Как найти вольт на метр

Random converter

Перевести единицы: вольт на метр [В/м] в киловольт на метр [кВ/м]

1 вольт на метр [В/м] = 0,001 киловольт на метр [кВ/м]

Напряжённость электрического поля

Picture

Общие сведения

Историческая справка

Напряжённость электрического поля. Определение

Напряжённость электрического поля. Физика явлений

Особенности проявления электрического поля в диэлектриках

Особенности проявления электрического поля на поверхности металлов

Практические примеры приборов и установок, использующих электрическое поле

Сканирующий туннельный микроскоп

Измерительные приборы и приборы оповещения

Электростатическая и электромагнитная защита

Опыты по воздействию электрического поля на металлы и газы

Плазменная лампа

Оценка напряжённости электрического поля с помощью осциллографа

Экранировка электромагнитного поля

Общие сведения

Picture

Мы живём в океане магнитных и электрических полей. Подобно поведению океана в штиль эти поля могут быть более и менее стабильными, превращаясь в шторм в настоящие бури.

Нам с детства известно свойство магнитной стрелки компаса указывать на север под действием постоянного геомагнитного поля Земли. В своё время изобретение компаса сыграло огромную роль в истории человечества, особенно с развитием мореплавания.

В отличие от магнитного поля, электрическое поле Земли почти ничем не проявляет себя в обыденной жизни, и без специальных приборов мы выявить его, как правило, не можем. Хотя иногда мы наблюдаем проявление электрического поля, расчёсывая вымытые и высушенные волосы пластмассовой расчёской или проводя той же расчёской над кусочками целлофана или бумаги, которые, преодолевая земное притяжение, подпрыгивают со стола, прилипая к расчёске.

Но стоит прийти электрической буре, как мы чувствуем её приближение без всяких приборов. Мы видим сполохи далёких зарниц приближающейся грозы, и слышим далекие раскаты грома. Появляются помехи при приёме радио и телевизионных сигналов; разряды молний могут вывести из строя радио- и электронную аппаратуру, линии связи и электропередач.

Нью-Йорк

Нью-Йорк

Примером может служить авария электроснабжения в Нью-Йорке в 1977 году, когда, после серии попаданий молний в различные ЛЭП, без электроснабжения остался почти весь восьмимиллионный город. Геомагнитные бури космических масштабов также могут привести к авариям электроснабжения городов и стран (Квебекская авария в 1989 году), или вызвать перебои в телеграфной связи на целых континентах (Событие Каррингтона в 1859 году). В то же время, возмущения магнитного поля на поверхности Земли во время геомагнитной бури составляют в среднем менее 1% от величины стационарного значения.

По современным представлениям, отдельные изменяющиеся во времени электрические и магнитные поля образуют единые электромагнитные поля, изменяющиеся с меньшей или большей частотой. Их спектр чрезвычайно широк — от инфранизких частот в доли герца до квантов гамма-излучения с частотой в эксагерцы.

Любопытный, но малоизвестный факт: в узком радиодиапазоне спектра, на котором ведётся телевизионное вещание и работают спутники связи, мощность излучаемого Землёй сигнала превосходит мощность излучения Солнца! Некоторые радиоастрономы предлагают вести поиск внеземных цивилизаций, сравнимых с нашей цивилизацией, по этому признаку. Правда, другие учёные считают его просто признаком нашей технологической отсталости и неумением разумно распорядиться энергетическими ресурсами.

Важнейшей характеристикой электрического (равно как и магнитного) поля является его напряжённость. Превышение этого параметра выше определённого значения для данной среды (для воздуха это 30 кВ/см) приводит к электрическому пробою — искровому разряду. В наших зажигалках мощность разряда настолько мала, что его энергии хватает только на нагрев газа до температуры возгорания.

Ионосфера и разряды молний

Ионосфера и разряды молний

Мощность отдельной молнии при средних значениях напряжения в 20 млн. вольт и тока в 20 тысяч ампер может составлять 200 млн киловатт (учитывая, что при разряде молнии напряжение падает с максимального значения до нуля). А за одну мощную грозу выделяется столько же энергии, сколько потребляет всё население США за 20 минут.

Учитывая то обстоятельство, что на Земле ежесекундно гремят более 2000 гроз одновременно, освоение энергии атмосферного электричества представляется чрезвычайно заманчивым. Существуют множество проектов по перехвату молний специальными громоотводами или инициализации разряда молнии; в этом плане мы уже имеем технологии, позволяющие вызвать разряд запуском малых ракет или воздушных змеев, связанных проводниками с поверхностью Земли. Более перспективными представляются разработки на основе ионизации атмосферы лучами мощных лазеров или микроволнового излучения и создании таким образом проводящих каналов для разряда молний, что позволяет устранить необходимость материальных затрат, связанных с испарением проводников после удара молнии.

По сути дела нам не требуется генерации собственно электричества — остаётся только организовать его приём, хранение и преобразование в более удобную для практических целей форму — но пока эта задача возлагается на будущие технологии и устройства. Возможным решением проблем могут стать новые материалы вроде графена, и супермагниты на сверхпроводниках, либо создание ионисторов с невероятно высокой плотностью запасаемой энергии.

Физика полярного сияния та же, что свечение газоразрядных ламп в электромагнитном поле (см. иллюстрации ниже) — возбуждение атомов газов с последующим переходом в обычное состояние, при котором и происходит выделение энергии в форме свечения.

Физика полярного сияния та же, что свечение газоразрядных ламп в электромагнитном поле (см. иллюстрации ниже) — возбуждение атомов газов с последующим переходом в обычное состояние, при котором и происходит выделение энергии в форме свечения.

А может быть осуществится мечта гения от электричества — американца сербского происхождения Николы Теслы; и мы сумеем преобразовать энергию гроз в единое энергетическое поле, которое позволит получать электроэнергию в требуемом количестве в любом месте Земли и даже в её атмосфере. Ведь удалось же Тесле во время проведения экспериментов по получению искусственных молний в июне 1889 года в своей лаборатории, расположенной в Колорадо-Спрингс, добиться такой передачи электрической мощности без проводов, что лошади в округе валились с ног, получив электрический удар через металлические подковы! Бабочки летали в ореоле огоньков святого Эльма, меж ног пешеходов проскакивали искры, такие же искры сыпались из водопроводных кранов. Может быть, из-за таких вот опытов многие современники считали Теслу просто опасным безумцем.

Но, говорят же, что если опережаете человечество на один шаг — вы точно гений! Но если на два шага — вы безумец!

Историческая справка

Понятие напряжённости электрического поля непосредственно связано с понятием электрических зарядов и создаваемых этими зарядами электрических полей.

Визуализация силовых линий электрического поля с помощью перманганата калия; на фильтровальную бумагу, пропитанную слабым раствором хлористого натрия, поставлены два электрода, на которые подано постоянное напряжение 30 В

Визуализация силовых линий электрического поля с помощью перманганата калия; на фильтровальную бумагу, пропитанную слабым раствором хлористого натрия, поставлены два электрода, на которые подано постоянное напряжение 30 В

Открытый французским учёным Шарлем Кулоном в 1785 году закон взаимодействия электрических зарядов только дал в руки физиков инструмент для расчёта взаимодействия как такового. Этот закон был поразительно похож на закон всемирного тяготения Ньютона, открытый ранее, хотя и имел существенное отличие: он допускал наличие зарядов разных знаков, а масса в законе всемирного тяготения имеет только один знак, т.е. материальные тела могли только притягиваться.

Подобно Ньютону, который не раскрыл причин гравитационного взаимодействия, Кулон также не смог пояснить причин взаимодействия электрических зарядов.

Лучшие умы того времени предлагали различные теории происхождение этих сил, в их число входили теории близкодействия и дальнодействия. Первая предполагала наличие некоторого промежуточного агента — мирового эфира с совершенно экзотическими свойствами. Например, ему приписывалась огромная упругость с ничтожной плотностью и вязкостью. Это было связано с преобладающими на тот момент развития науки механистическими представлениями о среде передачи сил как о некоторой жидкости. Противоречивые результаты опытов по изучения свойств эфира окончательно были похоронены уже в 20-ом веке в результате экспериментов американского физика Альберта Майкельсона и специальной теорией относительности Альберта Эйнштейна.

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы; манная крупа и масло являются диэлектриками; под действием напряжения 30 кВ крупинки постепенно выстраиваются вдоль силовых линий, направленных от центра к кольцевому электроду

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы; манная крупа и масло являются диэлектриками; под действием напряжения 30 кВ крупинки постепенно выстраиваются вдоль силовых линий, направленных от центра к кольцевому электроду

Прорыв в этом направлении совершили выдающиеся английские физики Майкл Фарадей и Джеймс Клерк Максвелл в конце 19-го века. М. Фарадею удалось воедино связать магнитные и электрические поля посредством введения концепции физического поля и даже визуализировать его с помощью «электрических силовых линий». В современной физике для изображения векторных полей используют силовые линии векторного поля.

Подобно тому, как мы можем визуализировать силовые линии магнитного поля, размещая в поле магнита мелкие железные опилки, Фарадей визуализировал распространение электрического поля, размещая кристаллики диэлектрика хинина в вязкой жидкости — касторовом масле. При этом вблизи заряженных тел кристаллики выстраивались в цепочки причудливой формы в зависимости от распределения зарядов.

Но главная заслуга Фарадея состоит в том, что он ввёл в научный обиход понятие, что электрические заряды не действуют друг на друга непосредственно. Каждый из них создаёт в окружающем пространстве электрическое и магнитное (если он движется) поле, а проявление эффектов электромагнетизма суть простое изменение количества силовых линий, охватываемых каким-то контуром.

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы для двух линейных электродов при напряжении 30 кВ

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы для двух линейных электродов при напряжении 30 кВ

Под количеством силовых линий он подразумевал напряжённость электрического или магнитного поля.

Великий соотечественник Фарадея Дж. К. Максвелл сумел придать его идеям количественную математическую форму, столь необходимую в физике. Его система уравнений стала основой для изучения как теоретической, так и практической сторон электродинамики. Работа Максвелла поставила крест на концепции дальнодействия: полученный им фундаментальный результат предсказывал конечную скорость распространения электромагнитных взаимодействий в вакууме.

Позднее этот постулат о конечности скорости распространения света, как электромагнитного взаимодействия, был положен гениальным физиком 20-го века Альбертом Эйнштейном в качестве основополагающего постулата его специальной (СТО) и общей (ОТО) теориях относительности.

В современной физике в понятия дальнодействия и близкодействия вкладывается несколько иной смысл: силы, убывающие с расстоянием по законам обратной степени (r-n), считаются дальнодействующими; к ним относятся гравитационное и кулоновское взаимодействия, убывающие пропорционально обратному квадрату расстояния и действующие между объектами в обычном мире.

В атомном мире действуют иные силы, быстро убывающие с расстоянием: к ним относят сильное и слабое взаимодействия. Эти силы действуют между объектами микромира.

Напряжённость электрического поля. Определение

Напряжённость электрического поля — это векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению величины силы, действующей на неподвижный точечный электрический заряд, помещённый в эту точку, к величине заряда. Она обозначается латинской буквой E (произносится как вектор Е) и рассчитывается исходя из формулы:

E = F/q

где E — вектор напряженности электрического поля, F — вектор силы, действующий на точечный заряд, q — заряд объекта.

В каждой точке пространства существует своё значение вектора напряженности, поскольку поле может изменяться с течением времени, поэтому в качестве аргументов функции, описывающей данное векторное поле напряжённости, входят не только пространственные координаты, но и время.

E = f (x, y, z, t)

Напряжённость электрического поля в Международной системе единиц СИ измеряется в вольтах на метр (В/м) или ньютонах на кулон (Н/Кл).

Помимо основной единицы напряжённости электрического поля используется дольная единица (В/см), в электротехнике применяются кратные единицы (кВ/м или кВ/см).

В странах, где не используются метрические единицы длин, напряжённость электрического поля измеряется в вольтах на дюйм (В/дюйм).

Напряжённость электрического поля. Физика явлений

Как уже было показано выше, расчёты векторных электрических полей (напряжённости поля) физических объектов ведутся с использованием уравнений электростатики Максвелла и теоремы Гаусса-Остроградского, как составной части общих уравнений Максвелла.

При этом необходимо учитывать особенности поведения электрических полей в различных средах, поскольку их проявления резко отличаются в зависимости от конкретного состояния вещества по отношению к электрической проводимости.

Особенности проявления электрического поля в диэлектриках

Конденсаторный электретный микрофон для iPhone

Конденсаторный электретный микрофон для iPhone

При подаче электрического поля высокой напряжённости на образец из твёрдого диэлектрика, в последнем, как правило, происходит переориентация хаотически расположенных полярных молекул в направлении электрического поля. Это явление называется поляризацией. Даже при снятии электрического поля, эта ориентация сохраняется. Для её устранения требуется приложить поле обратной направленности.

Это явление носит название диэлектрического гистерезиса. Возвращению в исходное состояние диэлектрика могут способствовать и иные методы физического воздействия на образец, чаще всего применяют простой нагрев, при этом тоже происходит фазовый переход диэлектрика в исходное состояние.

Такие материалы получили название сегнетоэлектриков или ферроэлектриков. Среди них особым классом можно выделить вещества, которые имеют очень широкую петлю диэлектрического гистерезиса и способные долгое время находиться в поляризованном состоянии — они называются электретами, по сути дела, играют роль постоянных магнитов в электрическом исполнении, создавая постоянное электрическое поле.

Явление гистерезиса в сегнетоэлектриках

Явление гистерезиса в сегнетоэлектриках

Следует отметить, что название «ферроэлектрики» никак не связано с железом; оно появилось в связи с тем, что явление сегнетоэлектричества аналогично явлению ферромагнетизма. В английском языке явление сегнетоэлектричества так и называется: ferroelectricity.

Под действием переменного электрического поля молекулы диэлектрика ведут себя несколько по-иному, постоянно меняя пространственную ориентацию присущих им зарядов каждый полупериод приложенного поля. Понимание этих процессов заложил британский учёный Дж. К. Максвелл, который ввёл в обиход науки об электричестве понятие токов смещения.

Суть явления состоит в том, что под действием переменного тока связанные заряды — электроны и ядра — в молекулах диэлектрика колеблются относительно центра молекулы, реагируя на приложенное переменное электрическое поле.

Особенности проявления электрического поля на поверхности металлов

Совершенно иным является взаимодействие электрического поля с металлами. Из-за наличия в них свободных зарядов (электронов) по отношению к любому электрическому или электромагнитному полю, они ведут себя подобно оптическому зеркалу в отношении света.

Направленные параболические антенны  спутниковой связи

Направленные параболические антенны спутниковой связи

На этом принципе построены многие направленные антенны для приёма радиосигналов — вне зависимости от конкретной конструкции антенны, в них обязательно присутствует один элемент — отражатель (или дефлектор), который позволяет значительно увеличить принимаемый радиосигнал и тем самым улучшить качество приёма. Он может выглядеть совершенно по-разному, вплоть до полного аналога обычному зеркалу в виде параболических отражателей антенн для приёма спутниковых сигналов. По сути дела дефлектор является просто концентратором напряжённости электромагнитного поля.

Поскольку металлы отражают электрические и электромагнитные поля, на этом же принципе построена клетка электростатической защиты — так называемая клетка или щит Фарадея — металлы полностью изолируют пространство в них от действия электрического, да и электромагнитного поля. Об этом прекрасно знал гений электричества Никола Тесла, и поражал непросвещённую публику появлением в такой клетке в ореоле электрических разрядов, создаваемых его резонансным трансформатором. Теперь мы называем его трансформатором (или катушкой) Тесла.

Катушка Тесла и беличье колесо для человека в Канадском музее науки и техники. Чтобы возникла искра, посетитель музея должен выработать примерно 100 Вт энергии.

Катушка Тесла и беличье колесо для человека в Канадском музее науки и техники. Чтобы возникла искра, посетитель музея должен выработать примерно 100 Вт энергии.

В 1997 году физик из Калифорнии Остин Ричардс создал гибкий костюм электростатической защиты, который защищал его от разрядов катушки Тесла, и с 1998 года он выступает по всему миру под псевдонимом Доктор МегаВольт в шоу «Полыхающий человек ».

Между прочим, современные помещения для скрытых переговоров выполнены на том же принципе клетки Фарадея; правда, изобретателям из закрытых научно-исследовательских институтов КГБ СССР удалось при постройке здания посольства США в своё время обойти американских инженеров: подслушивающие устройства встраивались в виде изолированных конструкций в несущие стены здания. Предполагалось, что под действием внешнего облучения они будут генерировать ответный промодулированный сигнал, и выдавать секреты переговоров американских дипломатов.

Практические примеры приборов и установок, использующих электрическое поле

Помещение с электронным микроскопом должно иметь хорошую звукоизоляцию, поэтому оно похоже на студию звукозаписи — только окошка не хватает

Помещение с электронным микроскопом должно иметь хорошую звукоизоляцию, поэтому оно похоже на студию звукозаписи — только окошка не хватает

Существует множество примеров как использования электрического поля, так и борьбы с ним.

Сканирующий туннельный микроскоп

Одним из принципов работы сканирующего туннельного микроскопа (СТМ) является создание такой напряженности электрического поля между исследуемым образцом и острой иглой-зондом, чтобы она превышала работу выхода электронов из образца. Это достигается приложением небольшой разности потенциала между образцом и зондом, и их сближением на расстояние менее одного нанометра. Затем, перемещая зонд над поверхностью, за счёт измерения протекающего туннельного тока можно получить профили образца и построить изображение его поверхности.

Сотни высотных зондов ежедневно запускаются с помощью наполненных водородом шаров метеостанциями по всему миру; такие зонды, как этот, находящийся в Канадском музее науки и техники, запускались в середине прошлого века

Сотни высотных зондов ежедневно запускаются с помощью наполненных водородом шаров метеостанциями по всему миру; такие зонды, как этот, находящийся в Канадском музее науки и техники, запускались в середине прошлого века

Учитывая чувствительность прибора к механическим вибрациям, к помещениям, в которых размещаются СТМ, предъявляются особые требования: в частности, поверхности стен, потолки и полы помещений оснащаются акустической защитой, поглощающей звуковые колебания.

Измерительные приборы и приборы оповещения

Согласно требованиям охраны труда, помещения классифицируются по уровню напряжённости электрического поля. В зависимости от этого уровня время пребывания технического персонала в таких помещениях строго регламентируется. Замеры напряжённости производится специальными приборами.

Метеоцентры разных стран контролируют электрическое поле Земли, измеряя его напряжённость как на поверхности, так и в различных слоях атмосферы с помощью высотных зондов.

Электромонтёры установок и линий высокого напряжения для сигнализации об опасном сближении с токоведущими частями, находящимися под напряжением, используют приборы оповещения, измеряющие напряжённость электрического поля.

Электростатическая и электромагнитная защита

Ёще сам Фарадей, при проведении химических опытов, для исключения влияния сторонних электрических полей на результаты экспериментов, применял изобретённое им в 1836 году устройство электростатической защиты, известное ныне как клетка Фарадея. Оно может быть выполнено в виде сплошной проводящей оболочки с отверстиями или в виде сетки из проводящих материалов.

Микроволновая печь, по сути, представляет собой клетку Фарадея, только в ней экранируется внутреннее излучение, а не внешнее; на нижнем снимке видно, что размер ячейки сетки примерно 3 мм, что значительно меньше длины волны электромагнитного излучения в печи, равной 12 см

Микроволновая печь, по сути, представляет собой клетку Фарадея, только в ней экранируется внутреннее излучение, а не внешнее; на нижнем снимке видно, что размер ячейки сетки примерно 3 мм, что значительно меньше длины волны электромагнитного излучения в печи, равной 12 см

Это же устройство может с успехом применяться для экранировки электромагнитных излучений с длиной волны, существенно превышающей размеры ячеек сетки или отверстий.

В современной технике клетками Фарадея оснащаются физические лаборатории и установки, лаборатории аналитической химии и измерительной техники, помещения для ведения секретных переговоров и даже помещения для заседания конклава кардиналов, на котором проводились последние выборы Папы римского.

Поскольку физические методы исследований широко применяются в современной медицине, помещения диагностических центров также оснащаются клетками Фарадея — примером могут служить кабинеты, в которых проводится магниторезонансная томография.

Даже в привычной всем бытовой микроволновой печи камера разогрева конструктивно выполнена в виде клетки Фарадея, а оптически прозрачное окошко в ней, сделанное по специальной технологии, не прозрачно для микроволнового излучения.

Экраны соединительных проводов и коаксиальных кабелей, широко применяющиеся в радиотехнике, компьютерной технике и технике связи для защиты от внешнего электромагнитного излучения и излучения внутреннего сигнала во внешнюю среду, тоже являются своеобразными клетками Фарадея.

Опыты по воздействию электрического поля на металлы и газы

Никуда не подключенные тонкие люминесцентные лампы от плоского дисплея можно зажечь с помощью плазменной лампы

Никуда не подключенные тонкие люминесцентные лампы от плоского дисплея можно зажечь с помощью плазменной лампы

Зажигание неоновой лампы с помощью плазменной лампы

Зажигание неоновой лампы с помощью плазменной лампы

Учитывая, что непосредственное точное измерение напряжённости электрического поля требует специальных приборов, ограничимся иллюстрацией его свойств.

Плазменная лампа

В качестве индикатора напряжённости электрического поля будем использовать неоновую, люминесцентную или любую другую газоразрядную лампу, заполненную каким-либо инертным газом при низком давлении. Генератором поля будет служить плазменная лампа Тесла, создающая переменное электрическое поле значительной напряжённости с частотой около 25 кГц.

Если коснуться поверхности плазменной лампы пальцами, происходит концентрация плазменных шнуров

Если коснуться поверхности плазменной лампы пальцами, происходит концентрация плазменных шнуров

Если поднести индикаторную лампу (даже неисправную, но с целым баллоном) к изолирующей сфере плазменной лампы, она начнёт светиться, регистрируя наличие поля.

Очевидно, что электромагнитное поле проникает сквозь стеклянные оболочки обеих ламп, поле возбуждает электроны верхних оболочек атомов газа, последние при возврате в исходное состояние генерируют свет.

Если поднести к поверхности лампы руку, то можно наблюдать утолщение плазменного шнура, поскольку мы создаём в точке соприкосновения повышенную напряжённость электрического поля.

Оценка напряжённости электрического поля с помощью осциллографа

Подключим к входу осциллографа зонд, изготовленный из куска проволоки длиной около 15 см, и поднесём его к лампе Тесла. На экране осциллографа наблюдаем индуцированные колебания с той же частотой 25 кГц и размахом 25 вольт. На электрод лампы подается переменное высокое напряжение, генерирующее в пространстве переменное электрическое поле. Увеличивая расстояние между лампой и проводом, будем наблюдать уменьшение размаха сигнала (рис. 1–3). По уменьшению амплитуды сигнала на осциллографе можно сделать вывод, что напряжённость поля убывает с расстоянием.

Picture

Экранировка электромагнитного поля

Подключим к входу осциллографа экранированный измерительный кабель (рис. 4). При этом размах сигнала, регистрируемый осциллографом, упадёт почти до нуля. Экран кабеля выполняет роль клетки Фарадея, защищая сигнальный провод от электромагнитных наводок, создаваемых плазменной лампой.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Электротехника

Электротехника — область технических наук, изучающая получение, распределение, преобразование и использование электрической энергии. Электротехника включает в себя такие области техники как электроэнергетику, электронику, системы управления, обработку сигналов и связь.

Конвертер напряжённости электрического поля

Напряжённость электрического поля — векторная величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный пробный заряд, помещенный в данную точку поля, к величине этого заряда.

В Международной системе единиц (СИ) напряжённость электрического поля измеряется в вольтах на метр (В/м) или в ньютонах на кулон (Н/Кл).

Использование конвертера «Конвертер напряжённости электрического поля»

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Пользуйтесь конвертером для преобразования нескольких сотен единиц в 76 категориях или несколько тысяч пар единиц, включая метрические, британские и американские единицы. Вы сможете перевести единицы измерения длины, площади, объема, ускорения, силы, массы, потока, плотности, удельного объема, мощности, давления, напряжения, температуры, времени, момента, скорости, вязкости, электромагнитные и другие.
Примечание. В связи с ограниченной точностью преобразования возможны ошибки округления. В этом конвертере целые числа считаются точными до 15 знаков, а максимальное количество цифр после десятичной запятой или точки равно 10.

Для представления очень больших и очень малых чисел в этом калькуляторе используется компьютерная экспоненциальная запись, являющаяся альтернативной формой нормализованной экспоненциальной (научной) записи, в которой числа записываются в форме a · 10x. Например: 1 103 000 = 1,103 · 106 = 1,103E+6. Здесь E (сокращение от exponent) — означает «· 10^», то есть «…умножить на десять в степени…». Компьютерная экспоненциальная запись широко используется в научных, математических и инженерных расчетах.

  • Выберите единицу, с которой выполняется преобразование, из левого списка единиц измерения.
  • Выберите единицу, в которую выполняется преобразование, из правого списка единиц измерения.
  • Введите число (например, «15») в поле «Исходная величина».
  • Результат сразу появится в поле «Результат» и в поле «Преобразованная величина».
  • Можно также ввести число в правое поле «Преобразованная величина» и считать результат преобразования в полях «Исходная величина» и «Результат».

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Основная единица

вольт на метр

V/m

    • {$ group[1][0].system.title $}

    • Другое

    • {$ Format(1, item.case_nom) $}

      {$ (item.short ? ” + item.short + ” : ”) $}

Округлять до
{$ round $} {$ Plural(round, [‘знака’, ‘знаков’, ‘знаков’]) $} после запятой

Вольт на метр
В/м, V/m
Величина Напряжённость электрического поля
Система СИ
Тип производная

Вольт на метр — единица измерения напряжённости электрического поля. Один В/м — напряженность такого электрического поля, в котором на заряд, равный 1 Кл, действует сила в 1 Н, поэтому 1В/м = 1Н/Кл. В СГСЭ равен 3,3·10-5 СГСЭ ед. напряженности[1]. Напряженность однородного электрического поля прямо пропорциональна напряжению между пластинами конденсатора и обратно пропорциональна расстоянию между ними[2]

Примечания[править | править код]

  1. Электричество и магнетизм. ecmoptec.ru. Дата обращения: 28 января 2021. Архивировано 12 августа 2020 года.
  2. Напряженность однородного электрического поля | Формулы и расчеты онлайн – Fxyz.ru. www.fxyz.ru. Дата обращения: 28 января 2021. Архивировано 1 февраля 2021 года.

ВОЛЬТ НА МЕТР

ВОЛЬТ НА МЕТР
ВОЛЬТ НА МЕТР

       

(В/м, V/m), единица СИ напряжённости электрич. поля. 1 В/м — напряжённость однородного электрич. поля, при к-рой между точками, находящимися на расстоянии 1 м вдоль линии напряжённости поля, создаётся разность потенциалов 1 В. 1 B/M=1/3•10-4 ед. СГСЭ=106 ед. СГСМ.

Физический энциклопедический словарь. — М.: Советская энциклопедия.
.
1983.

.

Смотреть что такое “ВОЛЬТ НА МЕТР” в других словарях:

  • вольт на метр — единица СИ напряжённости электрического поля. Обозначается В/м. 1 В/м = 1/3·10 4 ед. СГСЭ ≈ 106 ед. СГСМ. * * * ВОЛЬТ НА МЕТР ВОЛЬТ НА МЕТР, единица СИ (см. СИ (система единиц)) напряженности электрического поля. Обозначается В/м. 1 В/м = 1/3·10… …   Энциклопедический словарь

  • ВОЛЬТ НА МЕТР — единица СИ напряженности электрического поля. Обозначается В/м. 1 В/м = 1/3.10 4 ед. СГСЭ ? 106 ед. СГСМ …   Большой Энциклопедический словарь

  • вольт на метр — voltas metrui statusas T sritis Standartizacija ir metrologija apibrėžtis Elektrinio lauko stiprio vienetas. Žymimas V/m: 1 V/m = 1 N/C. atitikmenys: angl. volt per metre vok. Volt durch Meter, n rus. вольт на метр, m pranc. volt par mètre, m …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Вольт на метр —         единица напряжённости электрического поля, входящая в Международную систему единиц (См. Международная система единиц), обозначается в/м или V/m; 1 в/м напряжённость однородного электрического поля, при которой между точками, находящимися… …   Большая советская энциклопедия

  • ВОЛЬТ НА МЕТР — единица СИ напряжённости электрич. поля. Обозначается В/м. 1 В/м = = 1/3х10 4 ед. СГСЭ = 106ед. СГСМ …   Естествознание. Энциклопедический словарь

  • электрон-вольт-квадратный метр — elektronvoltas iš kvadratinio metro statusas T sritis Standartizacija ir metrologija apibrėžtis Nesisteminis visuminės atominės stabdymo gebos matavimo vienetas: 1 eV · m² = (1,602 176 53 ± 0,000 000 14) · 10⁻¹⁹ J · m². atitikmenys: angl.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • электрон-вольт-квадратный метр на килограмм — elektronvoltas iš kvadratinio metro kilogramui statusas T sritis Standartizacija ir metrologija apibrėžtis Nesisteminis visuminės masinės stabdymo gebos matavimo vienetas: 1 eV · m²/kg = (1,602 176 53 ± 0,000 000 14) · 10⁻¹⁹ J · m²/kg.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • ВОЛЬТ — ВОЛЬТ, практическая единица, употребляемая для измерения разностей потенциалов (электр.). 1 В. равняется 108 абсолютных электромагнитных единиц (CGSM) потенциала, или ^ зоо абсолютной электростатической единицы (CGSE). Такова, примерно, разность… …   Большая медицинская энциклопедия

  • Вольт (единица измерения) — Вольт (обозначение: В (рус.), V (лат.)) единица измерения электрического напряжения в системе СИ. Вольт равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт. Единица названа в честь… …   Википедия

  • Вольт — У этого термина существуют и другие значения, см. Вольт (значения). Вольт (русское обозначение: В; международное: V)  в Международной системе единиц (СИ) единица измерения электрического потенциала, разности потенциалов, электрического… …   Википедия

Вольт на метр

Автор fizikman На чтение 1 мин Просмотров 394 Опубликовано 16.06.2015

Вольт на метр (в/м) — единица напряженности электрического поля в си. Вольт на метр равен напряженности однородного электрического поля, при которой между двумя точками, находящимися на линии напряженности на расстоянии 1 м, создается разность потенциалов 1 в. 1 в/м = 1 н/кл.

Вольт на метр

Вам также может понравиться

Звуковые волны (звук) — упругие волны с частотами от

0769

  Зрительная труба — оптический прибор для наблюдения

0497

  Жидкость — одно из агрегатных состояний вещества

0511

Жидкие кристаллы — состояния некоторых веществ, в которых

0246

Зеркало оптическое — тело с полированной или покрытой

0114

Затухающие колебания — собственные колебания, амплитуда

0117

Заряда сохранения закон — один из фундаментальных законов

0307

Замкнутая система — 1) в механике — конечная система

0223

Добавить комментарий