Как определить сопротивление диода постоянному току
Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.
обратный клапан
Диод – это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:
А некоторые выглядят чуточку по-другому:
Есть также и SMD исполнение диодов:
Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.
На схемах диод обозначается так
Он может пропускать электрический ток только от анода к катоду.
Диод диоду рознь
Стандартный диод представляет собой компонент электросети и выступает в роли полупроводника с p-n переходом. Его строение позволяет пропускать ток по цепи только в одном направлении — от анода к катоду (разные концы детали). Для этого нужно подать на анод «+», а на катод – «-».
Обратите внимание! Течь в обратном направлении, от катода к аноду, электрический ток в диодах не может.
Из-за такой особенности изделия, при подозрении на предмет поломки, его можно проверить тестером или мультметром. На сегодняшний день в радиоэлектронике существует несколько видов диодов:
- светодиод. При прохождении электрического тока через такой элемент он начинает светиться в результате трансформации энергии в видимое свечение;
- защитный или обычный диод. Такие элементы в электросети выполняют роль супрессора или ограничителя напряжения. Одной из разновидностей данного элемента является диод Шоттки. Его еще называют как диод с барьером Шоттки. Такой элемент при прямом включении дает малое падение напряжения. В Шоттки вместо p-n перехода применяется переход металл-полупроводник.
Если обычные детали и светодиоды используются в превалирующем большинстве электроприборов, то Шоттки – преимущественно в качественных блоках питания (например, для таких приборов, как компьютеры). Стоит отметить, что проверка обычного диода и Шоттки практически ни чем особым не отличается, так как проводится по одному и тому же принципу. Поэтому не стоит беспокоиться по данному вопросу, ведь принцип работы и Шоттки, и обычных диодов идентичен. Обратите внимание! Здесь только стоит отметить, что Шоттки в большинстве случаев встречаются сдвоенными, размещаясь в общем корпусе. При этом они имеют общий катод. В такой ситуации можно эти детали не выпаивать, а проверить «на месте».
Являясь компонентом электронной схемы, такие полупроводниковые элементы довольно часто выходят из строя. Самыми распространенными причинами выхода их из строя бывают:
- превышение максимально допустимого уровня прямого тока;
- превышение обратного напряжения;
- некачественная деталь;
- нарушение правил эксплуатации прибора, установленных производителем.
При этом вне зависимости от причины потери работоспособности выход из строя может быть непосредственно обусловлен либо «пробоем», либо коротким замыканием. В любом случае, если имеется предположение о выходе электросети из строя в зоне полупроводника, необходимо провести его диагностику с помощью специального прибора – мультиметра. Только для проведения таких манипуляций необходимо знать, как проверить диод с его помощью правильно.
Из чего состоит диод
В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.
После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.
Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.
строение диода
Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.
Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.
диод Д226
Вот это и есть тот самый PN-переход
PN-переход диода
Как определить анод и катод диода
1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса
2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.
Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).
Проверка диода на плате
Как проверить емкость аккумулятора мультиметром
Как проверить светодиод мультиметром не выпаивая? В принципах его проверки всё остаётся также, а способы изменяются. Удобно проверять светодиоды, не выпаивая с помощью щупов.
Стандартные щупы не влезут в разъём для транзисторов, режима Hfe. Но в него влезут швейные иглы, кусочек кабеля (витая пара) или отдельные жилки из многожильного кабеля. В общем любой тонкий проводник. Если его припаять к щупу или фольгированному текстолиту и присоединить щупы без штекеров, то получится такой переходник.
Теперь вы можете прозвонить светодиоды мультиметром на плате.
Как проверить светодиоды в фонарике? Открутите блок линз или переднее стекло на фонаре, аккуратно отпаяйте плату от батарейного блока, если длина проводников не позволяет её свободно рассмотреть и изучить.
В таком положении вы легко проверите исправность каждого светодиода на плате описанным выше методом. Подробнее о светодиодах в фонариках.
Диод в цепи постоянного тока
Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.
прямое включение диода
Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.
диод в прямом включении
Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.
обратное включение диода
Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.
обратное включение диода
Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.
Проверка полупроводниковых диодов
Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого Rnp и обратного Rобр сопротивлений.
Чем больше отношение Rобр /Rnp, тем выше качество диода. Для измерения диод подключается к тестеру (омметру или на режим «прозвонки»).
При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного полупроводникового прибора.
Вот вы его подключили: плюсовую клемму прибора к аноду, а минусовую к катоду и на индикаторе побежали циферки или задёргалась стрелка (в зависимости от типа прибора) – значит, вы попали «+» к «+»;«-» к «-» (рисунок №1 А) и диод, стал пропускать ток, теперь поменяйте местами клеммы, плюс к катоду, минус к аноду и получите обратную ситуацию «+» к «-»;«-» к «+»(рисунок №1 Б), индикатор прибора ничего не показывает и даже не шелохнулся => значит, диод не пропускает ток => значит диод исправен.
Рисунок №1 – Схема проверки простого полупроводникового диода
Вы должны чётко понимать принцип работы диода – он как клапан, пропускает ток только в одном направлении, а в случае его не исправности пропускает в обоих или не пропускает вообще. Исправность высокочастотных диодов можно проверить подключением их в схему работающего простейшего детекторного радиоприемника, как показано на рисунке №2.
Нормальная работа радиоприем¬ника говорит об исправности диода, а отсутствие приема — о его пробое.
Диод в цепи переменного тока
Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.
Мой генератор частоты выглядит вот так.
генератор частот
Осциллограмму будем снимать с помощью цифрового осциллографа
Генератор выдает переменное синусоидальное напряжение.
синусоидальный сигнал
Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.
переменное напряжение после диода
Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.
А что будет, если мы поменяем выводы диода? Схема примет такой вид.
переменый ток после диода
Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.
переменный ток после диода
Ничего себе! Диод срезал только положительную часть синусоиды!
Характеристики диода
Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”
Для объяснения параметров диода, нам также потребуется его ВАХ
1) Обратное максимальное напряжение Uобр – это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.
2) Максимальный прямой ток Iпр – это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.
3) Максимальная частота Fd, которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.
Проверяем диоды
- В первую очередь следует определить, снабжен ли ваш мультиметр функцией проверки диодов. В случае положительного ответа, следует подключить щупы. В результате одну сторону диод будет прозваниваться, в то время как другую — нет.
- В случае если этой функции на приборе нет, то следует установить переключатель мультиметра на значение 1кОМ и выбрать режим измерения сопротивления, после чего нужно выполнить проверку диода. Во время подключения красного вывода мультиметра к аноду диода, а черный – к катоду, следует понаблюдать за его прямым сопротивлением.
- Затем нужно сделать выводы относительно состояния диода при обратном подключении. Итак, сопротивление на существующем пределе должно быть крайне высоким, вы даже ничего не увидите. При использовании пробитого диода его сопротивление в любую сторону будет равным нулю, а когда он оборван, сопротивление будет принимать большое значение в любую сторону.
- Стоит отметить, что проверить диод мультиметром можно и при помощи подключения отрицательного и положительного полюсов омметра, только потребуется предварительно установить его на шкалу Rх100 соответственно к положительному (аноду) и отрицательному (катоду) выводам диода. В итоге результат измерений сопротивления должен составить от 500 до 600 Ом. Но это если вы проверяете обычные (кремниевые) диоды, а вот если они германиевые, то от 200 до 300 Ом. В случае если диоды выпрямительные, то из-за большого размера их сопротивление будет несколько ниже обычных. При помощи данного метода можно быстро определить работоспособность диода, даже если вы этого никогда не делалали раньше.
Виды диодов
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.
Проверка диодов мультиметром
И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают «OL»).
Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω». В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.
Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно. Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки. Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.
Как проверить диод мультиметром
- Виды диодов
- Что называется мультиметром?
- Проверка работоспособности диода, светодиода, стабилитрона.
- Признаки неисправного диода
- Проверка диодного моста
- Заключение
На сегодняшний день электроника прочно вошла в жизнь и имеется в составе любого прибора или гаджета. Но, как не прискорбно, это было и приборы, и гаджеты ломаются и приходят в негодность. Самой часто встречающейся причиной, по которой многие приборы ломаются — это поломка одного из элемента электрической сети, к примеру диод.
Выполнить проверку поломки или неисправности этого элемента возможно самостоятельно. В статье разберем подробно как проверить диод мультиметром, а также что представляет из себя этот прибор и как им пользоваться.
Диоды бывают разные
Простой диод является элементом электрической сети и несет в себе роль полупроводника, то есть р-n переход. Он устроен так, что вполне может осуществить пропуск тока по цепи, но только в одну сторону. И осуществляется это от анода к катоду. Для этого обязательно к аноду присоединяется «плюс», а к катоду — «минус».
Обязательно стоит учесть и запомнить! Двигаться в обратном направлении ток в диоде не может. Из-за такого отличительного момента изделие возможно проверить на неисправность с помощью тестера или мультметра. Рассмотрим какие же бывают диоды и чем отличаются друг от друга.
Типы диодов:
- Простой диод.
- Стабилитрон, как понятно из названия он препятствует повышению напряжения, то есть стабилизирует его.
- Варикап, диод обладающий емкостью, часто встречается в УКВ приемниках.
- Тиристор, диод с управляющим электродом, при подачи сигнала на управляющий электрод можно управлять состоянием тиристора, то есть открывать его или закрывать. Такой элемент часто встречается в силовой электронике.
- Симистор, примерно тоже самое, что и тиристор только для переменного напряжения. Диагностика данного диода будет рассмотрена в другой статье.
- Светодиод, диод излучающий свет при прохождении через него тока.
- Диод Шотки, диод обладающий повышенным быстродействием и малым падением напряжения.
Также есть фотодиоды, инфракрасные диоды и др.
Несмотря на то, что диоды отличаются по назначению и переходу, их проверка выполняется аналогично. Принцип работы диодов аналогичен.
Что называется мультиметром?
Мультиметр — это прибор, который имеет ряд функций:
- Измерение напряжения, тока;
- Измерение сопротивления;
- Прозвонка, в этом режиме мультиметр показывает напряжение падения в мВ.
- Также могут буть функции измерения емкости, температуры, частоты и др.
Как проверить диод мультиметром?
После того как определились с типом диодов, их различиями и особенностями, а также с назначением этого прибора, можно рассмотреть порядок работы с ним. Проверка заключается в том, что проверяют пропускную способность тока через них. Если это правило соблюдается, то смело можно заявить, что элемент схемы работает исправно и не имеет недостатков.
Обычные диоды проверяются этим прибором без особых усилий. Чтобы выполнить диагностику этих элементов достаточно выполнить следующие действия:
Проверка работоспособности диода, светодиода, стабилитрона.
- Устанавливаем прибор в режим прозвонки, если такого режима нет, то в режим измерения сопротивления 1кОм;
- Убеждаемся, что щупы прибора подключены в нужные нам гнезда мультиметра;
- Провод красного цвета подсоединяется к аноду, а провод черного цвета — к катоду;
- Производим измерение. В режиме прозвонки, при подключении диода прибор показывает падение напряжения от 200 до 400 мВ для германиевых диодов, от 500 до 700 мВ для кремниевых. При измерении сопротивления прибор будет показывать сопротивление диода. К примеру, для германиевых элементов сопротивление составляет от 100 килоом до 1 магаома, для элементов выполненных из кремния этот показатель равен 1000 мегаом. Если проверяется выпрямительный полупроводник, то значение еще более высокое. Это обязательно нужно учитывать, чтобы не допустить ошибку при определении результатов;
- Меняем местами красный и черный щуп прибора;
- Производим измерение. Если диод подключить в обратном направлении, то прибор будет показывать единицу «1», то есть величина сопротивления или напряжения утечки бесконечно большая;
- Нужно помнить, что может быть вовсе не поломка, а утечка. Этот вариант возможен в двух случаях, если прибор долго находился в эксплуатации или же сборка его была выполнена не качественно. Если имеется короткое замыкание или утечка, то прибор покажет низкое сопротивление. Причем при определении результата нужно учитывать вид полупроводника.
- Делаем выводы о работоспособности элемента.
Если все показатели соблюдены, то можно смело сказать, что он работает правильно и исправен. А вот если хотя бы один параметр не верный, то это свидетельствует о том, что элемент нужно заменить.
Признаки неисправного диода
- Если диод неисправен, то в режиме прозвонки прибор запищит, а в режиме измерения сопротивления покажет значение близкое к 0, что говорит о том что диод коротко замкнут, то есть пробит.
- Если при обоих измерениях прибор показывает 1, тоесть бесконечно большую величину, это означает, что диод в обрывае.
Диодный мост
Бывает, что возникает необходимость в диагностике диодного моста. Он представляет собой сборку, которая состоит из 4 полупроводников. Причем они соединены так, что переменное напряжение преобразуется в постоянное. Принцип проверки практически такой же. Важной отличительной особенностью является то, что нужно определить как подключены диоды в диодном мосту и проверить каждый диод в прямом и обратном направлении.
Заключение
Провести диагностику работоспособности полупроводников в приборе самостоятельно не сложно. Важно соблюдать порядок действий с мультиметром и четко выполнять все по инструкции. Но при этом обязательно начиная проверку нужно обратить внимание на тип элемента, иметь понятие о том, какое должно быть рабочее сопротивление и напряжение у исправного диода этой разновидности и только потом проводить диагностику и делать выводы.
Используя прибор для проверки исправности диода или любых других целей нужно придерживаться техники безопасности при пользовании им. Все щупы должны быть в исправном состоянии, изоляция проводов должна быть целостной. Если имеются какие — ни будь дефекты, то их желательно сразу устранить, чтобы не нанести себе травмы при измерении. Также важно помнить, что у каждого прибора есть своя погрешность, в дешевых моделях она очень большая. И это важно учитывать при проведении проверки. От того насколько правильно будут выполнены все действия по диагностике, будет зависеть и результат проверки, и ее точность. Поэтому нужно уделить этому должное внимание.
Сопротивление диода
Различают два вида сопротивления диодов: дифференциальное сопротивление rD и сопротивление по постоянному току RD.
Дифференциальное сопротивление (сопротивление по переменному току) определяется как
где I
– прямой ток,
Is
— тепловой (обратный) ток.
На прямом участке вольт-амперной характеристики диода дифференциальное сопротивление rD невелико и составляет значение несколько Ом. Действительно, при значении прямого тока диода I = 25 мА и значении теплового потенциала kT/q = 25 мВ величина дифференциального сопротивления rD будет равна rD = 1 Ом. На обратном участке вольт-амперной характеристики диода дифференциальное сопротивление rD стремится к бесконечности, поскольку в идеальных диодах при обратном смещении ток не зависит от напряжения.
Сопротивление по постоянному току RD определяется как отношение приложенного напряжения VG к протекающему току I через диод:
На прямом участке вольт-амперной характеристики сопротивление по постоянному току больше, чем дифференциальное сопротивление RD > rD, а на обратном участке — меньше RD
Стабилитроны
Стабилитроном называется полупроводниковый диод, вольт-амперная характеристика которого имеет область резкой зависимости тока от напряжения на обратном участке вольт-амперной характеристики.
ВАХ стабилитрона имеет вид, представленный на рисунке 1.18а, а конструкция корпуса на рис. 1.18б.
При достижении напряжения на стабилитроне, называемого напряжением стабилизации Uстаб, ток через стабилитрон резко возрастает. Дифференциальное сопротивление Rдиф идеального стабилитрона на этом участке ВАХ стремится к 0, в реальных приборах величина Rдиф составляет значение: Rдиф ≈ 2÷50 Ом.
Основное назначение стабилитрона — стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи. В связи с этим последовательно со стабилитроном включают нагрузочное сопротивление, демпфирующее изменение внешнего напряжения. Поэтому стабилитрон называют также опорным диодом.
Напряжение стабилизации Uстаб зависит от физического механизма, обуславливающего резкую зависимость тока от напряжения. Различают два физических механизма, ответственных за такую зависимость тока от напряжения, — лавинный и туннельный пробой p-n перехода.
Для стабилитронов с туннельным механизмом пробоя напряжение стабилизации Uстаб невелико и составляет величину менее 5 вольт: Uстаб 8 .
Туннельный пробой в полупроводниках
Проанализируем более подробно механизмы туннельного и лавинного пробоя. Рассмотрим зонную диаграмму диода с p-n переходом при обратном смещении при условии, что области эмиттера и базы диода легированы достаточно сильно (рис. 1.19.).
Квантово-механическое рассмотрение туннельных переходов для электронов показывает, что в том случае, когда геометрическая ширина потенциального барьера сравнима с дебройлевской длиной волны электрона, возможны туннельные переходы электронов между заполненными и свободными состояниями, отделенными потенциальным барьером.
Форма потенциального барьера обусловлена полем p-n перехода. На рисунке 1.20 схематически изображен волновой пакет при туннелировании через потенциальный барьер треугольной формы.
Внутреннее сопротивление – диод
Cтраница 1
Внутреннее сопротивление диода в прямом направлении мало.
[1]
Внутреннее сопротивление диода возникает между катодом и анодом при переменном токе.
[2]
Внутреннее сопротивление диода определяет связь между изменением падения напряжения на лампе и изменением анодного тока.
[3]
Внутреннее сопротивление диода для переменного тока ( или, как называют иначе, дифференциальное внутреннее сопротивление) – это отношение прироста анодного напряжения к соответствующему приросту анодного тока.
[5]
Внутреннее сопротивление диода определяет связь между изменением падения напряжения на лампе и изменением анодного тока.
[6]
Внутреннее сопротивление диода для переменного тока отличается от сопротивления диода для постоянного тока Л0, которое равно отношению анодного напряжения к анодному току в рабочей точке диода.
[7]
Внутреннее сопротивление диода Ri характеризует влияние анодного напряжения на анодный ток.
[9]
Параллельно внутреннему сопротивлению диода Л; включена межэлектродная емкость С.
[11]
Если внутреннее сопротивление диода относительно мало, то даже при высоком значении его диодности по расходу общая диодность линии, в которую включен рассмотренный диод, может оказаться низкой.
[12]
Определяем статическое внутреннее сопротивление диода.
[14]
Влияние внутреннего сопротивления диодов и неточности подбора сопротивлений для диодных элементов типа ограничителя, собранных по схеме II, значительно меньше, чем для диодных элементов с потенциально заземляемыми диодами. С ростом е х / при прочих равных условиях погрешность от лд уменьшается, в то время как у диодных элементов с потенциально заземляемыми диодами она увеличивается. Влияние неточности установки еоп сказывается только при выключенном состоянии диодного элемента типа ограничителя.
[15]
Страницы:
1
2
3
4
5
Статические параметры диода
Крутизна
характеристики отражает управляющее
воздействие изменения UАна изменениеIАв
режиме пространственного заряда:
S=ΔIА/
ΔUА, мА/В
приUн=const.
Крутизна
характеристики в различных её точках
разная, т.к. сама характеристика
нелинейная. Очевидно, чем ближе к катоду
расположен анод, тем управляющее
воздействие поля анода на пространственный
заряд больше и Sсоответственно
больше. Ламповые диоды имеютS=2…6
мА/В.
Внутреннее
сопротивление характеризует сопротивление
диода изменяющемуся току, т.е. переменному
току:
Ri
= ΔUА
/ ΔIА
приUн=const.
Внутреннее
сопротивление диода Ri
составляет 50…1000 Ом.
Предельные параметры диода
Допустимая
мощность, рассеиваемая анодом PА
max.Бомбардировка анода электронами, которые
подлетают к нему с громадной скоростью,
приводит к его сильному разогреву за
счёт преобразования кинетической
энергии движущихся электронов в тепловую.
Эта мощность отдаётся анодом в окружающее
пространство. При этом устанавливается
тепловой баланс между теплом, выделяемым
на аноде и отдаваемым им в окружающее
пространство. При нарушении баланса
анод перегревается, и лампа выходит из
строя.
Допустимое
обратное напряжение UА.max
. Вакуумный диод, применяемый
для выпрямления переменного тока,
называетсякенотрон. При подаче
на него переменного напряжения знак
напряжения на аноде меняется через
полпериода, т.к.Riоткрытого диода сравнительно мало, его
прямое напряжение также невелико. При
подаче обратного напряжения сопротивление
диода очень велико, и он оказывается
под высоким напряжением источника.
Высоковольтные диоды должны обладать
большим допустимым обратным напряжением.
Диоды
в основном применяют для выпрямления
переменного тока благодаря свойству
односторонней проводимости. Однако
эффективность применения ламповых
диодов в качестве выпрямителей ниже,
чем полупроводниковых из-за больших
потерь напряжения и меньшей надёжности.
Устройство и принцип действия триодов
Для
того чтобы увеличить возможность
управления потоком электронов,
эмиттированных катодом, тем самым
расширить область применения электронных
ламп, были созданы трёхэлектродные
лампы – триоды. В триоде между анодом
Аи катодомКпомещён ещё один
электрод –управляющая сетка УС.Сетка конструктивно представляет собой
либо спираль, либо сетку из переплетённых
проводов и выполняется из вольфрамового,
никелевого или молибденового провода.
Условное изображение триода в схеме
дано на рисунке. Как и в диоде, в триоде
имеются цепь накала для разогрева катода
и цепь анода для получения ускоряющего
поля для электронов. Главное отличие
триода от диода в том, что в триоде
имеется дополнительная возможность
управления анодным током путём изменения
напряжения между сеткой и катодом.
А
С
К
н н
Подадим
постоянное напряжение между анодом и
катодом UА плюсом
на анод и будем менять напряжение между
управляющей сеткой и катодомUС
по величине и по знаку. При подаче
отрицательного напряжения на сетку для
электронов пространственного заряда
создаётся тормозящее поле, поэтому в
каждой точке между сеткой и катодом на
электроны действует поле, образовавшееся
в результате взаимодействия между
ускоряющим полем анода и тормозящим
полем сетки. При определённом отрицательном
напряженииUС анодный
ток становится равным нулю, тормозящее
поле создаётся не только у витков сетки,
но и в промежутках между ними, препятствуя
пролёту электронов от катода к аноду.
При этом пространственный заряд у катода
имеет наибольшую плотность. Будем
уменьшать отрицательное напряжение на
сетке, результирующее поле между витками
сетки меняется и становится ускоряющим
для электронов. Чем меньше отрицательное
напряжение на сетке, тем сильнее действует
ускоряющее поле и тем больше становится
токIА. При подаче
положительного напряжения +UC
электроны получают ускорение не
только за счёт поля анода, но также и за
счёт поля сетки. Анодный ток становится
ещё больше. Однако часть электронов
притягивается непосредственно к виткам
сетки и образует ток сеткиIС.
Таким образом, при положительном
напряжении на сетке общий катодный токIК разветвляется
на два тока: анодныйIА
и сеточныйIС.
UД = UC
+ DUА
, гдеUД –
действующее напряжение,D–проницаемость триода.
D=
CАК / CСК
, гдеCАК –
ёмкость анод-катод,CСК
– ёмкость сетка-катод.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
Сумма
падения напряжения Ua на
диоде и падения напряжения Ia × Raна
сопротивлении Rа равна напряжению источника питания Eа . Следовательно, если в координатах вольт-амперной характеристики
построить график зависимости падения напряжения на сопротивлении Ra от величины протекающего через него тока,
как показано на рис. 6, то значение тока, для которого справедливо уравнение (1.4),
определится как ток в точке О. График зависимости падения напряжения на
сопротивлении нагрузки Raот тока
диода Iа , называется нагрузочной прямой или линией нагрузки для
постоянного тока.
Крутизна
линии нагрузки
определится из рис. 6 как . Точка О, которая
является одновременным решением двух уравнений, называется рабочей точкой в
статическом режиме.
1.5. Описание
лабораторной установки
Лабораторная установка предназначена для
изучения зависимости между током, протекающим в цепи анода вакуумного диода, и напряжением,
приложенным к его электродам.
Схематично установку можно представить в виде трех блоков:
блок питания, измерительный блок, ламповый блок (рис. 8).
Рис.8. Структурная
схема лабораторной установки
Упрощенная
принципиальная электрическая схема стенда, позволяющего реализовать цели
лабораторной работы, представлена на рис.9. Электрическая принципиальная схема,
реализованная в лабораторном стенде, отличается от типовой тем, что амперметр
был заменен добавочным сопротивлением Rа (62 Ом) с параллельно включенным
вольтметром V2 . Это дает возможность в ходе выполнения лабораторной работы
получить статическую и рабочую вольт-амперную характеристики вакуумного диода,
а также позволяет защитить вакуумной лампу от перенапряжений и больших токов. Потенциометр
Rпа является частью блока питания.
Рис. 9. Схема
электрическая принципиальная: а – типовая; б – лабораторного стенда
В
качестве блока питания предлагается использовать источник постоянного тока
Б5-47 и универсальный источник питания УИП-2. Основные технические характеристики
этих приборов, которые задействованы в лабораторной установке, представлены в
табл. 1.
Измерительный
блок включает в себя два вольтметра. В роле вольтметра V1
выступает ручной переключатель стабилизированного питающего напряжения Uc на лицевой панели прибора Б5-47.
Табл.1
Прибор |
Uвых, В |
Iвых, А |
Примечание |
Б5-47 |
0 ÷ 29,9 |
0 ÷ 2,99 |
Ступенчатое регулирование, стабилизация |
УИП-2 |
6,3 |
Накальное напряжение |
В состав
элементов лампового блока входят вакуумный диод 6Х2П, сопротивление Rа и выходные клеммы.
Правильное
включение электронной вакуумной лампы можно осуществить в соответствии с
цоколевкой вакуумного диода 6Х2П, представленного на рис. 10.
Рис. 10. Цоколевка
вакуумного диода 6Х2П: 1, 5 – катод; 2, 7 – анод; 3, 4 – накал; 6 –
разделительная сетка
Выходные
клеммы лампового блока пронумерованы в соответствии с цоколевкой диода 6Х2П. В
электрической схеме лабораторной установки задействована одна половина вакуумного
диода – ножки 2, 3, 4, 5.
При
проведении работы от студента требуется ответственное отношение к лабораторному
оборудованию и соблюдение правил электробезопасности.
2. Практическая
часть
Задание:
1.Построить ВАХ вакуумного диода
6Х2П.
2.
Построить нагрузочную прямую.
3. Рассчитать параметры диода.
Прежде
чем начать практическую часть работы, целесообразно повторить теоретический
материал, полученный на практических занятиях. Студенту необходимо знать, в
каких пределах допустимо менять напряжение на аноде лампы (т.е. знать
максимально допустимое напряжение на аноде).
2.1. Порядок выполнения
1.
Используя электрическую принципиальную схему (См. рис. 9 (б)), собрать
установку.
2.
Снять и графически представить статическую и рабочую ВАХ вакуумного диода 6Х2П.
3.
Построить нагрузочную прямую.
4.
Рассчитать параметры диода.
2.2. Порядок монтажа лабораторной установки
1. Установить
наличие и нахождение в выключенном состоянии приборов УИП-2, Б5-47.
2. При помощи двух проводников
подвести накальное напряжение от универсального источника питания УИП-2 к соответствующим клеммам лампового блока.*
3. При помощи двух
проводников подвести анодное напряжение от источника постоянного тока Б5-47 к соответствующим клеммам лампового блока. **
4. При помощи двух
проводников подключить вольтметр V2 : один
провод подвести к анодной клемме лампового блока, а другой – к клемме Ra.
____________________________
* Выходные клеммы лампового блока
пронумерованы в соответствии с цоколевкой диода 6Х2П.
** Полярность подводимого напряжения должна обеспечивать
открытое состояние диода.
2.3. Порядок включения лабораторной установки
1. Получить у
преподавателя разрешение на включение лабораторной установки.
2. Убедиться, что
все тумблеры приборов, используемых в лабораторной работе, находятся в положении
«выкл.», а ручки грубой и плавной регулировки повернуты до упора против часовой
стрелки.
3. Воткнуть вилки шнуров
питания блоков Б5-47, УИП-2 и
вольтметра в соответствующие свободные
электрические розетки.
4. Включить
поочереди тумблеры питания приборов.
2.4. Снятие ВАХ диода
Измерение зависимости между Еа (вольтметр
V1) и UR
(вольтметр V2) проводится, начиная с Еа = 0 В, с
шагом в 2 В. Запись результатов измерений заносятся в табл. 2. Снимая показания
двух вольтметров и применив законы Ома и Кирхгофа, можно определить значения
силы тока, протекающего в анодной цепи. По полученным данным строятся графики
зависимости анодного тока (Iа) от
напряжения (Uа) и
анодного тока (Iа) от
напряжения (Еа= Uа+ UR).
Табл.2
Показатель |
Номер |
|||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
*** |
n |
|
Еа |
||||||||||
UR |
||||||||||
Uа |
||||||||||
Ia |
2.5. Построение нагрузочной прямой диода
Линия
нагрузки строится на вольт-амперной характеристике. Так как наклон этой прямой определяется
величиной сопротивления нагрузки, то ее называют нагрузочной. Ее можно
построить по точкам ее пересечения с осями координат. Нагрузочная прямая
пересекает ось абсцисс в точке Uа
=Еа, соответствующей напряжению источника питания, при котором предполагается рабочее использование
диода, ось ординат — в точке Iа = Eа / Ra (рис. 6, 7).
Точка
пересечения вольт-амперной характеристики и линии нагрузки будет рабочей
точкой в статическом режиме.
Построение
нагрузочной прямой осуществляется в соответствии с вариантом задания (табл. 3).
Табл. 3
Показатель |
Номер |
|||||||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
Еа |
10 |
12 |
14 |
16 |
18 |
20 |
22 |
24 |
25 |
29,9 |
2.6. Расчет параметров диода
Статическое внутреннее
сопротивление диода в рабочей точке ВАХ определяется согласно уравнению (1.1).
Динамическое внутреннее сопротивление диода определяется
согласно уравнению (1.2).
Определяем
Мощность Р рассеивания на аноде диода по постоянному току определяется
путем перемножения значения напряжения и тока в рабочей точке.
Контрольные вопросы
1.
Что собой представляет
пространственный заряд?
2.
Каковы ограничения тока диода?
3.
Какие основные электрические
параметры диода вы знаете?
4.
Как строится нагрузочная прямая
диода?
5.
Каким образом регулируется сила
тока в анодной цепи электрической схемы лабораторной установки?
6.
От чего зависит сила тока в диоде?
7.
Каковы области применения диода?
8.
В каких пределах варьируются
основные электрические параметры вакуумных диодов?
Что такое полупроводниковый диод – выпрямитель переменного тока
Диодами называют двухэлектродные приборы, обладающие односторонней проводимостью электрического тока. Это их основное свойство используют, например, в выпрямителях, где диоды преобразуют переменный ток электросети в ток постоянный для питания радиоаппаратуры, в приемниках — для детектирования модулированных колебаний высокой частоты, то есть преобразования их в колебания низкой (звуковой) частоты.
Наглядной иллюстрацией этого свойства диода может быть такой опыт. В цепь, составленную из батареи 3336Л и лампочки от карманного фонаря (3,5 В X 0,26 А), включи любой плоскостной диод, например, из серии Д226 или Д7, но так, чтобы анод диода, обозначаемый условно треугольником, был бы соединен непосредственно или через лампочку с положительным полюсом батареи, а катод, обозначаемый черточкой, к которой примыкает угол треугольника, с отрицательным полюсом батареи. Лампочка должна гореть.
Размеры диодов.
Измени полярность включения батареи на обратную — лампочка гореть не будет. Если сопротивление диода измерять омметром, го в зависимости от того, как подключить его к зажимам прибора, омметр покажет различное сопротивление: в одном случае малое (единицы или десятки ом), в другом — очень большое (десятки и сотни килоом). Этим и подтверждается односторонняя проводимость диода.
У диода два электрода: катод — отрицательный и анод — положительный (рис. 13). Катодом служит пластинка германия, кремния или какого-либо другого полупроводника, обладающего электронной проводимостью, или сокращенно полупроводник n-типа (n — начальная буква латинского слова negativus — «отрицательный»), а анодом – часть объема этой же пластинки, но- с так называемой дырочной про-водимостью, или сокращенно полупроводник р-типа (р — начальная буква латинского слова positivus — «положительный»).
Между электродами образуется так называемый р-n переход — пограничная зона, хорошо проводящая ток от анода к катоду и плохо в обратном направлении (за направление тока принято направление, противоположное движению электронов). Диод может находиться в одном из двух состояний: открытом, то есть пропускном, либо закрытом, то есть непропускном. Диод бывает открыт, когда к нему приложено прямое напряжение Uпр, иначе, его анод соединен с плюсом источника напряжения, а катод — с минусом.
В этом случае сопротивление р-n перехода диода мало и через него течет прямой ток IПр, сила которого зависит от сопротивления нагрузки (в нашем опыте — лам-почка от карманного фонаря). При другой полярности питающего напряжения на р-n переход диода прикладывается обратное напряжение Uобр. В этом случае диод закрыт, его сопротивление велико и в цепи течет лишь незначительный обратный ток диода Iобр. О зависимости тока, проходящего через диод, от значения и полярности напряжения на его электродах лучше всего судить по вольтамперной характеристике диода, которую можно снять опытным путем.
Разные типы диодов.
Диоды и их разновидности
Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в “семейство” диодов входит не один десяток полупроводниковых приборов, носящих название “диод”. Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод – катод, один из которых обладает электропроводностью типа р, а другой – n.
Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький).
Внутреннее сопротивление диода (открытого) – величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.
Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др. Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.
Какие разновидности диодов существуют.
Существует несколько основных видов диодов:
- Диод Шоттки. Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами. Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:
- Стабилитрон. Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений. Основным параметром стабилитронов является напряжение стабилизации, стабилитроны имеют различные напряжения стабилизации, например 3в, 5в, 8.2в, 12в, 18в и т.п.
- Варикап. Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.
- Тиристор. Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое. Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод – используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92. Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.
- Симистор. Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях. Светодиод. Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.
- Инфракрасный диод. Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне . Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды. Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.
- Фотодиод. Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.
Виды диодов
Светодиодные элементы делятся на 2 объёмных вида: полупроводниковые и неполупроводниковые. Устройство первого подразумевает небольшую ёмкость с выкачанным воздухом и двумя электродами внутри:
- Плюсовым, обладающим электропроводностью P.
- Минусовым, обладающим электропроводностью N.
Неполупроводниковые диоды делятся в свою очередь ещё на 2 группы:
- Вакуумные (кенотроны), построенные по принципу лампы, имеющей 2 электрода, где один из них представлен как нить накаливания. В приоткрытом положении движение электронов осуществляется в сторону от полюса к минусу. В закрытом положении траектория перемещения изменяется в противоположную сторону или приостанавливается.
- Наполненные газом (стабилитроны с тлеющим либо коронным зарядом игнитронов и газотронов). Из объёмного списка элементов наибольшая популярность присуща газотронам с дуговым зарядом (стабилитронам). Внутрь них закачивается инертный газ, помещаются оксидные термокатоды. Ключевой особенностью таких светодиодов является возможность к выдаче высокого напряжения на выходе и способность функционировать с напряжением, значение которого может достигать нескольких десятков ампер.
Важно! Величина сопротивления в закрытом положении непосредственно связана со значением прямого тока. Если оно высокое, то сопротивление будет низким.
Типы диодов
Основное разделение диодов происходит по их виду. Различают три категории: материал изготовления, площадь p-n перехода и назначение.
Для производства диодов используют один из четырех исходных полупроводников:
- германий – в маломощных и прецизионных цепях, имеет больший коэффициент передачи;
- кремний – недорогие и долговечные, устойчивы к воздействию температуры, но обладают меньшей проводимостью;
- арсенид галлия – дороже и сложнее кремниевых, высокая радиационная стойкость;
- фосфид индия – в светодиодах и для работы на сверхвысоких частотах.
Каждому материалу в разных системах соответствует своя буква или цифра, которую указывают в начале.
Есть два варианта конструкционного размещения катода и анода:
- Точечный диод. Один из электродов в виде узкой иглы вплавляется в кристалл, образуя p-n границу. Она имеет малую площадь, как следствие – высокая рабочая частота. Они почти вышли из применения по причине низкой прочности, уязвимости к перегрузкам и низкому максимальному току.
- Плоскостный диод. Область перехода больше – контакт проходит по площади пластинки полупроводника, соединяемой с кристаллом. Отличаются большей емкостью, низким уровнем помех, малым падением напряжения. Пример – диод Шоттки.
В современной маркировке разделение практически не встречается – плоскостные диоды постепенно вытесняют точечные.
Следующее обозначение зависит от назначения прибора. Существует классификация диодов, применяемых в разных областях: туннельные, лазерные, варикапы, стабилитроны. Внутри подтипа также есть разделение – уже по техническим параметрам:
- рабочая частота;
- время восстановления;
- прямой и обратный ток;
- допустимые значения обратного и прямого напряжения;
- температурный режим.
Получается большое количество возможных сочетаний, отсюда – сложность создания единой системы маркировки.
Устройство
Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:
- Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
- Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
- Внутри катодакосвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
- Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
- Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
- Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.
Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.
Прямое включение диода
На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.
Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:
- Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
- Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
- Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
- Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
- Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
- Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
- Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.
Обратное включение диода
Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:
- Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
- Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
- По мере ростаобратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
- В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.
Как работает диод
Можно физически сами диоды не видеть, но результат их действия окружает нас повсюду. Эти устройства позволяют управлять потоком тока в указанном направлении. Существует много различных вариантов исполнения диодов. В каких случаях это бывает необходимо? Ниже будут рассмотрены примеры и в некоторой степени принцип работы полупроводниковых диодов. Если добавить две металлические обкладки к P и N рабочим областям материала, то получатся электроды анод и катод. Схема подключения электродов к источнику может работать следующим образом:
подача напряжения с батарейки к электроду N обеспечивает притяжение позитронов, соответственно к P электроду – электронов; отсутствие напряжения все возвращает в исходное состояние; смена полярности подаваемого напряжения обеспечивает притяжение электронов в обратном направлении к плюсовой пластине, а позитронов – к минусовой. В последнем случае избыточные заряды скапливаются на металлических обкладках, тогда как в центре самого материала образуется мертвая изолирующая зона.
Таким образом, центральный участок материала становится диэлектриком. В таком направлении устройство не пропускает ток. Слово происходит от di (double) + -ode. Определение терминов катод и анод диода, относящихся к контактам, известно каждому человеку. Катод – отрицательный электрод, анод – положительный. Если подать на анод плюс, а на катод – минус, то диод откроется, и электроток по нему потечет. Таким образом, диод – это устройство, которое имеет два электрода: катод и анод. Простое нелинейное электронное устройство, состоящее из двух разных полупроводников. Как устроен диод, хорошо видно на изображении.
Виды диодов.
Способы определения полярности диодов
Чтобы определить полярность диода, существует несколько способов:
- с помощью маркировки на корпусе;
- практическим путем;
- используя прибор;
- по таблицам и справочникам.
Кстати, производители оставляют за собой право использовать тот или иной метод, поэтому самым надежным будет ознакомление с технической документацией. Однако этот способ пока оставим и разберем самый простой.
Возможные неисправности
Во время работы устройств с диодами могут возникать различные поломки. Это происходит из-за старения элементов или их амортизации.
Специалисты по ремонту различают 4 вида неисправностей.
Среди них такие:
- Электрический пробой. Это одна из наиболее распространённых поломок, которые встречаются у диодов. Она является обратимой, так как не приводит к разрушению диодного кристалла. Исправить её можно путём постепенного снижения подаваемого напряжения.
- Тепловой пробой. Такая неисправность более губительна для диода. Она возникает из-за плохого теплоотвода или перегрева в области p-n перехода. Последний образуется только в том случае, если устройство питается от тока с чрезмерно высокими показателями. Без проведения ремонтных мероприятий проблема только усугубится. При этом произойдёт рост колебания атомов диодного кристалла, что приведёт к его деформации и разрушению.
- Обрыв. При возникновении этой неисправности устройство прекращает пропуск электрического тока в обоих направлениях. Таким образом, он становится изолятором, блокирующим всю систему. Для устранения поломки нужно точно определить её местонахождение. Для этого следует применять специальные высокочувствительные тестеры, которые повысят шанс обнаружить обрыв.
- Утечка. Под этой поломкой понимают нарушение целостности корпуса, вызванного физическим или иным воздействием на прибор.
Диод — важный элемент конструкции, который обеспечивает исправную и бесперебойную работу устройства. При правильном выборе этого элемента и обеспечении оптимальных условий работы можно избежать каких-либо неисправностей.
Область применения
Сфера использования этих деталей в современной радиотехнике высока. Сложно найти устройство, которое работает без этих деталей. Чтобы понять, для чего нужен диод, можно привести несколько примеров:
- Диодные мосты — содержат от 4 до 12 полупроводниковых устройств, которые соединяются между собой. Основной задачей диодных мостов является выпрямление тока, и они активно используются, например, при создании генераторов для автомобилей.
- Детекторы — создаются при сочетании диодов и конденсаторов. В результате появляется возможность выделить низкочастотную модуляцию из различных сигналов. Применяются при изготовлении радио- и телеприемников.
- Защитные устройства — позволяют обезопасить электрическую схему от возможных перегрузок. Несколько изделий подключаются в обратном направлении. Когда схема работает нормально, то они остаются в закрытом положении. Как только входное напряжение достигает критических показателей, устройство активируются.
- Переключатели — такие системы на основе этих изделий позволяют осуществлять коммутацию высокочастотных сигналов.
- Системы искрозащиты — создание шунт-диодного барьера позволяет ограничить показатель напряжения в электроцепи. Для увеличения степени защиты вместе с полупроводниковыми деталями используются специальные токоограничивающие резисторы.
Это лишь несколько примеров использования диодов. Они являются достаточно надежными устройствами, с помощью которых можно решать большое количество задач. Чаще всего эти радиодетали выходят из строя по причине естественного старения либо из-за перегрева.
Если произошел электрический пробой изделия, то его последствия редко являются необратимыми, так как кристалл не разрушается.
Основные выводы
То, что у любого диодного элемента есть анод и катод, знает большинство людей, показать их способны немногие. Зная все способы проверки, можно применять их по отдельности или комбинировать, так как ни один не идеален. Техническая документация и визуальный осмотр не позволяют определить работоспособность полупроводника. Тестер не всегда можно использовать для прозвона мощных источников света. Подключение к питанию дает самые точные результаты, но требует осторожности.
Чтобы лучше запомнить, как определить расположение диодного элемента по схеме, придуман простой способ:
Кроме букв на изображении можно увидеть стрелки, ток течет именно туда, куда они направлены.
Током называется движение частиц в определенном направлении. Какие это частицы (молекулы, атомы, электроны, ионы, дырки), неважно. Важно знать другое – ток всегда течет от плюса к минусу. Плюс – это много, минус – мало.
Если для тестирования используется батарейка, необходимо знать, как на ней обозначается плюс и минус. Плюс – длинная и тонкая «палочка», минус – кроткая и толстая.
Анод полупроводника подключается к выводу, обозначенному длинной толстой «палочкой», катод – к выводу с короткой толстой. В анод ток входит, из катода выходит и возвращается на минус источника питания. При обратном подключении тока почти нет.
Если один из выводов полупроводника подключается к источнику переменного напряжения, из другого выходит ток с постоянным напряжением. Полярность зависит от того, как полупроводниковый элемент подключен. Если напряжение на аноде положительное, на выходе будет такое же. При положительном напряжении на катоде на выходе оно отрицательное.
Источники
- https://ElectroInfo.net/poluprovodniki/princip-raboty-dioda-i-sfera-ego-primenenija.html
- https://m-strana.ru/articles/diod-anod-katod/
- https://amperof.ru/teoriya/cvetovaya-markirovka-diodov.html
- https://slarkenergy.ru/oborudovanie/datchiki/princip-raboty-i-naznachenie-diodov.html
- https://electricvdome.ru/osnovy-elektrotehniki/polyarnost-dioda.html
- https://rusenergetics.ru/ustroistvo/princip-raboty-dioda
- https://tokar.guru/hochu-vse-znat/kak-rabotaet-diod-i-kakie-vidy-suschestvuyut.html
- https://svetilnik.info/svetodiody/katod-i-anod-eto-plyus-ili-minus.html
Как вам статья?
Павел
Бакалавр “210400 Радиотехника” – ТУСУР. Томский государственный университет систем управления и радиоэлектроники
Написать
Пишите свои рекомендации и задавайте вопросы