Примечание: дробные числа записывайте
через точку, а не запятую.
Округлять до -го знака после запятой.
Треугольник. Формулы и свойства треугольников.
Типы треугольников
По величине углов
По числу равных сторон
Вершины углы и стороны треугольника
Свойства углов и сторон треугольника
Сумма углов треугольника равна 180°:
В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:
если α > β , тогда a > b
если α = β , тогда a = b
Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:
a + b > c
b + c > a
c + a > b
Теорема синусов
Стороны треугольника пропорциональны синусам противолежащих углов.
a | = | b | = | c | = 2R |
sin α | sin β | sin γ |
Теорема косинусов
Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 – 2 bc · cos α
b 2 = a 2 + c 2 – 2 ac · cos β
c 2 = a 2 + b 2 – 2 ab · cos γ
Теорема о проекциях
Для остроугольного треугольника:
a = b cos γ + c cos β
b = a cos γ + c cos α
c = a cos β + b cos α
Формулы для вычисления длин сторон треугольника
Медианы треугольника
Свойства медиан треугольника:
В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
Медиана треугольника делит треугольник на две равновеликие части
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Формулы медиан треугольника
Формулы медиан треугольника через стороны
ma = 1 2 √ 2 b 2 +2 c 2 – a 2
mb = 1 2 √ 2 a 2 +2 c 2 – b 2
mc = 1 2 √ 2 a 2 +2 b 2 – c 2
Биссектрисы треугольника
Свойства биссектрис треугольника:
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.
Формулы биссектрис треугольника
Формулы биссектрис треугольника через стороны:
la = 2√ bcp ( p – a ) b + c
lb = 2√ acp ( p – b ) a + c
lc = 2√ abp ( p – c ) a + b
где p = a + b + c 2 – полупериметр треугольника
Формулы биссектрис треугольника через две стороны и угол:
la = 2 bc cos α 2 b + c
lb = 2 ac cos β 2 a + c
lc = 2 ab cos γ 2 a + b
Высоты треугольника
Свойства высот треугольника
Формулы высот треугольника
ha = b sin γ = c sin β
hb = c sin α = a sin γ
hc = a sin β = b sin α
Окружность вписанная в треугольник
Свойства окружности вписанной в треугольник
Формулы радиуса окружности вписанной в треугольник
r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )
Окружность описанная вокруг треугольника
Свойства окружности описанной вокруг треугольника
Формулы радиуса окружности описанной вокруг треугольника
R = S 2 sin α sin β sin γ
R = a 2 sin α = b 2 sin β = c 2 sin γ
Связь между вписанной и описанной окружностями треугольника
Средняя линия треугольника
Свойства средней линии треугольника
MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC
MN || AC KN || AB KM || BC
Периметр треугольника
Периметр треугольника ∆ ABC равен сумме длин его сторон
Формулы площади треугольника
Формула Герона
Равенство треугольников
Признаки равенства треугольников
Первый признак равенства треугольников — по двум сторонам и углу между ними
Второй признак равенства треугольников — по стороне и двум прилежащим углам
Третий признак равенства треугольников — по трем сторонам
Подобие треугольников
∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,
где k – коэффициент подобия
Признаки подобия треугольников
Первый признак подобия треугольников
Второй признак подобия треугольников
Третий признак подобия треугольников
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
[spoiler title=”источники:”]
http://mathhelpplanet.com/static.php?p=onlain-reshit-treugolnik
http://ru.onlinemschool.com/math/formula/triangle/
[/spoiler]
Как найти внутренний угол
Строительные работы, а также перепланировка квартиры и подготовка к ее ремонту требуют не только строительных навыков, но и познаний в математике, геометрии и пр. Так, часто бывает нужно найти внутренний угол треугольника.
Инструкция
Для нахождения внутреннего угла треугольника вспомните теорему о сумме углов треугольника.
Теорема: сумма углов треугольника равна 180°.
Из этой теоремы выделите пять следствий, которые могут помочь в расчете внутреннего угла.
1. Сумма острых углов прямоугольного треугольника равна 90°.
2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45°.
3. В равностороннем треугольнике каждый угол равен 60°.
4. В любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.
5. Внешний угол треугольника равен сумме двух внутренних углов.
Пример 1:
Найти углы треугольника АВС, зная, что угол С на 15° больше, а угол И на 30° меньше угла А.
Решение:
Обозначьте градусную меру угла А через Х, тогда градусная мера угла С равна Х+15°, а угол В равен Х-30°. Так как сумма внутренних углов треугольника равна 180°, то вы получите уравнение:
Х+(Х+15)+(Х-30)=180
Решая его, вы найдете Х=65°. Таким образом угол А равен 65°, угол В равен 35°, угол С равен 80°.
Поработайте с биссектрисой угла. В треугольнике АВС угол А равен 60°, угол В равен 80°. Биссектриса АD этого треугольника отсекает от него треугольник АСD. Попробуйте найти углы этого треугольника. Постройте график для наглядности.
Угол DAB равен 30°, так как AD – биссектриса угла А, угол ADC равен 30°+80°=110° как внешний угол треугольника ABD (следствие 5), угол С равен 180°-(110°+30°)=40° по теореме о сумме углов треугольника ACD.
Еще для нахождения внутреннего угла вы можете использовать равенство треугольников:
Теорема 1: Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
На основе Теоремы 1 устанавливается Теорема 2.
Теорема 2: Сумма любых двух внутренних углов треугольника меньше 180°.
Из предыдущей теоремы вытекает Теорема 3.
Теорема 3: Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.
Также для вычисления внутреннего угла треугольника можно использовать теорему косинусов, но только в том случае, если известны все три стороны.
Вспомните теорему косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a2=b2+c2-2bc cos A
или
b2=a2+c2- 2ac cos B
или
с2=a2+b2-2ab cos C
Источники:
- вычислить внутренние углы треугольника
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Треугольник – это форма многоугольника, которая имеет три угла, образованных тремя сторонами. Каждая
из трех точек, в которых пересекаются стороны треугольника, называется его вершиной и образует
определенный угол. Стороны треугольника иногда еще называют линейными длинами, а углы – угловыми.
Сторону, противоположную определенному углу, обозначают той же буквой, что характеризует угол как
прилегающий. Стороны обозначаются латинскими буквами a, b, c, а углы – греческими α, β, γ. Зная
определенные параметры треугольника, можно найти его стороны и углы. При этом можно использовать как
линейные формулы, так и обращаться к различным теоремам, например, теореме синусов и косинусов.
- Угол треугольника через три стороны
- Угол прямоугольного треугольника через две стороны
- Угол треугольника через высоту и катет
- Угол при основании равнобедренного треугольника через
биссектрису и боковую сторону - Угол при основании равнобедренного треугольника через
биссектрису и основание - Угол между боковыми сторонами равнобедренного треугольника
через биссектрису и боковую сторону - Острый угол прямоугольного треугольника через катет и
площадь - Острый угол между боковыми сторонами равнобедренного
треугольника через площадь и боковую сторону
Угол треугольника через три стороны
Для того, чтобы найти угол по трем сторонам, нужно вычислить косинус определенного угла. Согласно
теореме косинусов, «квадрат длины стороны треугольника равен сумме квадратов двух других длин его
сторон, минус удвоенное произведение этих длин сторон на косинус угла между ними». Если взять за
предмет вычисления угол β, соответственно, получаем формулу: a² = b² + c² — 2 · b · c · cos (β).
Из полученного равенства можно вычислить
cos(α) = (a² + c² — b²) / 2ac
cos(β) = (a² + b² — c²) /
2ab
cos(γ) = (b² + c² — a²) / 2cb
где a, b, c — стороны треугольника.
Цифр после
запятой:
Результат в:
Пример. Пусть a = 3, b = 7, c = 6. Cos (β) = (7² + 6² — 3²) : (2 · 7 · 6) = 19/21.
Зная косинус, нужно воспользоваться таблицей Брадиса и по ней найти угол. По таблице Брадиса, если
Cos (β) = 19/21, то β = 58,4°.
Угол прямоугольного треугольника через две стороны
Если известен катет и гипотенуза, угол вычисляется через синус. Если известны катеты и нужно найти
один из острых углов, то можно сделать это через вычисление тангенса.
sin(α) = cos (β) = a / c
sin(β) = cos (α) = b / c
tg(α) = ctg(β) = a
/ b
tg(β) = ctg(α) = b / a
где a, b — катеты, c — гипотенуза.
Цифр после запятой:
Результат в:
Пример. В прямоугольном треугольнике есть два катета a = 12, b = 9 и гипотенуза c =
15. Если известны катеты и нужно найти один из острых углов, то можно сделать это через вычисление
тангенса: tg(α) = a / b, то есть tg(α) = 12 / 9. По таблице Брадиса, угол
α = 53, 13°. Если известен катет и гипотенуза, угол вычисляется через синус sin(α) = a / c = 12 / 15 = 0,8. В
этом случае по таблице Брадиса для синусов и косинусов, значение угла – 36, 87°.
Острый угол прямоугольного треугольника через катет и площадь
Для того, чтобы вычислить размер острого угла, нужно образовать обратную формулу от площади
прямоугольного треугольника, которая вычисляется через катет и острый угол. Выглядит она следующим
образом: S = (a² * tg β) / 2. Из этих показателей известный площадь S и катет a. Отсюда формула для
нахождения угла будет следующая:
tg(α) = a² / 2S
где a — катет, S — площадь прямоугольного треугольника.
Цифр после
запятой:
Результат в:
Пример. Пусть S = 34, a = 8. Получается следующее уравнение: tg(α) = a² / 2S = 8² + 2 * 34 = 132.
Таким образом выходит, что по таблице Брадиса, угол с таким тангенсом равен 43°.
Угол треугольника через высоту и катет
В некоторых прямоугольных треугольниках, в основании которых один острый угол, а второй 90°, один из
катетов (вертикальная прямая, образующая прямой угол) называется также высотой и обозначается как h.
Второй катет a остается со своим обычным названием.
sin α = h / a
где h — высота, a — катет.
Цифр после запятой:
Результат в:
Пример. Если высота h = 8, а катет a = 10, то угол α находится по формуле sin α = h / a = 8 / 10 = 0.8 то по таблице Брадиса составляет 53°
Угол при основании равнобедренного треугольника через биссектрису и основание
Равнобедренный треугольник ABC с основанием AC имеет биссектрису L (она же CK, делящая основание AC
на два отрезка AK и KB). Также биссектриса L делит угол BCA (он же γ) пополам (каждый из этих
половинок угла γ обозначается как x). То есть γ = 2х. Угол BAC (он же α) = BCA (он же γ), то есть α
= γ. При этом биссектриса L (она же CK) образовала в равнобедренном треугольнике ABC новый
равнобедренный треугольник AKC, в котором AK – это основание, а углы KAC и AKC равны между собой и
равны значению угла γ. Учитывая то, что угол γ равен 2х (то есть двум половинкам угла), то для
треугольника AKC, чтобы вычислить углы при основании, формула будет следующая:
tg α = L / (a/2)
где L — биссектриса, a — основание.
Цифр после
запятой:
Результат в:
Пример. Пусть биссектриса L равна 15, основание а равно 45, подставив в формулу
получим tg α = L / (a/2) = 15 / (45/2) = 33.69º
Угол при основании равнобедренного треугольника через биссектрису и боковую сторону
Допустим, что у равнобедренного треугольника ABC углы при основании A (α) и C (γ) равны. Также AB =
BC. Биссектриса L берет начало из вершины А и пересекается с основанием АС, образуя точку
пересечения K, поэтому биссектрису L также можно называть АK. L разделила угол А пополам и основание
поделила на два отрезка: BK и KC. Образовался угол AKC = α (внешний угол для треугольника ABK).
Согласно свойствам внешнего угла:
sin α = L / b
где L — биссектриса, b — боковая сторона.
Цифр после
запятой:
Результат в:
Пример. Пусть биссектриса L равна 15, боковая сторона b равна 30, подставив в
формулу получим sin α = L / b = 15/30 = 30º.
Угол между боковыми сторонами равнобедренного треугольника через биссектрису и боковую сторону
В равнобедренном треугольнике угол ABC (он же β) – это вершина треугольника. Стороны AB и BC равны, и
углы у основания BAC (α) и BCA (γ) тоже равны между собой. Биссектриса L берет начало из вершины B и
пересекается с основанием AC в точке K. Биссектриса BK разделила угол β пополам. Кроме того,
биссектриса разделила треугольник ABC на два прямоугольных треугольника ABK и CBK, так как углы BKA
и BKC – прямые и оба по 90°. Так как треугольники ABK и CBK зеркально одинаковые, для определения
угла β можно взять любой из них. В свою очередь биссектриса BK разделила угол β пополам, например,
на два равных угла х. Оба треугольника, образовавшихся внутри равнобедренного из-за биссектрисы,
прямоугольные, поэтому, чтобы вычислить угол β (он же 2х), нужно взять за правило вычисление угла
через высоту (она в данном случая является также биссектрисой) и катет (это отрезок AK или KC,
которые также равны между собой, так как биссектриса и основание равнобедренного треугольника также
поделила пополам).
2cos(β) = L / b
где L — биссектриса, b — боковая сторона.
Цифр после
запятой:
Результат в:
Пример. В треугольнике BKC известна биссектриса L = 47 см и боковая сторона b = 64
см. Подставив значения в формулу получим: 2cos(β) = L / b = 47 / 64 = 85.49º
Острый угол между боковыми сторонами равнобедренного треугольника через площадь и боковую
сторону
Формула площади равнобедренного треугольника S = 1/2 * bh, где b – это
основание треугольника, а h – это медиана, которая разделила равнобедренный треугольника на два
прямоугольных. Формула для нахождения угла между боковыми сторонами через площадь и боковую сторону
будет следующая:
sin(α) = 2S / b²
где b — боковая сторона равнобедренного треугольника, S — площадь.
Цифр после
запятой:
Результат в:
Пример. Если площадь равна 48, а сторона 10, то угол между боковыми сторонами можно
вычислить следующим образом: sin(α) = 2S / b² = 2 * 48 / 10² = 73.7º
Вне зависимости от условия задачи, известно, что сумма всех углов треугольника составляет 180°.
Поэтому, элементарно вычислить один из углов можно, когда известны два других. Но для вычисления
углов могут быть использованы и другие показатели. Например, для того, чтобы находить стороны и углы
треугольников, в них можно проводить дополнительные меридианы, биссектрисы, чертить окружности и
использовать эти фигуры как дополнительные вводные, через которые по формулам находятся
неизвестные.
Углы очень удобно вычислять через синусы, косинусы, тангенсы и котангенсы, после чего сопоставлять
данные с таблицей Брадиса, в которой эти величины можно сконвертировать в градусы.
Обновлено: 24.05.2023
Внутренние углы треугольника с вершинами A , B , C находятся по формуле: Если сумма углов треугольника окажется меньше 180 0 , то при вычислении был найден не внутренний угол треугольника, а внешний, смежный с ним.
Известно, что если в треугольнике квадрат большей стороны больше суммы квадратов двух других сторон, то этот треугольник тупоугольный. Например, если AB 2 > BC 2 + AC 2 , то сторона AB лежит против тупого угла.
Правила ввода данных
Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).
Поиск
Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).
Строительные работы, а также перепланировка квартиры и подготовка к ее ремонту требуют не только строительных навыков, но и познаний в математике, геометрии и пр. Так, часто бывает нужно найти внутренний угол треугольника.
- Как найти внутренний угол
- Как найти углы правильного многоугольника
- Как найти величину угла треугольника
Для нахождения внутреннего угла треугольника вспомните теорему о сумме углов треугольника.
Теорема: сумма углов треугольника равна 180°.
Из этой теоремы выделите пять следствий, которые могут помочь в расчете внутреннего угла.
1. Сумма острых углов прямоугольного треугольника равна 90°.
2. В равнобедренном прямоугольном треугольнике каждый острый угол равен 45°.
3. В равностороннем треугольнике каждый угол равен 60°.
4. В любом треугольнике либо все углы острые, либо два угла острые, а третий тупой или прямой.
5. Внешний угол треугольника равен сумме двух внутренних углов.
Пример 1:
Найти углы треугольника АВС, зная, что угол С на 15° больше, а угол И на 30° меньше угла А.
Решение:
Обозначьте градусную меру угла А через Х, тогда градусная мера угла С равна Х+15°, а угол В равен Х-30°. Так как сумма внутренних углов треугольника равна 180°, то вы получите уравнение:
Х+(Х+15)+(Х-30)=180
Решая его, вы найдете Х=65°. Таким образом угол А равен 65°, угол В равен 35°, угол С равен 80°.
Поработайте с биссектрисой угла. В треугольнике АВС угол А равен 60°, угол В равен 80°. Биссектриса АD этого треугольника отсекает от него треугольник АСD. Попробуйте найти углы этого треугольника. Постройте график для наглядности.
Угол DAB равен 30°, так как AD – биссектриса угла А, угол ADC равен 30°+80°=110° как внешний угол треугольника ABD (следствие 5), угол С равен 180°-(110°+30°)=40° по теореме о сумме углов треугольника ACD.
Еще для нахождения внутреннего угла вы можете использовать равенство треугольников:
Теорема 1: Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
На основе Теоремы 1 устанавливается Теорема 2.
Теорема 2: Сумма любых двух внутренних углов треугольника меньше 180°.
Из предыдущей теоремы вытекает Теорема 3.
Теорема 3: Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.
Также для вычисления внутреннего угла треугольника можно использовать теорему косинусов, но только в том случае, если известны все три стороны.
Вспомните теорему косинусов: Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a2=b2+c2-2bc cos A
или
b2=a2+c2- 2ac cos B
или
с2=a2+b2-2ab cos C
Прямой геодезической задачей называется способ определения координат какой-либо точки по известным координатам другой точки, дирекционному углу и расстоянию между ними.
Пусть точка A (рисунок 30) имеет координаты х1 и у1. Из точки А на точку В определен дирекционный угол α1,2 и между точками измерено расстояние S.
Необходимо найти координаты х2 и у2 точки В.
Решение. Проведем через точки А и В линии, параллельные осям координат. Из образовавшихся построений искомые координаты точки выразятся:
Следовательно, решение прямой задачи сводится к отысканию значений отрезков АС и СВ.
Отрезки АС и СВ являются катетами прямоугольного треугольника ABC и равны проекциям линии АВ на оси координат.
Проекции горизонтальных проложений линии S на оси X и Y называются приращениями координат и обозначаются соответственно AС = Δх и ВС=Δу.
Приращения координат Δх и Δу могут быть положительными и отрицательными. Знак приращения определяется значением дирекционного угла линии АВ.
Рисунок 30 – Прямая (обратная) геодезическая задача
Пример. Приращения координат точки В относительно точки А будут положительными (I четверть). Приращения координат точки A относительно точки В будут отрицательными (III четверть).
Значения приращений координат находят из соотношений прямоугольного треугольника ABC:
Δх = S·cos α1, 2; Δу = S·sin α1, 2 (8)
отсюда значения координат точки Вбудут:
Практическое решение прямой геодезической задачи производится на вычислительных машинах с использованием таблиц натуральных значений тригонометрических функций.
Вычисления выполняют в следующим порядке (таблица 6).
Таблица 6 – Порядок решения прямой геодезической задачи
№ действия | Элементы формул | Величина |
α1, 2 х2 = (1) + (7) | 200 о 48’00” 6 о 106 о 845,1 |
Продолжение таблицы – 6
№ действия | Элементы формул | Величина |
х1 Δх = (3)·(6) Cos α1, 2 S Sin α1, 2 Δу = (3) · (5) y1 y2 = (2) + (8) sконр = | 6 о 115 105,3 – 8 260,2 – 0,934 826 8 836,1 – 0,55 107 – 3 137,8 7 534 664,7 7 531 526,9 8 836,1 |
– выписывают значения исходных данных х1, y1, S и α1, 2 (действия 1 ‑ 4);
– вычисляют приращения координат Δх и Δу (действия 5 – 8);
– вычисляют координаты х2, y2 точки В (действия 9 и. 10);
– проводят контроль вычислений путем определения значения sконр по формуле
Расхождение S и Sконр более чем на единицу последнего знака свидетельствует о наличии ошибок, которые выявляют повторной проверкой всех вычислений.
Обратной геодезической задачей называется способ определения дирекционного угла и расстояния между двумя точками по известным их координатам.
Возвратимся к рисунку 30. Из условия обратной задачи известны: прямоугольные координаты точек А и В (х1 и y1; х2 и y2).
Необходимо найти расстояние s между точками А и В и дирекционный угол α1, 2 из точки А на точку В.
Решение. Искомые величины находят из соотношений прямоугольного треугольника ABC:
По значению тангенса с помощью тригонометрических таблиц определяют величину только острого угла. Острый угол, отсчитываемый от ближайшего направления оси абсцисс (северного или южного) до направления данной линии, называется румбом и обозначается буквой r.
Для отыскания значения дирекционного угла по значению румба определяют четверть, в которой находится искомое направление.
Четверть, в которой находится направление АВ, определяют по знакам приращений координат Δх и Δу, вычисляемых как разности абсцисс и ординат:
Формулы перехода от румба к дирекционному углу в зависимости от знака приращения координат приведены в таблице 7.
Таблица 7 – Переход от румба к дирекционному углу
Четверть круга | Знак приращения | Формулы перехода от румба к дирекционному углу | |
Δх | Δу | ||
I II III IV | + – – + | + + – – | α = r α = 180 o – r α = 180 o + r α = 360 o – r |
Искомое расстояние S определяют по формулам (10).
Наличие двух вариантов формул обеспечивает надежный контроль вычисления расстояния.
Вычисление расстояний и дирекционных углов при решении обратной геодезической задачи производят с использованием вычислительных машин и таблиц натуральных значений тригонометрических функций в следующем порядке, таблица 8:
Таблица 8 – Решение обратной геодезической задачи.
№ действия | Элементы формул | Величина |
y2 у1. Δу = (4) – (2) x2 x1 Δх = (3) – (1) tg α1, 2 = (6) : (5) r | 7 579 739,3 7 580 202,1 – 462,8 6 406 199,0 6 411 279,2 – 5 080,2 0,091 099 5о 12’19” |
Продолжение таблицы 8
№ действия | Элементы формул | Величина |
α1, 2 Sin α1, 2 Cos α1, 2 S1 S2 Sср | 185 о 12’19” 0,090 724 0,995 786 5 101,2 5 101,2 50 101,2 |
– выписывают координаты исходных пунктов. х1, y1, х2, у2 (действия 1 ‑ 4);
– вычисляют приращения координат Δх и Δу (действия 5 и 6); при этом всегда из координат второй точки алгебраически вычитают координаты первой точки;
– вычисляют тангенс дирекционного угла (действие 7);
– по тангенсу угла находят румб, который затем переводят в дирекционный угол с помощью таблицы 7, выбирают из таблиц синус и косинус этого угла (действия 8 – 11);
– дважды вычисляют расстояние s и за окончательное значение берут среднее из обоих результатов, при этом расхождение S1 – S2 не должно превышать более двух единиц последнего знака (действия 12 – 14).
Решением треугольника называется определение всех его сторон и углов по трем известным элементам, из которых хотя бы один должен быть его стороной.
Решение треугольника осуществляют по формулам соотношений его элементов, известных из курса тригонометрии.
Обозначив в треугольнике AВС (рисунок 31) стороны через а, в и с, а углы через А, В и С, запишем основные соотношения:
А + В + С = 180° (теорема суммы углов);
а 2 = в 2 + с 2 – 2·в·сcos A (теорема косинусов);
и дополнительные соотношения:
Sin A = Sin· (B + C);
Рисунок 31 – Треугольник
Пример. Пусть в треугольнике ABC (рисунок 31) известны сторона в и углы А и В. Необходимо найти угол С и стороны а и с.
Решение проводят в следующем порядке:
– угол С находят по теореме суммы углов
– стороны а и с вычисляют по теореме синусов
– контроль вычислений осуществляют по формуле
Пример вычислений приведен в таблице 9.
Таблица 9 – Решение треугольника
№ действия | Элемент формулы | Величина |
А | 86 о 15’43” | |
В С = [180 o – (1) + (2)] Контроль: (1) + (2) +(4) = 180 о | 46 о 34’52” 47 о 09’25” 180 о 00’00” | |
Sin A Sin B Sin C | 0,997 873 0,726 348 0,733 220 | |
а = (3) в с = (3) Контроль: аконтр = (10) | 6 о 448,3 4 о 693,7 4 о 738,1 6 о 448,3 |
Контрольные вопросы и упражнения:
1. Дать определение прямой и обратной геодезических задач.
2. Дать вывод формул решений прямой (обратной) геодезической задачи.
3. Решить прямую задачу по данным: x1 =6 104 172,8; y1 = 5 565 542,8;
s = 4 021,4; α1, 2 =57°57’54”.
Ответ: x2 = 6 106 212,4; у2 = 5 568 802,5.
4. Решить обратную задачу по данным:
x1 = 6 114 133,5; х2 = 6 107 134,0; у1 = 5.565 596,8; у2 = 5 574 985,3. | Ответ: α1, 2 = 126°42’21”; s =11710,5. |
5. Решить треугольник по данным:
а) A = 86°49’11”; В = 36°52’12”; в = 7 211,2. | Ответ: С = 56°18’37”; а = 12 000,1; с = 10 000,1. |
б) а=5590,2; s = 9 340,7; С = 84°46’51”. | Ответ: с = 10 440,2; А = 32°13’26”; В = 62°59’43”. |
в) а = 10 440,2; в = 12530,0; с = 8 944,2. | Ответ: А = 55°10’30”; В = 80°08’05”; С = 44°41 ’25”. |
Обратная геодезическая задача
Прямая геодезическая задача
Прямой геодезической задачей называется способ определения координат какой-либо точки по известным координатам другой точки, дирекционному углу и расстоянию между ними.
Пусть точка A (рисунок 30) имеет координаты х1 и у1. Из точки А на точку В определен дирекционный угол α1,2 и между точками измерено расстояние S.
Необходимо найти координаты х2 и у2 точки В.
Решение. Проведем через точки А и В линии, параллельные осям координат. Из образовавшихся построений искомые координаты точки выразятся:
Следовательно, решение прямой задачи сводится к отысканию значений отрезков АС и СВ.
Отрезки АС и СВ являются катетами прямоугольного треугольника ABC и равны проекциям линии АВ на оси координат.
Проекции горизонтальных проложений линии S на оси X и Y называются приращениями координат и обозначаются соответственно AС = Δх и ВС=Δу.
Приращения координат Δх и Δу могут быть положительными и отрицательными. Знак приращения определяется значением дирекционного угла линии АВ.
Рисунок 30 – Прямая (обратная) геодезическая задача
Пример. Приращения координат точки В относительно точки А будут положительными (I четверть). Приращения координат точки A относительно точки В будут отрицательными (III четверть).
Значения приращений координат находят из соотношений прямоугольного треугольника ABC:
Δх = S·cos α1, 2; Δу = S·sin α1, 2 (8)
отсюда значения координат точки Вбудут:
Практическое решение прямой геодезической задачи производится на вычислительных машинах с использованием таблиц натуральных значений тригонометрических функций.
Вычисления выполняют в следующим порядке (таблица 6).
Таблица 6 – Порядок решения прямой геодезической задачи
№ действия | Элементы формул | Величина |
α1, 2 х2 = (1) + (7) | 200 о 48’00” 6 о 106 о 845,1 |
Продолжение таблицы – 6
№ действия | Элементы формул | Величина |
х1 Δх = (3)·(6) Cos α1, 2 S Sin α1, 2 Δу = (3) · (5) y1 y2 = (2) + (8) sконр = | 6 о 115 105,3 – 8 260,2 – 0,934 826 8 836,1 – 0,55 107 – 3 137,8 7 534 664,7 7 531 526,9 8 836,1 |
– выписывают значения исходных данных х1, y1, S и α1, 2 (действия 1 ‑ 4);
– вычисляют приращения координат Δх и Δу (действия 5 – 8);
– вычисляют координаты х2, y2 точки В (действия 9 и. 10);
– проводят контроль вычислений путем определения значения sконр по формуле
Расхождение S и Sконр более чем на единицу последнего знака свидетельствует о наличии ошибок, которые выявляют повторной проверкой всех вычислений.
Обратной геодезической задачей называется способ определения дирекционного угла и расстояния между двумя точками по известным их координатам.
Возвратимся к рисунку 30. Из условия обратной задачи известны: прямоугольные координаты точек А и В (х1 и y1; х2 и y2).
Необходимо найти расстояние s между точками А и В и дирекционный угол α1, 2 из точки А на точку В.
Решение. Искомые величины находят из соотношений прямоугольного треугольника ABC:
По значению тангенса с помощью тригонометрических таблиц определяют величину только острого угла. Острый угол, отсчитываемый от ближайшего направления оси абсцисс (северного или южного) до направления данной линии, называется румбом и обозначается буквой r.
Для отыскания значения дирекционного угла по значению румба определяют четверть, в которой находится искомое направление.
Четверть, в которой находится направление АВ, определяют по знакам приращений координат Δх и Δу, вычисляемых как разности абсцисс и ординат:
Формулы перехода от румба к дирекционному углу в зависимости от знака приращения координат приведены в таблице 7.
Таблица 7 – Переход от румба к дирекционному углу
Четверть круга | Знак приращения | Формулы перехода от румба к дирекционному углу | |
Δх | Δу | ||
I II III IV | + – – + | + + – – | α = r α = 180 o – r α = 180 o + r α = 360 o – r |
Искомое расстояние S определяют по формулам (10).
Наличие двух вариантов формул обеспечивает надежный контроль вычисления расстояния.
Вычисление расстояний и дирекционных углов при решении обратной геодезической задачи производят с использованием вычислительных машин и таблиц натуральных значений тригонометрических функций в следующем порядке, таблица 8:
Таблица 8 – Решение обратной геодезической задачи.
№ действия | Элементы формул | Величина |
y2 у1. Δу = (4) – (2) x2 x1 Δх = (3) – (1) tg α1, 2 = (6) : (5) r | 7 579 739,3 7 580 202,1 – 462,8 6 406 199,0 6 411 279,2 – 5 080,2 0,091 099 5о 12’19” |
Продолжение таблицы 8
№ действия | Элементы формул | Величина |
α1, 2 Sin α1, 2 Cos α1, 2 S1 S2 Sср | 185 о 12’19” 0,090 724 0,995 786 5 101,2 5 101,2 50 101,2 |
– выписывают координаты исходных пунктов. х1, y1, х2, у2 (действия 1 ‑ 4);
– вычисляют приращения координат Δх и Δу (действия 5 и 6); при этом всегда из координат второй точки алгебраически вычитают координаты первой точки;
– вычисляют тангенс дирекционного угла (действие 7);
– по тангенсу угла находят румб, который затем переводят в дирекционный угол с помощью таблицы 7, выбирают из таблиц синус и косинус этого угла (действия 8 – 11);
– дважды вычисляют расстояние s и за окончательное значение берут среднее из обоих результатов, при этом расхождение S1 – S2 не должно превышать более двух единиц последнего знака (действия 12 – 14).
Решением треугольника называется определение всех его сторон и углов по трем известным элементам, из которых хотя бы один должен быть его стороной.
Решение треугольника осуществляют по формулам соотношений его элементов, известных из курса тригонометрии.
Обозначив в треугольнике AВС (рисунок 31) стороны через а, в и с, а углы через А, В и С, запишем основные соотношения:
А + В + С = 180° (теорема суммы углов);
а 2 = в 2 + с 2 – 2·в·сcos A (теорема косинусов);
и дополнительные соотношения:
Sin A = Sin· (B + C);
Рисунок 31 – Треугольник
Пример. Пусть в треугольнике ABC (рисунок 31) известны сторона в и углы А и В. Необходимо найти угол С и стороны а и с.
Решение проводят в следующем порядке:
– угол С находят по теореме суммы углов
– стороны а и с вычисляют по теореме синусов
– контроль вычислений осуществляют по формуле
Пример вычислений приведен в таблице 9.
Таблица 9 – Решение треугольника
№ действия | Элемент формулы | Величина |
А | 86 о 15’43” | |
В С = [180 o – (1) + (2)] Контроль: (1) + (2) +(4) = 180 о | 46 о 34’52” 47 о 09’25” 180 о 00’00” | |
Sin A Sin B Sin C | 0,997 873 0,726 348 0,733 220 | |
а = (3) в с = (3) Контроль: аконтр = (10) | 6 о 448,3 4 о 693,7 4 о 738,1 6 о 448,3 |
Контрольные вопросы и упражнения:
1. Дать определение прямой и обратной геодезических задач.
2. Дать вывод формул решений прямой (обратной) геодезической задачи.
3. Решить прямую задачу по данным: x1 =6 104 172,8; y1 = 5 565 542,8;
1. Проверка полевых вычислений и определение поправок в измерения длин линий
_______ Камеральные работы при теодолитной съемке заключаются в вычислении координат точек теодолитного хода и в построении плана .
_______ Далее вычисляются средние значения длин линии:
_______ В каждую длину линии вводятся поправки по формуле:
_______ Поправки вводятся при:
_______ После уравнивания углов производится вычисление дирекционных углов всех сторон теодолитного хода. _______ Вычисленные дирекционные углы переводятся в румбы.
2. Связь между дирекционными углами и горизонтальными углами теодолитного хода
_______ Дирекционный угол линии последующей равен дирекционному углу линии предыдущей плюс 180 0 минус угол вправо по ходу лежащий.
3. Обработка угловых измерений замкнутого теодолитного хода
_______ где fβ – угловая невязка.
_______ где n –вершина углов, следовательно:
_______ Если полученная невязка является допустимой , она распределяется поровну на все углы. Поправки в углы вводятся со знаком, противоположным знаку невязки. Сумма исправленных углов должна быть в точности равна теоретической сумме.
4. Угловая невязка разомкнутого теодолитного хода
Для вычисления ∑β теор. найдем дирекционные углы всех сторон хода:
_______ где αнач. и αкон. – дирекционные углы сторон опорной сети, тогда:
_______ Подсчет допустимой невязки и ее распределение производится так же, как и для замкнутого хода .
5. Невязки в диагональном ходе
_______ Диагональный ход является разомкнутым ходом , поэтому его обработка производится так же, как и у разомкнутого хода. Например, для следующего рисунка.
_______ После обработки угловых измерений вычисляются дирекционные углы и румбы всех сторон хода.
_______ Причем вычисление дирекционных углов производится обязательно с контролем .
6. Прямая и обратная геодезические задачи
6.1. Прямая геодезическая задача: по координатам отрезка прямой (начала), его длине и направлению определить координаты конца отрезка
_______ Прямая геодезическая задача применяется при вычислении координатных точек теодолитного хода.
6.2. Обратная геодезическая задача: по координатам начала и конца отрезка прямой найти его длину и направление
_______ Далее вычисляют arctg и находят числовое значение румба. Название румба определяют по знакам приращений координат, от румба переходят к дирекционному углу.
Длина линии может быть найдена по следующим формулам:
_______ Обратная геодезическая задача применяется при подготовке данных для перенесения проектов сооружений в натуру.
7. Уравнивание приращений координат
_______ Уравниванием называется совокупность математических операций, выполняемых для получения вероятнейшего значения геодезических координат точек земной поверхности и для оценки точности результатов измерений.
_______ Уравнивание проводится для устранения невязок, обусловленных наличием ошибок в избыточно измеренных величинах, и для определения вероятнейших значений искомых неизвестных или их значений, близких к вероятнейшим. В процессе уравнвиания это достигается путём определения поправок к измеренным величинам (углам, направлениям, длинам линий или превышениям).
7.1. Вычисление координат точек теодолитного хода
_______ Из решения прямой геодезической задачи по известным длинам сторон и румбам вычисляются приращения координат для каждой стороны хода по формулам:
_______ Далее вычисляются невязки в приращениях координат замкнутого хода.
7.2. Вычисление невязок в приращениях координат замкнутого хода
_______ Из геометрии известно, что сумма проекций сторон многоугольника на любую ось равна нулю, следовательно:
_______ Под влиянием ошибок измерений замкнутый полигон будет разомкнутым на величину fр – абсолютная невязка в периметре полигона.
_______ Если полученная невязка недопустима, то необходимо произвести повторное измерение длин линий.
_______ Если невязки допустимы, то они распределяются на приращения координат пропорционально длинам сторон с противоположным знаком, то есть сумма исправленных приращений должна быть точно равна теоретической сумме – в данном случае равна нулю.
7.3. Вычисление невязок в приращениях координат разомкнутого теодолитного хода
_______ Определение допустимости невязок и их распределения производится так же, как для замкнутого теодолитного хода.
Для диагонального хода, например:
_______ По исправленным значениям приращений координат вычисляются координаты всех точек хода по формулам:
8. Построение плана
_______ Построение плана выполняются в следующей последовательности :
1) построение координатной сетки,
2) нанесение вершин теодолитного хода по координатам,
3) нанесение на план контуров местности,
4) оформление плана.
8.1. Построение координатной сетки
_______ Координатная сетка строится обычно со стороной 10х10 см .
Используется два способа :
_______ 1) построение сетки с помощью линейки Дробышева:
_______ Построение сетки основано на построении прямоугольного треугольника с катетами 50×50 см и гипотенузой 70,711 см ;
2) построение сетки с помощью циркуля, измерителя и масштабной линейки:
_______ Этот способ применяется при размере плана меньше, чем 50 см . Сетка контролируется путем сравнения длин сторон или диагоналей квадратов. Допустимое отклонение – 0,2 мм . Построенную сетку подписывают координатами так, чтобы участок поместился.
_______ Вершины теодолитного хода наносятся на план по координатам относительно сетки с помощью измерителя и поперечного масштаба.
_______ Контроль правильности построения точек выполняется по известным расстояниям между точками. Допустимое расхождение – 0,3 мм в масштабе плана.
_______ Например: 1:2000 – 0,6 м .
_______ Контуры местности наносятся на план в соответствии с абрисами.
_______ Оформление плана выполняется в строгом соответствии с условными знаками, установленными для данного масштаба.
Дирекционный угол (α) – это угол между проходящими через данную точку направлением на ориентир и линией параллельной оси абсцисс, отчитываемой от северного направления оси абсцисс по ходу часовой стрелки оси 0 до 360°.
Рисунок 1. — Дирекционный угол.
Дирекционные углы направлений измеряются преимущественно по карте или определяются по магнитным азимутам.
Дирекционный угол ориентирного направления может определяться геодезическим или гироскопическим способом, из астрономических наблюдений, с помощью магнитной стрелки буссоли и по контурным точкам карты (аэрофотоснимка).
При геодезическом способе ориентирования дирекционный угол ориентирного направления может быть получен непосредственно из каталога (списка) координат, решением обратной геодезической задачи по координатам геодезических пунктов, при выполнении засечек или прокладке полигонометрического хода одновременно с определением координат привязываемых точек, а также путем передачи угловым ходом от направления с известным дирекционным углом.
При гироскопическом способе ориентирования с помощью гирокомпаса определяют истинный (астрономический) азимут ориентирного направления, а затем переходят к дирекционному углу этого направления. Азимут ориентирного направления с помощью гирокомпаса определяется по двум, трем (четырем) точкам реверсии. Увеличение числа точек реверсии до трех (четырех) обеспечивает контроль и повышает точность определения дирекционного угла.
При астрономическом способе ориентирования дирекционный угол ориентирного направления определяют путем перехода от азимута светила к азимуту ориентирного направления, а от последнего — к дирекционному углу. Азимут светила вычисляют по результатам наблюдений, выполненных на местности с данной точки. Азимут ориентирного направления из астрономических наблюдений может быть получен и с помощью азимутальной насадки АНБ-1 к буссоли ПАБ-2А непосредственно на местности без выполнения вычислений.
Способ определения дирекционного угла ориентирного направления из астрономических наблюдений является наиболее точным.
Работы в поле при этом способе заключаются в измерении горизонтального угла Q между направлением на светило и заданным направлением в момент времени наведения прибора на светило. По моменту времени наблюдения светила вычисляют азимут а светила, от него переходят к астрономическому азимуту А направления на ориентир: A’ = a + Q. Зная значение сближения меридианов у в точке наблюдения, определяют дирекционный угол с ориентирного направления: a = A — y.
При определении дирекционного угла ориентирного направления с помощью магнитной стрелки буссоли на местности сначала получают магнитный азимут ориентирного направления, а затем, учитывая поправку буссоли, переходят к дирекционному углу. Дирекционный угол ориентирного направления определяется по формуле: а = Ат + (±dАт).
По карте (аэрофотоснимку) дирекционный угол ориентирного направления получают решением обратной геодезической задачи по координатам двух контурных точек Координаты контурных точек при этом определяются по карте (аэрофотоснимку) с помощью циркуля измерителя и поперечного масштаба. Точность полученного дирекционного угла будет тем выше, чем больше расстояние между начальной и ориентирной точками и чем точнее определены координаты этих точек.
Дирекционный угол по карте также можно определить с помощью хордоугломера. Для этого опознают на карте исходную и ориентирную точки, проводят через них прямую линию и получают на карте ориентирное направление. Измерив с помощью хордоугломера угол между северным направлением вертикальной линии километровой сетки карты и ориентирным направлением, получают дирекционный угол этого направления.
Свойства дирекционных углов: дирекционные углы α1=α2=α3 так как параллельные линии пересекаются одной линией. Следовательно, углы равны.
Рисунок 2. — Дирекционные углы.
Дирекционные углы могут быть прямыми и обратными (они отличаются на 180°):
Рисунок 3. — Прямые и обратные дирекционные углы.
В зависимости от выбора системы поверхностных координат или проекции земного эллипсоида на плоскость дирекционный угол может иметь собственное название. Например, геодезическийдирекционный угол, гауссов дирекционный угол и т.д.
Читайте также:
- Что произошло в сибирской тайге в 1908 году кратко
- Как не стать жертвой схода лавины кратко
- Что такое теплопроводность и теплоемкость воды кратко
- Чем отличаются централизованные и распределенные вс кратко
- Танец я за что люблю ивана детский сад
Треугольник | |
---|---|
Рёбра | 3 |
Символ Шлефли | {3} |
Медиафайлы на Викискладе |
Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади)[1].
Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла[2], т.е. как часть плоскости, ограниченную тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому исследование его свойств проводилось начиная с глубокой древности.
Понятие треугольника допускает различные обобщения. Можно определить это понятие в неевклидовой геометрии (например, на сфере): на таких поверхностях треугольник определяется как три точки, соединённые геодезическими линиями. В -мерной геометрии аналогом треугольника является -й мерный симплекс.
Иногда рассматривают вырожденный треугольник, три вершины которого лежат на одной прямой. Если не оговорено иное, треугольник в данной статье предполагается невырожденным.
Основные элементы треугольника[править | править код]
Вершины, стороны, углы[править | править код]
Традиционно вершины треугольника обозначаются заглавными буквами латинского алфавита: , а противолежащие им стороны — теми же строчными буквами (см. рисунок). Треугольник с вершинами , и обозначается как . Стороны можно также обозначать буквами ограничивающих их вершин: , , .
Треугольник имеет следующие углы:
Величины углов при соответствующих вершинах традиционно обозначаются греческими буквами (, , ).
Внешним углом плоского треугольника при данной вершине называется угол, смежный внутреннему углу треугольника при этой вершине
Внешним углом плоского треугольника при данной вершине называется угол, смежный внутреннему углу треугольника при этой вершине (см. рис.). Если внутренний угол при данной вершине треугольника образован двумя сторонами, выходящими из данной вершины, то внешний угол треугольника образован одной стороной, выходящей из данной вершины и продолжением другой стороны, выходящей из той же вершины. Внешний угол может принимать значения от до .
Периметром треугольника называют сумму длин трёх его сторон, а половину этой величины называют полупериметром.
Классификация треугольников[править | править код]
По виду наибольшего угла[править | править код]
Основной источник: [3]
Поскольку в евклидовой геометрии сумма углов треугольника равна , то не менее двух углов в треугольнике должны быть острыми (меньшими ). Выделяют следующие виды треугольников[2].
- Если все углы треугольника острые, то треугольник называется остроугольным.
- Если один из углов треугольника прямой (равен ), то треугольник называется прямоугольным. Две стороны, образующие прямой угол, называются катетами, а сторона, противолежащая прямому углу, называется гипотенузой.
- Если один из углов треугольника тупой (больше ), то треугольник называется тупоугольным, Остальные два угла, очевидно, острые (треугольников с двумя тупыми или прямыми углами быть не может).
По числу равных сторон (или по степени симметричности)[править | править код]
- Разносторонним называется треугольник, у которого все три стороны не равны.
- Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, третья сторона называется основанием[4]. В равнобедренном треугольнике углы при основании равны.
- Равносторонним или правильным называется треугольник, у которого все три стороны равны. В равностороннем треугольнике все углы равны 60°, а центры вписанной и описанной окружностей совпадают. Равносторонний треугольник является частным случаем равнобедренного треугольника.
Треугольник | Количество осей симметрии | Количество пар равных сторон |
---|---|---|
Разносторонний | Нет | Нет |
Равнобедренный | 1 | 1 |
Равносторонний | 3 | 3 |
Медианы, высоты, биссектрисы[править | править код]
Медианой треугольника, проведённой из данной вершины, называется отрезок, соединяющий эту вершину с серединой противолежащей стороны (основанием медианы). Все три медианы треугольника пересекаются в одной точке. Эта точка пересечения называется центроидом или центром тяжести треугольника. Последнее название связано с тем, что у треугольника, сделанного из однородного материала, центр тяжести находится в точке пересечения медиан. Центроид делит каждую медиану в отношении 1:2, считая от основания медианы. Треугольник с вершинами в серединах медиан называется срединным треугольником. Основания медиан данного треугольника образуют так называемый дополнительный треугольник.
Длину медианы опущенной на сторону можно найти по формулам:
- для других медиан аналогично.
-
Высота в треугольниках различного типа
-
Высоты пересекаются в ортоцентре
Высотой треугольника, проведённой из данной вершины, называется перпендикуляр, опущенный из этой вершины на противоположную сторону или её продолжение. Три высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника. Треугольник с вершинами в основаниях высот называется ортотреугольником.
Длину высоты , опущенной на сторону , можно найти по формулам:
- ; для других высот аналогично.
Длины высот, опущенных на стороны. можно также найти по формулам:[5]:p.64
- .
Биссектриса делит пополам угол
Биссектрисой (биссéктором) треугольника, проведённой из данной вершины, называют отрезок, соединяющий эту вершину с точкой на противоположной стороне и делящий угол при данной вершине пополам. Биссектрисы треугольника пересекаются в одной точке, и эта точка совпадает с центром вписанной окружности (инцентром).
Если треугольник разносторонний (не равнобедренный), то биссектриса, проведённая из любой его вершины, лежит между медианой и высотой, проведёнными из той же вершины. Ещё одно важное свойство биссектрисы: она делит противоположную сторону на части, пропорциональные прилегающим к ней сторонам[6].
Длину биссектрисы , опущенной на сторону , можно найти по одной из формул:
- , где — полупериметр.
- .
- ; здесь — высота.
Высота, медиана и биссектриса равнобедренного треугольника, опущенные на основание, совпадают. Верно и обратное: если биссектриса, медиана и высота, проведённые из одной вершины, совпадают, то треугольник равнобедренный.
Описанная и вписанная окружности[править | править код]
Треугольник АВС и его окружности: вписанная (синяя), описанная (красная) и три вневписанные (зелёные)
Описанная окружность (см. рис. справа) — окружность, проходящая через все три вершины треугольника. Описанная окружность всегда единственна, её центр совпадает с точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины сторон. В тупоугольном треугольнике этот центр лежит вне треугольника[6].
Вписанная окружность (см. рис. справа) — окружность, касающаяся всех трёх сторон треугольника. Она единственна. Центр вписанной окружности называется инцентром, он совпадает с точкой пересечения биссектрис треугольника.
Следующие формулы позволяют вычислить радиусы описанной и вписанной окружностей.
- где — площадь треугольника, — его полупериметр.
- ,
где — радиусы соответственных вневписанных окружностей
Ещё два полезных соотношения:
- [7]
- .
Существует также формула Карно[8]:
- ,
где , , — расстояния от центра описанной окружности соответственно до сторон , , треугольника,
, , — расстояния от ортоцентра соответственно до вершин , , треугольника.
Расстояние от центра описанной окружности например до стороны треугольника равно:
- ;
расстояние от ортоцентра например до вершины треугольника равно:
- .
Признаки равенства треугольников[править | править код]
Равенство по двум сторонам и углу между ними
Равенство по стороне и двум прилежащим углам
Равенство по трем сторонам
Треугольник на евклидовой плоскости однозначно (с точностью до конгруэнтности) можно определить по следующим тройкам основных элементов:[9]
- , , (равенство по двум сторонам и углу между ними);
- , , (равенство по стороне и двум прилежащим углам);
- , , (равенство по трём сторонам).
Признаки равенства прямоугольных треугольников:
- по катету и гипотенузе;
- по двум катетам;
- по катету и острому углу;
- по гипотенузе и острому углу.
Дополнительный признак: треугольники равны, если у них совпадают две стороны и угол, лежащий против большей из этих сторон[10].
Дополнительный признак {по двум сторонам и углу не между ними, если этот угол прямой или тупой}.
Если в треугольниках и имеют место равенства , , , причём указанные углы НЕ являются острыми, то эти треугольники равны[11].
В сферической геометрии и в геометрии Лобачевского существует признак равенства треугольников по трём углам.
Признаки подобия треугольников[править | править код]
Основные свойства элементов треугольника[править | править код]
Свойства углов[править | править код]
Во всяком треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы[10].
Каждый внешний угол треугольника равен разности между 180° и соответствующим внутренним углом. Для внешнего угла также имеет место теорема о внешнем угле треугольника: внешний угол равен сумме двух других внутренних углов, с ним не смежных[10].
Неравенство треугольника[править | править код]
В невырожденном треугольнике сумма длин двух его сторон больше длины третьей стороны, в вырожденном — равна. Иначе говоря, длины сторон невырожденного треугольника связаны следующими неравенствами:
- .
Дополнительное свойство: каждая сторона треугольника больше разности двух других сторон[10].
Теорема о сумме углов треугольника[править | править код]
Сумма внутренних углов треугольника всегда равна 180°:
- .
В геометрии Лобачевского сумма углов треугольника всегда меньше 180°, а на сфере — всегда больше.
Теорема синусов[править | править код]
- ,
где — радиус окружности, описанной вокруг треугольника.
Теорема косинусов[править | править код]
- .
Является обобщением теоремы Пифагора.
- Замечание. теоремой косинусов также называют следующие две формулы, легко выводимые из основной теоремы косинусов (см. с. 51, ф. (1.11-2))[12].
- .
Теорема о проекциях[править | править код]
Источник: [13].
- .
Теорема тангенсов (формулы Региомонтана)[править | править код]
Теорема котангенсов[править | править код]
- .
Формулы Мольвейде[править | править код]
- .
Решение треугольников[править | править код]
Вычисление неизвестных сторон, углов и других характеристик треугольника, исходя из известных, исторически получило название «решения треугольников». При этом используются приведенные выше общие тригонометрические теоремы, а также признаки равенства и подобия треугольников.
Площадь треугольника[править | править код]
- Далее используются обозначения
- Площадь треугольника связана с его основными элементами следующими соотношениями.
- — формула Герона
- [14]
- [15]
- — ориентированная площадь треугольника.
- — см. Аналоги формулы Герона
- Частные случаи
-
- — для прямоугольного треугольника
- — для равностороннего треугольника
Другие формулы[править | править код]
- Существуют другие формулы, такие, как например,[16]
для угла .
- В 1885 г. Бейкер (Baker)[17] предложил список более ста формул площади треугольника. Он, в частности, включает:
- ,
- ,
- ,
- .
Неравенства для площади треугольника[править | править код]
Для площади справедливы неравенства:
- и ,
где в обоих случаях равенство достигается тогда и только тогда, когда треугольник равносторонний (правильный).
История изучения[править | править код]
Свойства треугольника, изучаемые в школе, за редким исключением, известны с ранней античности. Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[21]
Общая и достаточно полная теория геометрии треугольников (как плоских, так и сферических) появилась в Древней Греции[22]. В частности, во второй книге „Начал“ Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[23]. Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Свойствами элементов треугольников (углов, сторон, биссектрис и др.) после Евклида занимались Архимед, Менелай, Клавдий Птолемей, Папп Александрийский[24].
В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[25]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен.
В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались „зиджи“; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[26]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век).
Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[27]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[28].
Фундаментальное изложение тригонометрии (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[29]. Его „Трактат о полном четырёхстороннике“ содержит практические способы решения типичных задач, в том числе труднейших, решённых самим ат-Туси[30]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для практической работы с треугольниками.
В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10»[31]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций.
Изучение треугольника продолжилось в XVII веке: была доказана теорема Дезарга (1636), открыта точка Торричелли (1640) и изучены её свойства. Джованни Чева доказал свою теорему о трансверсалях (1678). Лейбниц показал, как вычислять расстояние от центра тяжести треугольника до других его замечательных точек[24]. В XVIII веке были обнаружены прямая Эйлера и окружность шести точек (1765).
В начале XIX века была открыта точка Жергонна. В 1828 году была доказана теорема Фейербаха. К концу XIX века относится творчество Эмиля Лемуана, Анри Брокара, Жозефа Нойберга. Окружность девяти точек исследовали Понселе, Брианшон и Штейнер, Были обнаружены ранее неизвестные геометрические связи и образы — например, окружность Брокара, точки Штейнера и Тарри. В 1860 году Шлёмильх доказал теорему: три прямые, соединяющие середины сторон треугольника с серединами его соответствующих высот, пересекаются в одной точке. В 1937 году советский математик С. И. Зетель показал, что эта теорема верна не только для высот, но и для любых других чевиан. Исследования перечисленных выше геометров превратили геометрию треугольника в самостоятельный раздел математики[32].
Значительный вклад в геометрию треугольника внёс в конце XIX — начале XX века Фрэнк Морли. Он доказал, что геометрическое место центров кардиоид, вписанных в треугольник, состоит из девяти прямых, которые, взятые по три, параллельны трём сторонам равностороннего треугольника. Кроме того, 27 точек, в которых пересекаются эти девять прямых, являются точками пересечения двух трисектрис треугольника, принадлежащих к одной и той же его стороне. Наибольшую известность получил частный случай этой теоремы: внутренние трисектрисы углов треугольника, прилежащих к одной и той же стороне, пересекаются попарно в трёх вершинах равностороннего треугольника. Обобщение этих работ опубликовал Анри Лебег (1940), он
ввел -сектрисы треугольника и изучил их расположение в общем виде[33].
С 1830-х годов в геометрии треугольника стали широко использоваться трилинейные координаты точек. Активно развивалась теория преобразований — проективное, изогональное, изотомическое и другие. Полезной оказалась идея рассмотрения задач теории треугольников на комплексной плоскости.
[32].
Дополнительные сведения[править | править код]
Все факты, изложенные в этом разделе, относятся к евклидовой геометрии.
- Отрезок, соединяющий вершину с точкой на противоположной стороне, называется чевианой. Обычно под чевианой понимают не один такой отрезок, а один из трёх таких отрезков, проведённых из трёх разных вершин треугольника и пересекающихся в одной точке. Они удовлетворяют условиям теоремы Чевы. Чевианы, соединяющие вершину треугольника с точками противоположной стороны, отстоящими на заданное отношение от её концов, называют недианами.
- Средней линией треугольника называют отрезок, соединяющий середины двух сторон этого треугольника. Три средние линии треугольника разделяют его на четыре равных треугольника в 4 раза меньшей площади, чем площадь исходного треугольника.
- Серединные перпендикуляры (медиатрисы) к сторонам треугольника также пересекаются в одной точке, которая совпадает с центром описанной окружности.
- Чевианы, лежащие на прямых, симметричных медианам относительно биссектрис, называются симедианами. Они проходят через одну точку — точку Лемуана.
- Чевианы, лежащие на прямых, изотомически сопряжённых биссектрисам относительно оснований медиан, называются антибиссектрисами. Они проходят через одну точку — центр антибиссектрис.
- Кливер треугольника — это отрезок, одна вершина которого находится в середине одной из сторон треугольника, вторая вершина находится на одной из двух оставшихся сторон, при этом кливер разбивает периметр пополам.
- Некоторые точки в треугольнике — «парные». Например, существует две точки, из которых все стороны видны либо под углом в 60°, либо под углом в 120°. Они называются точками Торричелли. Также существует две точки, проекции которых на стороны лежат в вершинах правильного треугольника. Это — точки Аполлония. Точки и такие, что и называются точками Брокара.
Некоторые замечательные прямые треугольника[править | править код]
- В любом треугольнике центр тяжести, ортоцентр, центр описанной окружности и центр окружности Эйлера лежат на одной прямой, называемой прямой Эйлера.
- В любом треугольнике центр тяжести, центр круга, вписанного в него (инцентр), его точка Нагеля и центр круга, вписанного в дополнительный треугольник (или Центр Шпикера), лежат на одной прямой, называемой второй прямой Эйлера (прямой Нагеля)
- Прямая, проходящая через центр описанной окружности и точку Лемуана, называется осью Брокара. На ней лежат точки Аполлония.
- Также на одной прямой лежат точки Торричелли и точка Лемуана.
- Если на описанной окружности треугольника взять точку, то её проекции на стороны треугольника будут лежать на одной прямой, называемой прямой Симсона данной точки. Прямые Симсона диаметрально противоположных точек описанной окружности перпендикулярны.
Трилинейные поляры треугольника[править | править код]
Бесконечно удалённая прямая — трилинейная поляра центроида
Построение трилинейной поляры точки
Ось Лемуана — трилинейная поляра точки Лемуана показана красным цветом
- Трилинейная полярой точки Лемуана служит ось Лемуана (см. рис.)
Ось внешних биссектрис или антиортовая ось (antiorthic axis) — трилинейная поляра центра вписанной окружности (инцентра) треугольника )
Ортоцентрическая ось (Orthic axis) — трилинейная поляра ортоцентра
- Ортоцентрическая ось (Orthic axis) — трилинейная поляра ортоцентра (см. рис.)
- Трилинейные поляры точек, лежащих на описанной конике, пересекаются в одной точке (для описанной окружности это — точка Лемуана, для описанного эллипса Штейнера — центроид).
Вписанные и описанные фигуры для треугольника[править | править код]
Преобразования[править | править код]
Ниже описаны 3 вида преобразований: 1) Изогональное сопряжение, 2) Изотомическое сопряжение, 3) Изоциркулярное преобразование.
Изогональное сопряжение[править | править код]
- Если прямые, проходящие через вершины и некоторую точку, не лежащую на сторонах и их продолжениях, отразить относительно соответствующих биссектрис, то их образы также пересекутся в одной точке, которая называется изогонально сопряжённой исходной (если точка лежала на описанной окружности, то получившиеся прямые будут параллельны).
- Изогонально сопряжёнными являются многие пары замечательных точек:
- Центр описанной окружности и ортоцентр (точка пересечения высот),
- Центроид (точка пересечения медиан) и точка Лемуана (точка пересечения симедиан),
- Центр девяти точек и точка Косниты треугольника, связанная с теоремой Косниты[34];
- Две точки Брокара;
- Точки Аполлония и точки Торричелли.
- Точка Жергонна и центр отрицательной гомотетии вписанной и описанной окружности.
- Точка Нагеля и центр положительной гомотетии вписанной и описанной окружности (точка Веррьера).
- Описанные окружности подерных треугольников изогонально сопряжённых точек совпадают.
- Фокусы вписанных эллипсов изогонально сопряжены.
- Изогональное сопряжение имеет ровно четыре неподвижные точки (то есть точки, которые сопряжены самим себе): центр вписанной окружности и центры вневписанных окружностей треугольника[35].
- Если для любой внутренней точки треугольника построить три точки, симметричные ей относительно сторон, а затем через три последние провести окружность, то ее центр изогонально сопряжен исходной точке[36].
Изогональные сопряжения линий треугольника[править | править код]
- Под действием изогонального сопряжения прямые переходят в описанные коники, а описанные коники — в прямые.
- Так, изогонально сопряжены:
- гипербола Киперта и ось Брокара,
- гипербола Енжабека и прямая Эйлера,
- гипербола Фейербаха и линия центров вписанной и описанной окружностей.
- Некоторые известные кубики — например, кубика Томсона — изогонально самосопряжены в том смысле, что при изогональном сопряжении всех их точек в треугольнике снова получаются кубики.
Изотомическое сопряжение[править | править код]
Если вместо симметричной чевианы брать чевиану, основание которой удалено от середины стороны так же, как и основание исходной, то такие чевианы также пересекутся в одной точке. Получившееся преобразование называется изотомическим сопряжением. Оно также переводит прямые в описанные коники.
- Изотомически сопряжены следующие точки:
- точка Жергонна и Нагеля,
- точка пересечения биссектрис (инцентр) и точка пересечения антибиссектрис,
- Точке Лемуана (точке пересечения симедиан) треугольника изотомически сопряжена его точке Брокара,
- Центроид (точка пересечения медиан) изотомически сопряжён сам себе.
При аффинных преобразованиях изотомически сопряжённые точки переходят в изотомически сопряжённые. При изотомическом сопряжении в бесконечно удалённую прямую перейдёт описанный эллипс Штейнера.
Композиция изогонального (или изотомического) сопряжения и трилинейной поляры[править | править код]
Изоциркулярное преобразование[править | править код]
Если в сегменты, отсекаемые сторонами треугольника от описанного круга, вписать окружности, касающиеся сторон в основаниях чевиан, проведённых через некоторую точку, а затем соединить точки касания этих окружностей с описанной окружностью с противоположными вершинами, то такие прямые пересекутся в одной точке. Преобразование плоскости, сопоставляющее исходной точке получившуюся, называется изоциркулярным преобразованием [39]. Композиция изогонального и изотомического сопряжений является композицией изоциркулярного преобразования с самим собой. Эта композиция — проективное преобразование, которое стороны треугольника оставляет на месте, а ось внешних биссектрис переводит в бесконечно удалённую прямую.
Тригонометрические тождества только с углами[править | править код]
(первое тождество для тангенсов)
Замечание. Соотношение выше применимо только тогда, когда ни один из углов не равен 90° (в таком случае функция тангенса всегда определена).
- ,[40]
(второе тождество для тангенсов)
- ,
(первое тождество для синусов)
- ,[40]
(второе тождество для синусов)
- ,[7]
(тождество для косинусов)
(тождество для отношения радиусов)
Замечание. При делении обеих частей второго тождества для тангенсов на произведение получается тождество для котангенсов:
- ,
по форме (но не по содержанию) очень похожее на первое тождество для тангенсов.
Разные соотношения[править | править код]
Метрические соотношения в треугольнике приведены для :
Где:
- , и — стороны треугольника,
- , — отрезки, на которые биссектриса делит сторону ,
- , , — медианы, проведённые соответственно к сторонам , и ,
- , , — высоты, опущенные соответственно на стороны , и ,
- — радиус вписанной окружности,
- — радиус описанной окружности,
- — полупериметр,
- — площадь,
- — расстояние между центрами вписанной и описанной окружностей.
- Для любого треугольника, у которого стороны связаны неравенствами , а площадь равна , длины срединных перпендикуляров или медиатрис, заключённых внутри треугольника, опущенных на соответствующую сторону (отмеченную нижним индексом), равны[41]:Corollaries 5 and 6
- , и .
Формулы площади треугольника в декартовых координатах на плоскости[править | править код]
- Обозначения
-
- — координаты вершин треугольника.
Общая формула площади треугольника в декартовых координатах на плоскости[править | править код]
В частности, если вершина A находится в начале координат (0, 0), а координаты двух других вершин есть B = (xB, yB) и C = (xC, yC), то площадь может быть вычислена в виде 1⁄2 от абсолютного значения определителя
Последнюю формулу площади треугольника в английской литературе именуют формулой площади, заключенной внутри ломаной натянутого на гвозди шнурка (shoelace formula), или геодезической формулой (surveyor’s formula[42]), или формулой площади Гаусса.
Вычисление площади треугольника в пространстве с помощью векторов[править | править код]
Пусть вершины треугольника находятся в точках , , .
Введём вектор площади . Длина этого вектора равна площади треугольника, а направлен он по нормали к плоскости треугольника:
Положим , где , , — проекции треугольника на координатные плоскости. При этом
и аналогично
Площадь треугольника равна .
Альтернативой служит вычисление длин сторон (по теореме Пифагора) и далее по формуле Герона.
Вычисление площади треугольника через комплексные декартовы координаты его вершин[править | править код]
Если обозначить комплексные декартовы координаты (на комплексной плоскости) вершин треугольника соответственно через , и и обозначить их комплексно сопряженные точки соответственно через , и , тогда получим формулу:
- ,
что эквивалентно формуле площади, заключенной внутри ломаной натянутого на гвозди шнурка (shoelace formula), или геодезической формуле (surveyor’s formula[42]), или формуле площади Гаусса.
Треугольник в неевклидовых геометриях[править | править код]
На сфере[править | править код]
Свойства треугольника со сторонами , , и углами , , .
Сумма углов (невырожденного) треугольника строго больше .
Любые подобные треугольники равны.
Теорема синусов (здесь и далее сторону сферического треугольника принято измерять не линейной мерой, а величиной опирающегося на неё центрального угла):
- ,
Теоремы косинусов:
- ,
- .
На плоскости Лобачевского[править | править код]
Для треугольника со сторонами , , и углами , , .
Сумма углов (невырожденного) треугольника строго меньше .
Как и на сфере, любые подобные треугольники равны.
Теорема синусов
- ,
Теоремы косинусов
- ,
- .
Связь суммы углов с площадью треугольника[править | править код]
Значение для суммы углов треугольника во всех трёх случаях (евклидова плоскость, сфера, плоскость Лобачевского) является следствием формулы Гаусса — Бонне
- .
В случае треугольника эйлерова характеристика . Углы — это внешние углы треугольника. Значение величины (гауссовой кривизны) — это для евклидовой геометрии, для сферы, для плоскости Лобачевского.
Этот раздел статьи ещё не написан. Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (31 января 2017) |
Треугольник в римановой геометрии[править | править код]
Этот раздел статьи ещё не написан. Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (31 января 2017) |
Обозначение[править | править код]
Символ | Юникод | Название |
---|---|---|
△ | U+25B3 | white up-pointing triangle |
См. также[править | править код]
- Глоссарий планиметрии
- Тригонометрические тождества
- Тригонометрия
- Энциклопедия центров треугольника
Дополнительные статьи о геометрии треугольника можно найти в категориях:
- Категория:Геометрия треугольника.
- Категория:Теоремы евклидовой геометрии
- Категория:Планиметрия
- Категория:Теоремы планиметрии
Примечания[править | править код]
- ↑ Треугольник // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5.
- ↑ 1 2 Справочник по элементарной математике, 1978, с. 218.
- ↑ Подходова Н. С. [и др.] Раздел II. Теория обучения математике. Глава 7. Математические понятия. Методика работы с ними (п. 7.5. Классификация понятий) // Методика обучения математике в 2 ч. Часть 1 : учебник для вузов / под ред. Н. С. Подходовой, В. И. Снегуровой. — М.: Издательство Юрайт, 2023. — С. 139. — 274 с. — ISBN 978-5-534-08766-6, ББК 74.202.5я73. — ISBN 978-5-534-14731-5.
- ↑ Основанием равнобедренного треугольника всегда называют сторону, не равную двум другим.
- ↑ 1 2 Altshiller-Court, Nathan, College Geometry, Dover, 2007.
- ↑ 1 2 Справочник по элементарной математике, 1978, с. 221.
- ↑ 1 2 Longuet-Higgins, Michael S., «On the ratio of the inradius to the circumradius of a triangle», Mathematical Gazette 87, March 2003, 119—120.
- ↑ Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание. М.: Учпедгиз, 1962. задача на с. 120—125. параграф 57, с.73.
- ↑ Геометрия по Киселёву Архивная копия от 1 марта 2021 на Wayback Machine, § 41.
- ↑ 1 2 3 4 Справочник по элементарной математике, 1978, с. 219.
- ↑ Шарыгин И. Ф. Глава 3. (п. 3.2. Признаки равенства треугольников) // Геометрия. 7—9 кл.: учеб. для общеобразоват. учреждений / И. Ф. Шарыгин, ответств.ред. Т. С. Зельдман. — М.: Дрофа, 2012. — С. 79—80. — 462 с. — 3000 экз. — ISBN 978-5-358-09918-0, ББК 22.151я72, УДК 373.167.1:514.
- ↑ Корн Г., Корн Т. Справочник по математике, 1973.
- ↑ Корн Г., Корн Т. Справочник по математике, 1973, ф. 1.11-4.
- ↑ Sa ́ndor Nagydobai Kiss, «A Distance Property of the Feuerbach Point and Its Extension», Forum Geometricorum 16, 2016, 283—290. http://forumgeom.fau.edu/FG2016volume16/FG201634.pdf Архивная копия от 24 октября 2018 на Wayback Machine
- ↑ Pathan, Alex, and Tony Collyer, “Area properties of triangles revisited, ” Mathematical Gazette 89, November 2005, 495—497.
- ↑ Mitchell, Douglas W., “The area of a quadrilateral, ” Mathematical Gazette 93, July 2009, 306—309.
- ↑ Baker, Marcus, “A collection of formulae for the area of a plane triangle, « Annals of Mathematics, part 1 in vol. 1(6), January 1885, 134—138; part 2 in vol. 2(1), September 1885, 11-18. The formulas given here are #9, #39a, #39b, #42, and #49. The reader is advised that several of the formulas in this source are not correct.
- ↑ Chakerian, G. D. „A Distorted View of Geometry.“ Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.
- ↑ Rosenberg, Steven; Spillane, Michael; and Wulf, Daniel B. „Heron triangles and moduli spaces“, Mathematics Teacher 101, May 2008, 656—663.
- ↑ Posamentier, Alfred S., and Lehmann, Ingmar, The Secrets of Triangles, Prometheus Books, 2012.
- ↑ van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
- ↑ Глейзер Г. И., 1982, с. 77.
- ↑ Глейзер Г. И., 1982, с. 94—95.
- ↑ 1 2 Из истории геометрии треугольника, 1963, с. 129.
- ↑ Матвиевская Г. П., 2012, с. 40—44.
- ↑ Матвиевская Г. П., 2012, с. 51—55.
- ↑ Матвиевская Г. П., 2012, с. 92—96.
- ↑ Матвиевская Г. П., 2012, с. 111.
- ↑ Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
- ↑ Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I. — С. 105.
- ↑ История математики, том I, 1970, с. 320.
- ↑ 1 2 Из истории геометрии треугольника, 1963, с. 130—132.
- ↑ Из истории геометрии треугольника, 1963, с. 132—133.
- ↑ Rigby, John (1997), Brief notes on some forgotten geometrical theorems. Mathematics and Informatics Quarterly, volume 7, pages 156—158 (as cited by Kimberling).
- ↑ В. В. Прасолов. Точки Брокара и изогональное сопряжение. — М.: МЦНПО, 2000. — (Библиотека «Математическое просвещение»). — ISBN 5-900916-49-9.
- ↑ Математика в задачах. Сборник материалов выездных школ команды Москвы на Всероссийскую математическую олимпиаду. Под редакцией А. А. Заславского, Д. А. Пермякова, А. Б. Скопенкова, М. Б. Скопенкова и А. В. Шаповалова. Москва: МЦНМО, 2009.
- ↑ Kimberling, Clark. Central Points and Central Lines in the Plane of a Triangle (англ.) // Mathematics Magazine : magazine. — 1994. — June (vol. 67, no. 3). — P. 163—187. — doi:10.2307/2690608.
- ↑ Kimberling, Clark. Triangle Centers and Central Triangles. — Winnipeg, Canada: Utilitas Mathematica Publishing, Inc., 1998. — С. 285. Архивная копия от 10 марта 2016 на Wayback Machine
- ↑ Мякишев А.Г. Элементы геометрии треугольника(Серия: «Библиотека „Математическое просвещение“») М.:МЦНМО,2002.с.14—17
- ↑ 1 2 Vardan Verdiyan & Daniel Campos Salas, «Simple trigonometric substitutions with broad results», Mathematical Reflections no 6, 2007.
- ↑ Mitchell, Douglas W. (2013), «Perpendicular Bisectors of Triangle Sides», Forum Geometricorum 13, 53-59.
- ↑ 1 2 Bart Braden. The Surveyor’s Area Formula (англ.) // The College Mathematics Journal (англ.) (рус. : magazine. — 1986. — Vol. 17, no. 4. — P. 326—337. — doi:10.2307/2686282. Архивировано 6 апреля 2015 года.
Литература[править | править код]
- Адамар Ж. Элементарная геометрия. Часть 1: Планиметрия. Изд. 4-е, М.: Учпедгиз, 1957. 608 с.
- Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
- Переиздание: М.: АСТ, 2006, ISBN 5-17-009554-6, 509 с.
- Ефремов Дм. Новая геометрия треугольника. Одесса, 1902.
- Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
- Коксетер Г. С. М., Грейтцер С. П. Новые встречи с геометрией. — М.: Наука, 1978. — Т. 14. — (Библиотека математического кружка).
- Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
- Мякишев А. Г. Элементы геометрии треугольника. — М.: МЦНМО, 2002.
- Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 48-50. — ISBN 5-94057-170-0.
- История
- Гайдук Ю. М., Хованский А. М. Из истории геометрии треугольника // Вопросы истории физико-математических наук. — М.: Высшая школа, 1963. — С. 129—133. — 524 с.
- Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76—95. — 240 с.
- История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
- История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
- Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
- Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
- Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.
Ссылки[править | править код]
- Расчёт элементов треугольника.
- Расчёт параметров треугольника по координатам его вершин.