Производные высших порядков
На данном уроке мы научимся находить производные высших порядков, а также записывать общую формулу «энной» производной.
Кроме того, будет рассмотрена формула Лейбница таковой
производной и по многочисленным просьбам – производные высших порядков от неявно заданной функции. Предлагаю сразу же пройти мини-тест:
Вот функция: и вот её первая производная:
В том случае, если у вас возникли какие-либо трудности/недопонимание по поводу этого примера, пожалуйста, начните с двух базовых статей моего курса: Как найти производную? и Производная сложной функции. После освоения элементарных производных рекомендую ознакомиться с уроком
Простейшие задачи с производной, на котором мы разобрались, в частности со второй производной.
Нетрудно даже догадаться, что вторая производная – это производная от 1-й производной:
В принципе, вторую производную уже считают производной высшего порядка.
Аналогично: третья производная – это производная от 2-й производной:
Четвёртная производная – есть производная от 3-й производной:
Пятая производная: , и очевидно, что все производные более высоких порядков тоже будут равны нулю:
Помимо римской нумерации на практике часто используют следующие обозначения:
, производную же «энного» порядка обозначают через . При этом надстрочный индекс нужно обязательно заключать в скобки – чтобы отличать производную от «игрека» в степени.
Иногда встречается такая запись: – третья, четвёртая, пятая, …, «энная» производные соответственно.
Вперёд без страха и сомнений: Пример 1 Дана функция . Найти .
Решение: что тут попишешь… – вперёд за четвёртой производной 🙂
Четыре штриха ставить уже не принято, поэтому переходим на числовые индексы:
Ответ:
Хорошо, а теперь задумаемся над таким вопросом: что делать, если по условию требуется найти не 4-ю, а например, 20-ю производную? Если для производной 3-4-5-го (максимум, 6-7-го) порядка решение оформляется достаточно быстро, то до производных более высоких порядков мы «доберёмся» ой как не скоро. Не записывать же, в самом деле, 20 строк! В подобной ситуации нужно проанализировать
несколько найдённых производных, увидеть закономерность и составить формулу «энной» производной. Так, в Примере №1 легко понять, что при каждом следующем дифференцировании перед экспонентой будет «выскакивать» дополнительная «тройка», причём на любом шаге степень «тройки» равна номеру производной, следовательно:
, где – произвольное натуральное число.
И действительно, если , то получается в точности 1-я производная: , если – то 2-я: и т.д. Таким образом, двадцатая производная определяется мгновенно: – и никаких «километровых простыней»!
Разогреваемся самостоятельно:
Пример 2
Найти функции . Записать производную порядка Решение и ответ в конце урока.
После бодрящей разминки рассмотрим более сложные примеры, в которых отработаем вышеприведённый алгоритм решения. Тем, кто успел ознакомиться с уроком Предел последовательности, будет чуть легче:
Пример 3
Найти для функции .
Решение: чтобы прояснить ситуацию найдём несколько производных:
Полученные числа перемножать не спешим! 😉
Пожалуй, хватит. …Даже немного переборщил.
На следующем шаге лучше всего составить формулу «энной» производной (коль скоро, условие этого не требует, то можно обойтись черновиком). Для этого смотрим на полученные результаты и выявляем закономерности, с которыми получается каждая следующая производная.
Во-первых, они знакочередуются. Знакочередование обеспечивает «мигалка», и поскольку 1-я производная положительна, то в общую
формулу войдёт следующий множитель: . Подойдёт и эквивалентный вариант , но лично я, как оптимист, люблю знак «плюс» =)
Во-вторых, в числителе «накручивается» факториал, причём он «отстаёт» от номера производной на одну единицу:
И в-третьих, в числителе растёт степень «двойки», которая равна номеру производной. То же самое можно сказать о степени знаменателя. Окончательно:
В целях проверки подставим парочку значений «эн», например, и :
Замечательно, теперь допустить ошибку – просто грех:
Ответ: Более простая функция для самостоятельного решения:
Пример 4
Найти функции . И задачка позанятнее:
Пример 5
Найти функции .
Ещё раз повторим порядок действий:
1)Сначала находим несколько производных. Чтобы уловить закономерности обычно хватает трёх-четырёх.
2)Затем настоятельно рекомендую составить (хотя бы на черновике) «энную» производную – она гарантированно убережёт от ошибок. Но
можно обойтись и без , т.е. мысленно прикинуть и сразу записать, например, двадцатую или восьмую производную. Более того, некоторые люди вообще способны решить рассматриваемые задачи устно. Однако следует помнить, что «быстрые» способы чреваты, и лучше перестраховаться.
3) На заключительном этапе выполняем проверку «энной» производной – берём пару значений «эн» (лучше соседних) и выполняем подстановку. А ещё надёжнее – проверить все найдённые
ранее производные. После чего подставляем в нужное значение, например, или и аккуратно причёсываем результат.
Краткое решение 4 и 5-го примеров в конце урока.
В некоторых задачах во избежание проблем над функцией нужно немного поколдовать:
Пример 6
Записать формулу производной порядка для функции
Решение: дифференцировать предложенную функцию совсем не хочется, поскольку получится «плохая» дробь, которая сильно затруднит нахождение последующих производных.
В этой связи целесообразно выполнить предварительные преобразования: используем формулу разности квадратов и свойство логарифма :
Совсем другое дело:
И старые подруги:
Думаю, всё просматривается. Обратите внимание, что 2-я дробь знакочередуется, а 1-я – нет. Конструируем производную порядка:
Контроль:
Ну и для красоты вынесем факториал за скобки:
Ответ: Интересное задание для самостоятельного решения:
Пример 7 Записать формулу производной порядка для функции
Краткое решение и ответ в конце урока.
А сейчас о незыблемой круговой поруке, которой позавидует даже итальянская мафия:
Пример 8
Дана функция . Найти
Восемнадцатая производная в точке . Всего-то.
Решение: сначала, очевидно, нужно найти . Поехали:
С синуса начинали, к синусу и пришли. Понятно, что при дальнейшем дифференцировании этот цикл будет продолжаться до бесконечности, и возникает следующий вопрос: как лучше «добраться» до восемнадцатой производной?
Способ «любительский»: быстренько записываем справа в столбик номера последующих производных:
Таким образом:
Но это работает, если порядок производной не слишком велик. Если же надо найти, скажем, сотую производную, то следует воспользоваться делимостью на 4. Сто делится на 4 без остатка, и легко видеть, что таковые числа располагаются в нижней строке,
поэтому: .
Кстати, 18-ю производную тоже можно определить из аналогичных соображений:
во второй строке находятся числа, которые делятся на 4 с остатком 2.
Другой, более академичный метод основан на периодичности синуса и формулах приведения. Пользуемся готовой формулой «энной»
производной синуса , в которую просто подставляется нужный номер. Например:
(формула приведения
);
(формула приведения
)
В нашем случае:
(1)Поскольку синус – это периодическая функция с периодом , то у аргумента можно безболезненно «открутить» 4 периода (т.е. ).
(2)Пользуемся формулой приведения .
С сотней, к слову, вообще всё элементарно – 25 «оборотов» прочь:
Заключительная, более лёгкая часть задания – это нахождение восемнадцатой производной в точке:
Ответ: Аналогичная задача для самостоятельного решения.
Пример 9
Дана функция . Найти .
Кроме того, ориентируясь по таблице формул приведения, постарайтесь самостоятельно получить общую формулу «энной» производной косинуса.
На практике при аргументе синуса либо косинуса часто встречается числовой множитель, например: . Как находить производные высших порядков в этом случае? Всё будет точно так же
(периодичность, формулу приведения), но при каждом дифференцировании перед функцией будет дополнительно
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
математический-анализ – Найти восьмую производную.
Как найти восьмую производную функции sin(sin(x)) в точке 0? Записать ряд Тейлора и посмотреть на коэффициент при $%x^8$%. Ну или подумать, есть ли он там вообще)) 1 Синус нечетная функция, поэтому коэффициент нулевой. (11 Янв ’21 15:17) |
Здравствуйте
Математика – это совместно редактируемый форум вопросов и ответов для начинающих и опытных математиков, с особенным акцентом на компьютерные науки.
Присоединяйтесь!
Связанные исследования
Связанные вопросы
Отслеживать вопрос
по почте:
Зарегистрировавшись, вы сможете подписаться на любые обновления
по RSS:
Ответы
Ответы и Комментарии
Таблица производных, правила нахождения производных
- Таблица производных основных функций
- Основные правила нахождения производной
- Правило дифференцирования сложной функции
- Логарифмическая производная
- Производная обратной функции
- Производная функции, заданной параметрически
- Производная неявной функции
Таблица производных основных функций
Основные правила нахождения производной
Если
– постоянная и
,
– функции, имеющие производные, то
1) Производная от постоянного числа равна нулю.
2) Производная от переменной равна единице
На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:
ВКонтакте
WhatsApp
Telegram
Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.
Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.
3) Производная суммы равна сумме производных
Пример 1
Найдем производную функции
4) Производная произведения постоянной на
некоторую функцию равна произведению этой постоянной на производную от заданной
функции.
Пример 2
Найдем производную функции
5) Производная
произведения функций
Пример 3
Найдем производную функции
6) Производная
частного:
Пример 4
Найдем производную функции
Правило дифференцирования сложной функции
или в других обозначениях:
Пример 5
Найдем производную функции
Пример 6
Найдем производную функции
Логарифмическая производная
Логарифмической производной функции
называется производная от логарифма этой
функции, то есть:
Применение предварительного логарифмирования функции иногда
упрощает нахождение ее производной.
Пример 7
Найдем производную функции
Прологарифмируем заданную
функцию:
Искомая производная:
Производная обратной функции
Если для функции
производная
,
то производная обратной функции
есть
или в других обозначениях:
Пример 8
Найдем производную
,
если
Имеем:
Следовательно:
Производная функции, заданной параметрически
Если зависимость функции
и аргумента
задана посредством параметра
то
или в других обозначениях:
Пример 9
Найдем производную функции
Воспользуемся формулой:
Производная неявной функции
Если зависимость между
и
задана в неявной форме
(*)
то для нахождения производной
в простейших случаях достаточно:
1) вычислить производную по
от левой части равенства (*), считая
функцией от
;
2) приравнять эту производную к нулю, то есть положить:
3) решить полученное уравнение относительно
.
Пример 10
Найдем производную функции
Вычисляем производную от
левой части равенства:
Решаем уравнение
относительно
:
Искомая производная:
Содержание:
- Механический смысл второй производной
- Вычисления производной любого порядка, формула Лейбница
Если функция $y=f(x)$ имеет производную в каждой точке
$x$ своей области определения, то ее производная
$f^{prime}(x)$ есть функция от
$x$. Функция
$y=f^{prime}(x)$, в свою очередь, может иметь производную, которую
называют производной второго порядка функции $y=f(x)$ (или второй
производной) и обозначают символом $f^{prime prime}(x)$. Таким образом
$f^{prime prime}(x)=frac{mathrm{d}^{2} y}{mathrm{d} x^{2}}=lim _{x rightarrow x_{0}} frac{f^{prime}(x)-f^{prime}left(x_{0}right)}{x-x_{0}}=left(f^{prime}(x)right)^{prime}$
Пример
Задание. Найти вторую производную функции $y(x)=x ln (2 x+3)$
Решение. Для начала найдем первую производную:
$y^{prime}(x)=(x ln (2 x+3))^{prime}=(x)^{prime} cdot ln (2 x+3)+x cdot(ln (2 x+3))^{prime}=$
$=1 cdot ln (2 x+3)+x cdot frac{1}{2 x+3} cdot(2 x+3)^{prime}=ln (2 x+3)+$
$+frac{x}{2 x+3} cdotleft[(2 x)^{prime}+(3)^{prime}right]=ln (2 x+3)+frac{x}{2 x+3} cdotleft[2 cdot(x)^{prime}+0right]=$
$=ln (2 x+3)+frac{x}{2 x+3} cdot 2 cdot 1=ln (2 x+3)+frac{2 x}{2 x+3}$
Для нахождения второй производной продифференцируем выражение для первой производной еще раз:
$y^{prime prime}(x)=left(y^{prime}(x)right)^{prime}=left(ln (2 x+3)+frac{2 x}{2 x+3}right)^{prime}=$
$=(ln (2 x+3))^{prime}+left(frac{2 x}{2 x+3}right)^{prime}=$
$=frac{1}{2 x+3} cdot(2 x+3)^{prime}+frac{(2 x)^{prime} cdot(2 x+3)-2 x cdot(2 x+3)^{prime}}{(2 x+3)^{2}}=$
$=frac{1}{2 x+3}left[(2 x)^{prime}+(3)^{prime}right]+frac{2(x)^{prime} cdot(2 x+3)-2 x cdotleft[(2 x)^{prime}+(3)^{prime}right]}{(2 x+3)^{2}}=$
$=frac{1}{2 x+3}left[2 cdot(x)^{prime}+0right]+frac{2 cdot 1 cdot(2 x+3)-2 x cdotleft[2 cdot(x)^{prime}+0right]}{(2 x+3)^{2}}=$
$=frac{1}{2 x+3} cdot 2 cdot 1+frac{2(2 x+3)-2 x cdot 2 cdot 1}{(2 x+3)^{2}}=$
$=frac{2}{2 x+3}+frac{4 x+6-4 x}{(2 x+3)^{2}}=frac{2}{2 x+3}+frac{6}{(2 x+3)^{2}}=$
$=frac{2(2 x+3)+6}{(2 x+3)^{2}}=frac{4 x+6+6}{(2 x+3)^{2}}=frac{4 x+12}{(2 x+3)^{2}}=frac{4(x+3)}{(2 x+3)^{2}}$
Ответ. $y^{prime prime}(x)=frac{4(x+3)}{(2 x+3)^{2}}$
Производные более высоких порядков определяются аналогично. То есть производная
$n$-го порядка функции
$f(x)$ есть первая производная от производной
$(n-1)$-го порядка этой функции:
$f^{(n)}(x)=frac{mathrm{d}^{n} y}{mathrm{d} x^{n}}=left(f^{(n-1)}(x)right)^{prime}$
Замечание
Число $n$, указывающее порядок производной, заключается в скобки.
Механический смысл второй производной
Теорема
(Механический смысл второй производной)
Если точка движется прямолинейно и задан закон ее движения $s=f(t)$,
то ускорение точки равно второй производной от пути по времени:
$a(t)=s^{prime prime}(t)$
Замечание
Ускорение материального тела равно первой производной от скорости, то есть:
$a(t)=v^{prime}(t)$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Материальная точка движется по закону
$s(t)=2 t^{3}+3 t$, где
$s$ измеряется в метрах, а
$t$ – в секундах. Найти значение
$t$, при котором ускорение точки равно 12.
Решение. Найдем ускорение материальной точки:
$a(t)=s^{prime prime}(t)=left(2 t^{3}+3 tright)^{prime prime}=left(left(2 t^{3}+3 tright)^{prime}right)^{prime}=left(left(2 t^{3}right)^{prime}+(3 t)^{prime}right)^{prime}=$
$=left(2 cdot 3 t^{2}+3 cdot 1right)^{prime}=left(6 t^{2}+3right)^{prime}=left(6 t^{2}right)^{prime}+(3)^{prime}=$
$=6 cdotleft(t^{2}right)^{prime}+0=6 cdot 2 t=12 t$
Искомое время $t$ найдем из уравнения:
$a(t)=12 Rightarrow 12 t=12 Rightarrow t=1 mathrm{c}$
Ответ. $t=1 c$
Вычисления производной любого порядка, формула Лейбница
Для вычисления производной любого порядка от произведения двух функций, минуя последовательное применение
формулы вычисления производной от произведения двух функций, применяется формула Лейбница:
$(u v)^{(n)}=u^{(n)} v+C_{n}^{1} u^{(n-1)} v^{prime}+C_{n}^{2} u^{(n-2)} v^{prime prime}+ldots+C_{n}^{n-1} u^{prime} v^{(n-1)}+u v^{(n)}$
где $C_{n}^{k}=frac{n !}{k !(n-k) !}$,
$n !=1 cdot 2 cdot ldots cdot n$ – факториал
натурального числа
$n$.
Пример
Задание. Найти $y^{(4)}(x)$, если
$y(x)=e^{4 x} sin 3 x$
Решение. Так как заданная функция представляет собой произведение двух функций
$u(x)=e^{4 x}$,
$v(x)=sin 3 x$, то для нахождения производной четвертого
порядка целесообразно будет применить формулу Лейбница:
$y^{(4)}(x)=left(e^{4 x}right)^{(4)} cdot sin 3 x+C_{4}^{1}left(e^{4 x}right)^{(3)} cdot(sin 3 x)^{prime}+$
$+C_{4}^{2}left(e^{4 x}right)^{prime prime} cdot(sin 3 x)^{prime prime}+C_{4}^{3}left(e^{4 x}right)^{prime} cdot(sin 3 x)^{(3)}+e^{4 x}(sin 3 x)^{(4)}$
Найдем все производные и посчитаем коэффициенты при слагаемых.
1) Посчитаем коэффициенты при слагаемых:
$C_{4}^{1}=frac{4 !}{1 ! cdot(4-1) !}=frac{4 !}{3 !}=frac{3 ! cdot 4}{3 !}=4$
$C_{4}^{2}=frac{4 !}{2 ! cdot(4-2) !}=frac{4 !}{2 ! cdot 2 !}=frac{2 ! cdot 3 cdot 4}{2 ! cdot 2 !}=frac{3 cdot 4}{2}=6$
$C_{4}^{3}=frac{4 !}{3 ! cdot(4-3) !}=frac{4 !}{3 !}=frac{3 ! cdot 4}{3 !}=4$
2) Найдем производные от функции $u(x)$:
$u(x)=e^{4 x}, u^{prime}(x)=left(e^{4 x}right)^{prime}=e^{4 x} cdot(4 x)^{prime}=e^{4 x} cdot 4 cdot(x)^{prime}=4 e^{4 x}$
$u^{prime prime}(x)=left(u^{prime}(x)right)^{prime}=left(4 e^{4 x}right)^{prime}=4 cdotleft(e^{4 x}right)^{prime}=16 e^{4 x}$
$u^{prime prime prime}(x)=left(u^{prime prime}(x)right)^{prime}=left(16 e^{4 x}right)^{prime}=64 e^{4 x}$
$u^{(4)}(x)=left(u^{prime prime prime}(x)right)^{prime}=left(64 e^{4 x}right)^{prime}=256 e^{4 x}$
3) Найдем производные от функции $v(x)$:
$v(x)=sin 3 x, v^{prime}(x)=(sin 3 x)^{prime}=cos 3 x cdot(3 x)^{prime}=3 cos 3 x$
$v^{prime prime}(x)=left(v^{prime}(x)right)^{prime}=(3 cos 3 x)^{prime}=3 cdot(cos 3 x)^{prime}=$
$=3 cdot(-sin 3 x) cdot(3 x)^{prime}=-9 sin 3 x$
$v^{prime prime prime}(x)=left(v^{prime prime}(x)right)^{prime}=-27 cos 3 x, v^{(4)}(x)=left(v^{prime prime prime}(x)right)^{prime}=81 sin 3 x$
Тогда
$y^{(4)}(x)=256 e^{4 x} cdot sin 3 x+4 cdot 64 e^{4 x} cdot 3 cos 3 x+$
$+6 cdot 16 e^{4 x} cdot(-9 sin 3 x)+4 cdot 4 e^{4 x} cdot(-27 cos 3 x)+e^{4 x} 81 sin 3 x=$
$=e^{4 x}(336 cos 3 x-527 sin 3 x)$
Ответ. $y^{(4)}(x)=e^{4 x}(336 cos 3 x-527 sin 3 x)$
Читать дальше: таблица производных высших порядков.
Под понятием производные различных порядков обычно понимаются производные первого или высших порядков.
Дифференцирование производной первого порядка [F^{prime}(x)] позволит вычислить производную от производной — именуемую производной второго порядка. Далее назовем определение производной.
Производная производной второго порядка именуется производной третьего порядка, в этой связи производная n-го
порядка определяется как производная от производной n-1го порядка.
Производная функции второго порядка обозначается записью [y^{prime prime}] или [F^{prime prime}(x)]. Дифференцировка функции [n] раз приводит к получению производной вида [f n(x)].
Дифференцирование второго порядка
Производные в математике всегда находятся по определенной формуле. Итак, формула дифференцирования второго порядка записывается следующим образом:
[f^{prime prime}(x)=frac{d^{2} y}{d x^{2}}=lim _{x rightarrow x_{0}}=frac{f^{prime}(x)-f^{prime}left(x_{0}right)}{x-x_{0}}=left(f^{prime}(x)right)^{prime}]
В случае, если степень меньше, чем порядок производной, производная n-го порядка будет равна нулю.
Таблица с формулами производных высших порядков
Формулы для нахождения производных высших порядков наиболее удобно представить в виде таблицы формул производных:
Функция | Формула нахождения |
[left(x^{p}right)^{(n)}] | [left(x^{p}right)^{(n)}=p(p-1)(p-1) ldots(p-n+1) x^{p-n}] |
[left(a^{k x+b}right)^{(n)}] | [left(a^{k x+b}right)^{(n)}=k^{n} a^{k x+b} 1 n^{n} a] |
[left(e^{k x+b}right)^{(n)}] | [left(e^{k x+b}right)^{(n)}=k^{n} e^{k x+b}] |
[(sin a x)^{(n)}] | [(sin a x)^{(n)}=a^{n} sin left(a x+frac{п n}{2}right)] |
[(cos a x)^{(n)}] | [(sin a x)^{(n)}=a^{n} cos left(a x+frac{п n}{2}right)] |
[left((a x+b)^{p}right)^{n}] | [left((a x+b)^{p}right)^{n}=a^{n} p(p-1)(p-2) ldots(p-n+1)(a x+b)^{n-1}] |
[left(log _{a}|x|right)^{(n)}] | [left(log _{a}|x|right)^{(n)}=frac{(-1)^{n-1}(n-1) !}{x^{n} ln a}] |
[(ln |x|)^{n}] | [left(log _{a}|x|right)^{(n)}=frac{(-1)^{n-1}(n-1) !}{x^{n}}] |
[(a u(x)+beta gamma(x))^{n}] | [(a u(x)+beta gamma(x))^{n}=a u^{n}(x)+beta^{n} gamma(x)] |
Нет времени решать самому?
Наши эксперты помогут!
Примеры нахождения производных
Примеры
Пример 1
Как найти производную первого порядка функции по формуле произведения:
[|f(x) cdot g(x)|^{prime}=f(x)^{prime} cdot g(x)+f(x) cdot g(x)^{prime}\y^{prime}=[x cdot ln (2
x+1)]^{prime}=x^{prime} cdot ln (2 x+1)+x cdot(ln (2 x+1))^{prime}\=1 cdot ln (2 x+1)+x cdot(ln
(2 x+1))^{prime}=y^{prime}\=ln (2 x+1)+x cdot(ln (2 x+1))^{prime}\=ln (2 x+1)+x frac{1}{2 x+1}
cdot(2 x+1)^{prime}=ln (2 x+1)+2 x cdot frac{1}{2 x+1}\=ln (2 x+1)+frac{2 x}{2 x+1}]
Как найти производную второго порядка в данном выражении:
[y^{prime prime}=left(ln (2 x+1)+frac{2 x}{2 x+1}right)^{prime}=ln (2 x+1)^{prime}+left(frac{2
x}{2 x+1}right)^{prime}\=left(frac{1}{2 x+1}right) cdot(2 x+1)^{prime}+frac{2 x^{prime} cdot(2
x+1)-2 x cdot(2 x+1)^{prime}}{(2 x+1)^{2}}\=y^{prime prime}=frac{2}{2 x+1}+frac{2(2 x+1)-2 x cdot
2}{(2 x+1)^{2}}=frac{2}{2 x+1}+frac{2((2 x+1)-2 x)}{(2 x+1)^{2}}\=frac{2}{2 x+1}+frac{2}{(2
x+1)^{2}}]
Упростим полученное решение:
[y^{prime prime}=frac{2(2 x+1)}{(2 x+1)^{2}}+frac{2}{(2 x+1)^{2}}=frac{2(2 x+1)+2}{(2 x+1)^{2}}=frac{4
x+4}{(2 x+1)^{2}}]
Пример 2
Задача на нахождение производной различных порядков на примере производной четвертого порядка:
[y=x^{5}-x^{4}+3 x^{3}]
Решение:
[y^{prime}=left(x^{5}-x^{4}+3 x^{3}right)^{prime}=5 x^{4}-4 x^{3}+3 cdot 3 x^{2}=5 x^{4}-4 x^{3}+9
x^{2}\y^{prime prime}=left(5 x^{4}-4 x^{3}+9 x^{2}right)^{prime}=20 x^{3}-12 x^{2}+18 x\y^{prime
prime prime}=left(20 x^{3}-12 x^{2}+18 xright)^{prime}=60 x^{2}-24 x+18\y^{4}=left(60 x^{2}-24
x+18right)^{prime}=120 x-24]
Пример 3
Нахождение производной различных порядков от функций на следующем частном примере:
[y=frac{x^{2}+5 x^{3}}{18}]
Ответ: решение не является сложным и не потребует онлайн-калькулятора. Наибольшая степень одной из переменных
равна 3, что меньше степени производной. Следовательно, производная четвертого порядка равна 0.
Пример 4
Необходимо найти производную 13 порядка для [y=sin x]
Решение: найдем производную первого порядка (и затем 2-4 порядков)
[y^{prime}=sin ^{prime} x=cos x=sin left(x+frac{pi}{2}right)\y^{prime prime}=cos ^{prime}
x=-sin x=sin left(x+2 frac{pi}{2}right)\y^{prime prime prime}=-sin ^{prime} x=-cos x=sin
left(x+3 frac{pi}{2}right)\y^{(4)}=-cos ^{prime} x=sin x=sin left(x+4 frac{pi}{2}right)]
Следовательно:
[y^{(n)} sin left(x+frac{n cdot pi}{2}right), n in N]
Итоговый результат:
[y^{(13)}=sin left(x+frac{13 cdot pi}{2}right)=cos x]
Пример 5
Подсчитайте производную четвертой степени функции [x^{8}]
Решение:
Используем формулу нахождения производной высшего порядка
[left(x^{p}right)^{(n)}=p(p-1)(p-1) ldots(p-n+1) x^{p-n}]
Учтем, что p=8, n=4
[left(x^{8}right)^{(4)}=8(8-1)(8-2)(8-4+1) x^{8-4}=8 cdot 7 cdot 6 cdot 5 cdot x^{4}=1680 x^{4}\left(x^{8}right)^{(4)}=1680 x^{4}]
Пример 6
Подсчитайте производную функции [y=2^{x}-operatorname{arctg} x].
Решение:
[y^{prime}=left(2^{x}-operatorname{arctg} xright)^{prime}=left(2^{x}right)^{prime}-(operatorname{arctg} x)^{prime}]
Используем формулы для обратной и тригонометрической функции [y^{prime}=2^{x} ln 2-frac{1}{1+x^{2}}]
Ответ: [y^{prime}=2^{x} ln 2-frac{1}{1+x^{2}}]