерес представляет высота, проведённая
к гипотенузе.
Один
из типов экзаменационных задач В6 в
банке заданий ФИПИ — такие, где
в прямоугольном треугольнике высота
проведена из вершины прямого угла.
Посмотрим, что получается:
Высота
проведена к гипотенузе
.
Она делит треугольник
на два
прямоугольных треугольника —
и
.
Смотрим внимательно на рисунок
и находим на нем равные
углы.
Это и есть ключ к задачам по геометрии,
в которых высота опущена на гипотенузу.
Мы помним,
что сумма двух острых углов прямоугольного
треугольника равна
.
Значит,
,
то есть угол
равен
углу
.
Аналогично, угол
.
Иными
словами, каждый из трех углов
треугольника
равен
одному из углов треугольника
и треугольника
.
Треугольники
,
и
называются подобными.
Давайте нарисуем их рядом друг
с другом.
Они
отличаются только размерами. Стороны
подобных треугольников пропорциональны.
Что это значит?
Возьмем
треугольники
и
.
Стороны треугольника
длиннее,
чем стороны треугольника
,
в некоторое число
раз:
При
решении задач нам пригодится равенство
углов треугольников
,
и
,
а также пропорциональность их сторон.
Обратите также внимание, что площадь
треугольника
можно
записать двумя разными способами: как
половину произведения катетов и как
половину произведения гипотенузы
на проведенную к ней высоту.
1.
В треугольнике
угол
равен
,
—
высота,
,
.
Найдите
.
Рассмотрим
треугольник
.
В нем известны косинус угла
и противолежащий катет
.
Зная синус угла
,
мы могли бы найти гипотенузу
.
Так давайте найдем
:
(поскольку
значение синуса острого угла положительно).
Тогда:
Рассмотрим
прямоугольный треугольник
,
.
Имеем:
Отсюда,
поскольку
:
и
тогда
Ответ:
.
2.
В треугольнике
угол
равен
,
,
.
Найдите высоту
.
Сделайте
чертеж и рассмотрите прямоугольный
треугольник
.
Ответ:
.
3.
В треугольнике
угол
равен
,
,
.
К гипотенузе проведена высота
.
Найдите
.
Это
чуть более сложная задача. Ведь вам
неизвестны катеты
и
.
Зато
можно записать теорему Пифагора:
Нам
известно также, что
Решая
эту систему из двух уравнений, найдем:
Запишем
площадь треугольника
двумя
способами:
и найдем
.
Найти
высоту, проведенную из вершины прямого
угла, можно было и другим способом.
Мы выбрали самый короткий путь —
составили и решили систему уравнений.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
30.03.201540.15 Mб22спицын мартыненко.djvu
- #
- #
- #
- #
- #
- #
- #
- #
[{Large{text{Центральные и вписанные углы}}}]
Определения
Центральный угол – это угол, вершина которого лежит в центре окружности.
Вписанный угол – это угол, вершина которого лежит на окружности.
Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.
Теорема
Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.
Доказательство
Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка (B) – вершина вписанного угла (ABC) и (BC) – диаметр окружности:
Треугольник (AOB) – равнобедренный, (AO = OB), (angle AOC) – внешний, тогда (angle AOC = angle OAB + angle ABO = 2angle ABC), откуда (angle ABC = 0,5cdotangle AOC = 0,5cdotbuildrelsmileover{AC}).
Теперь рассмотрим произвольный вписанный угол (ABC). Проведём диаметр окружности (BD) из вершины вписанного угла. Возможны два случая:
1) диаметр разрезал угол на два угла (angle ABD, angle CBD)(для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.
2) диаметр не разрезал угол на два угла, тогда у нас появляется ещё два новых вписанных угла (angle ABD, angle CBD), у которых сторона содержит диаметр, следовательно, для них теорема верна, тогда верна и для исходного угла (который равен разности этих двух углов, значит, равен полуразности дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 2.
Следствия
1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.
2. Вписанный угол, опирающийся на полуокружность, прямой.
3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.
[{Large{text{Касательная к окружности}}}]
Определения
Существует три типа взаимного расположения прямой и окружности:
1) прямая (a) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние (d) от центра окружности до прямой меньше радиуса (R) окружности (рис. 3).
2) прямая (b) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка (B) – точкой касания. В этом случае (d=R) (рис. 4).
3) прямая (c) не имеет общих точек с окружностью (рис. 5).
Теорема
1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.
2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.
Следствие
Отрезки касательных, проведенных из одной точки к окружности, равны.
Доказательство
Проведем к окружности из точки (K) две касательные (KA) и (KB):
Значит, (OAperp KA, OBperp KB) как радиусы. Прямоугольные треугольники (triangle KAO) и (triangle KBO) равны по катету и гипотенузе, следовательно, (KA=KB).
Следствие
Центр окружности (O) лежит на биссектрисе угла (AKB), образованного двумя касательными, проведенными из одной точки (K).
[{Large{text{Теоремы, связанные с углами}}}]
Теорема об угле между секущими
Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.
Доказательство
Пусть (M) – точка, из которой проведены две секущие как показано на рисунке:
Покажем, что (angle DMB = dfrac{1}{2}(buildrelsmileover{BD} –
buildrelsmileover{CA})).
(angle DAB) – внешний угол треугольника (MAD), тогда (angle DAB =
angle DMB + angle MDA), откуда (angle DMB = angle DAB – angle
MDA), но углы (angle DAB) и (angle MDA) – вписанные, тогда (angle DMB = angle DAB – angle MDA =
frac{1}{2}buildrelsmileover{BD} –
frac{1}{2}buildrelsmileover{CA} =
frac{1}{2}(buildrelsmileover{BD} – buildrelsmileover{CA})), что и требовалось доказать.
Теорема об угле между пересекающимися хордами
Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: [angle CMD=dfrac12left(buildrelsmileover{AB}+buildrelsmileover{CD}right)]
Доказательство
(angle BMA = angle CMD) как вертикальные.
Из треугольника (AMD): (angle AMD = 180^circ – angle BDA – angle
CAD = 180^circ – frac12buildrelsmileover{AB} – frac12buildrelsmileover{CD}).
Но (angle AMD = 180^circ – angle CMD), откуда заключаем, что [angle CMD = frac12cdotbuildrelsmileover{AB} + frac12cdotbuildrelsmileover{CD}
= frac12(buildrelsmileover{AB} + buildrelsmileover{CD}).]
Теорема об угле между хордой и касательной
Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.
Доказательство
Пусть прямая (a) касается окружности в точке (A), (AB) – хорда этой окружности, (O) – её центр. Пусть прямая, содержащая (OB), пересекает (a) в точке (M). Докажем, что (angle BAM = frac12cdot
buildrelsmileover{AB}).
Обозначим (angle OAB = alpha). Так как (OA) и (OB) – радиусы, то (OA = OB) и (angle OBA = angle OAB = alpha). Таким образом, (buildrelsmileover{AB} = angle AOB = 180^circ – 2alpha =
2(90^circ – alpha)).
Так как (OA) – радиус, проведённый в точку касания, то (OAperp a), то есть (angle OAM = 90^circ), следовательно, (angle BAM =
90^circ – angle OAB = 90^circ – alpha =
frac12cdotbuildrelsmileover{AB}).
Теорема о дугах, стягиваемых равными хордами
Равные хорды стягивают равные дуги, меньшие полуокружности.
И наоборот: равные дуги стягиваются равными хордами.
Доказательство
1) Пусть (AB=CD). Докажем, что меньшие полуокружности дуги (buildrelsmileover{AB}=buildrelsmileover{CD}).
(triangle AOB=triangle COD) по трем сторонам, следовательно, (angle AOB=angle COD). Но т.к. (angle AOB, angle COD) — центральные углы, опирающиеся на дуги (buildrelsmileover{AB},
buildrelsmileover{CD}) соответственно, то (buildrelsmileover{AB}=buildrelsmileover{CD}).
2) Если (buildrelsmileover{AB}=buildrelsmileover{CD}), то (triangle AOB=triangle COD) по двум сторонам (AO=BO=CO=DO) и углу между ними (angle AOB=angle COD). Следовательно, и (AB=CD).
Теорема
Если радиус делит хорду пополам, то он ей перпендикулярен.
Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.
Доказательство
1) Пусть (AN=NB). Докажем, что (OQperp AB).
Рассмотрим (triangle AOB): он равнобедренный, т.к. (OA=OB) – радиусы окружности. Т.к. (ON) – медиана, проведенная к основанию, то она также является и высотой, следовательно, (ONperp AB).
2) Пусть (OQperp AB). Докажем, что (AN=NB).
Аналогично (triangle AOB) – равнобедренный, (ON) – высота, следовательно, (ON) – медиана. Следовательно, (AN=NB).
[{Large{text{Теоремы, связанные с длинами отрезков}}}]
Теорема о произведении отрезков хорд
Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.
Доказательство
Пусть хорды (AB) и (CD) пересекаются в точке (E).
Рассмотрим треугольники (ADE) и (CBE). В этих треугольниках углы (1) и (2) равны, так как они вписанные и опираются на одну и ту же дугу (BD), а углы (3) и (4) равны как вертикальные. Треугольники (ADE) и (CBE) подобны (по первому признаку подобия треугольников).
Тогда (dfrac{AE}{EC} = dfrac{DE}{BE}), откуда (AEcdot BE = CEcdot DE).
Теорема о касательной и секущей
Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.
Доказательство
Пусть касательная проходит через точку (M) и касается окружности в точке (A). Пусть секущая проходит через точку (M) и пересекает окружность в точках (B) и (C) так что (MB < MC). Покажем, что (MBcdot MC = MA^2).
Рассмотрим треугольники (MBA) и (MCA): (angle M) – общий, (angle
BCA = 0,5cdotbuildrelsmileover{AB}). По теореме об угле между касательной и секущей, (angle BAM =
0,5cdotbuildrelsmileover{AB} = angle BCA). Таким образом, треугольники (MBA) и (MCA) подобны по двум углам.
Из подобия треугольников (MBA) и (MCA) имеем: (dfrac{MB}{MA} = dfrac{MA}{MC}), что равносильно (MBcdot MC = MA^2).
Следствие
Произведение секущей, проведённой из точки (O), на её внешнюю часть не зависит от выбора секущей, проведённой из точки (O):