Как найти возрастание или убывание функции

Что такое функция

Как обычно, начнем мы с самого начала: с определения слова «функция».

Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.

Под функцией понимают правило, формулу, уравнение, которое описывает зависимость одной переменной от другой (например, у от х). Если изучить функцию, мы поймем:

  • как изменится одна переменная, если другая увеличится;

  • что произойдет с аргументом, если мы уменьшим функцию;

  • что будет, если мы отобразим эту зависимость графически.

Спойлер: если изобразить зависимость в координатной системе, мы получим график! Давайте рассмотрим некоторые виды функций и графики, которые им соответствуют.

Типы функций

Важное напоминание: функция — это зависимая переменная величина (чаще у), аргумент — независимая переменная (чаще х).

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Возрастание и убывание функции

В исследовании функции особое значение уделяют ее поведению в системе координат — монотонности функции. Функции бывают монотонными, немонотонными и постоянными.

Монотонная функция — функция, которая возрастает или убывает на всем промежутке области определения.

Монотонная функция

Функцию считают немонотонной, если на промежутке области своего определения она чередует возрастание и убывание.

Немонотонная функция

Постоянная функция, как ясно из названия, постоянна на всем промежутке и представляет собой прямую, параллельную оси x.

Графики постоянных на всем промежутке функций

Теперь к теме раздела: приведем определение возрастающей и убывающей функции.

Функция называется возрастающей, когда при увеличении аргумента увеличивается и сама функция.

Проще говоря, здесь работает правило «чем больше, тем больше»: чем больше значение х, тем больше и значение у.

Возрастающая функция

Функция считается убывающей, когда при увеличении аргумента функция уменьшается: чем больше х, тем меньше у.

Убывающая функция

Теперь вы знаете, как понять, что функция возрастает или убывает. Давайте решим пару задач, чтобы разобраться во всем наглядно.

Задача 1

Определите, возрастающая или убывающая функция y = 2x + 3.

1) Найдем область определения функции: х ∈ R.

2) Найдем координаты нескольких точек, которые ей принадлежат.

Мы видим, что функция убывает при любом значении х ≠ 0. Это можно записать так: функция убывает при х∈ (– ∞ ;0) ∪ (0; + ∞). Подытожим эту информацию небольшой схемой.

Виды функций

Возрастание и убывание функции на интервале

Мы еще не закончили с возрастающими и убывающими функциями — эх, если бы все было так просто! Дело в том, что нас, математиков, интересуют вот какие вопросы:

  • Как найти промежутки возрастания и убывания функции по графику?

  • Что делать, если просят определить характер на числовом промежутке?

  • Как определить поведение функции без построения?

Давайте разбираться! Сначала узнаем, как определить характер функции на промежутке:

  • Подставим значение х из промежутка в функцию.

  • Проанализируем полученные значения у.

  • Если при увеличении х увеличивается и у — это промежуток возрастания функции.

  • Если у уменьшается при увеличении х — это промежуток убывания функции.

Достаточно просто, правда? 🙂

Пример

Возьмем функцию y = 4x – 6 и определим ее характер на промежутке [0;2]. Подставим числа из промежутка вместо х в функцию:

у(0) = –6
у(1) = -2
у(2) = 2

Мы видим, что при возрастании х возрастает и значение у, т. е. на этом промежутке функция возрастает.

Точки экстремума, экстремумы функции

Не пугайтесь этих страшных слов! Сейчас разберем их подробнее — это проще, чем кажется.

Экстре́мум (лат. extremum — крайний) в математике — максимальное или минимальное значение функции на заданном множестве.

Экстремумы функции

На графике выше y min — минимальное значение функции, точка минимума.

Точка минимума — это значение переменной х, при которой функция минимальна.

На том же графике y мах — максимальное значение функции, точка максимума.

Точка максимума — это значение переменной х, при которой функция максимальна.

Иначе точки минимума и максимума в математике принято называть точками экстремума, а значения функции, которые соответствуют точкам экстремума — экстремумами функции.

В точках экстремума функция меняет свой характер. Обратите внимание на рисунок ниже: функция стремительно возрастала до точки максимума, но после нее начала также стремительно уменьшаться. И наоборот, после прохождения точки минимума функция снова начинает возрастать.

Точки максимума и наибольшее значение функции

Здесь вам может стать интересно: наибольшее/наименьшее значение функции на промежутке — это то же самое или нет. Отвечаем: к сожалению, нет. Эти значения иногда могут совпадать, но часто определяются разными точками.

Достаточные условия возрастания и убывания функции

У нас есть две новости: хорошая и не очень. Начнем с первой: если использовать достаточные условия возрастания/убывания, можно определить промежутки монотонности функции. И для этого даже не придется строить график! Но здесь нам пригодится производная.

Производная функции — это отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента.

Иначе говоря, производная функции показывает, как быстро увеличивается функция при бесконечно малом увеличении х.

К сожалению, в рамках этой статьи мы не будем долго останавливаться на производных. Как это сделать с помощью таблицы и правил дифференцирования, мы уже разбирали в статье «Таблица производных функций». Советуем почитать!

Достаточные признаки возрастания и убывания функции на интервале:

  • если производная функции y = f(x) положительна для любого x из интервала, то функция возрастает на этом интервале;

  • если производная функции y = f(x) отрицательна для любого x из интервала, то функция убывает на этом интервале.

Составим алгоритм действий, который поможет найти интервалы возрастания и убывания функции:

  1. Найдем область определения функции.

  2. Найдем производную функции.

  3. Решим неравенства ƒ`(x) > 0 и ƒ`(x) < 0 на области определения.

  4. К полученным промежуткам добавим граничные точки, в которых функция определена и непрерывна.

  5. Проверим достаточные признаки возрастания и убывания функции, подставив значения из промежутков.

Задача 3

Укажите промежутки возрастания и убывания функции у = х2 + 5х + 6

Решение

  1. Область определения функции: х ∈ R

  2. Найдем производную функции: y’ = 2х + 5

  3. Решим неравенство: 2х + 5 > 0

    2х+5 >0
    2x>-5
    x> –2,5

  4. Исследуем знаки производной с помощью числовой прямой.

    Нахождение знаков производной y’ = 2х + 5 с помощью числовой прямой

Ответ: Функция убывает при х∈ (– ∞; –2,5], возрастает при х∈ [–2,5; +∞)

Задача 4

Определите интервалы возрастания и убывания функции у = х3 – 18х.

Решение

  1. Область определения функции: х ∈ R.

  2. Найдем производную функции: y’ = 3x2 + (–18).

  3. Решим неравенство:

    3x2 + (–18) > 0
    3 (x2–9) > 0
    3(x – 3)(x + 3) > 0

  4. Исследуем знаки производной с помощью числовой прямой. Чтобы определить знак на каждом промежутке, подставим произвольное значение из этого промежутка в выражение для производной.

    Исследование знаков производной y’ = 3x2 + (–18) на числовой прямой

Ответ: Функция убывает при х∈ [–3;3], возрастает при х∈ (–∞;—3] ∪ [3; +∞).

Первое достаточное условие экстремума

Пусть для функции у = f(x) определены следующие условия:

  1. Функция непрерывна в окрестности точки x0 (нет разрыва).

  2. ƒ′(x0) = 0 или ƒ′(x0) не существует;

  3. Производная ƒ′(x) при переходе через точку x0 меняет свой знак.

Тогда в точке x = x0 функция y = f(x) имеет экстремум, причем это минимум, если при переходе через точку x0 производная меняет свой знак с минуса на плюс; максимум, если при переходе через точку x0 производная меняет свой знак с плюса на минус.

Если производная в точке x0 не меняет свой знак, то в этой точке нет экстремума.

Нахождение знаков производной на числовой прямой

Итак, точки 1 и 4 — точки максимума, точка 3 — точка минимума. В точке 2 экстремума нет.

Алгоритм для нахождения точек экстремума

Теперь разберемся, как найти точки экстремума функции. Для этого пройдем по этим шагам:

  1. Найдем область определения функции.

  2. Найдем производную функции на этой области.

  3. Определим нули и точки, где функция не существует.

  4. Определим знак производной на интервалах.

  5. Выберем точки, где функция меняет знак.

  6. Найдем точки минимума/максимума и экстремумы функции.

Задача 5

Найдите экстремумы функции у = –x2 + 8x – 7.

Решение

  1. Область определения функции: х ∈ R.

  2. Производная функции: y’ = –2x + 8

  3. Решим неравенство:

    –2x + 8 > 0
    –2x > –8
    x < 4

  4. Определим знак производной на числовой прямой. Чтобы это сделать, на каждом промежутке подставим произвольное значение из этого промежутка в выражение для производной.

    Определение знака производной y’ = –2x + 8 с помощью числовой прямой

В точке х = 4 функция меняет свой знак с «+» на «–», значит, точка х = 4 — это точка максимума.

Ответ: у(4) = 9 — экстремум функции.

Задача 6

Найдите экстремумы функции у = ⅓ x3 + 2x2 – 12x + 6.

График функции у = ⅓ x3 + 2x2 – 12x + 6

Решение

  1. Область определения функции: х ∈ R.

  2. Производная функции: y’ = x2 + 4x – 12.

  3. Решим неравенство:

    x2 + 4x – 12 > 0
    (x – 2)(x + 6) > 0

  4. Определим знак производной на числовой прямой. Чтобы это сделать, на каждом промежутке подставим произвольное значение из этого промежутка в выражение для производной.

    Определение знака производной y’ = x2 + 4x – 12 на числовой прямой

Так на интервале (–∞; –6) и (2; +∞) производная положительна — на них функция возрастает. На интервале (–6;2) производная отрицательна — функция убывает.

Ответ: x = 2 — точка минимума, у(2) = –7 ⅓ — экстремум функции; х = –6 — точка максимума, у(–6) = 78 — экстремум функции.

Как можно запомнить переход знаков для точек максимум или минимум:

  • Когда функция возрастает, а потом убывает, мы будто поднимались на вершину горы — значит, посетили точку максимума.

  • Когда функция убывает, а потом возрастает, мы будто спускались в овраг и выбрались из него — а значит, были в точке минимума.

Возрастание и убывание функции

Второе достаточное условие экстремума

x0 — это точка экстремума функции f(x), если вторая производная функции в этой точке не равна нулю (f ”(x) ≠ 0). Причем, если вторая производная больше нуля (f ”(x) > 0), то точкой минимума, а если вторая производная меньше нуля (f ”(x) < 0), то точкой максимума.

Рассмотрим это условие экстремума на примере из задачи 6 — функции у = ⅓ x3 + 2x2 – 12x + 6:

  1. Ее первая производная равна y’= x2 + 4x – 12.

  2. Определим нули производной — значение х, при котором производная обращается в ноль: x2 + 4x – 12 = 0 при х = 2 и х = –6.

  3. Возьмем вторую производную функции y’’= 2х + 4.

  4. Подставим значения х = 2 и х = –6 во вторую производную и определим, являются ли эти точки максимумом или минимумом:

    y’’(2) = 8, y’’ > 0, значит, х = 2 является точкой минимума,
    y’’(–6) = –8, y’’ < 0, значит, х = –6 является точкой максимум.

В этом условии есть два важных замечания:

  1. Если в точке x0 и первая, и вторая производные обращаются в ноль, то в этом случае нужно воспользоваться первым достаточным признаком экстремума функции, по второму признаку нельзя судить о наличии или отсутствии экстремумов.

  2. Второй достаточный признак нельзя применять, когда в стационарной точке (нуле производной) первая производная не существует. Ведь тогда не существует и вторая производная.

Третье достаточное условие экстремума

Это условие не используется в школьной программе, так как требует большого количества вычислений и логических размышлений. Мы все равно познакомим вас с ним — возможно, вам захочется изучить это усaловие самостоятельно и блеснуть знаниями перед учителем. Что ж, мы только за!

Пусть функция y=f(x) имеет производные до n-ого порядка в ε-окрестности точки x0 и производные до n+1-го порядка в самой точке x0. Пусть
ƒ′(x0) = ƒn(x0) = ƒm(x0) = … = ƒ(n)(x0) = 0 и ƒ(n+1)(x0) ≠ 0.

Тогда,

  • если n – четное, то x0 — точка перегиба;

  • если n – нечетное, то x0 — точка экстремума, причем

    • если ƒ(n+1)(x0) > 0, то x0 — точка минимума;

    • если ƒ(n+1)(x0) < 0, то x0 — точка максимума.

Думаем, вы убедились, что тема «Возрастание и убывание функции» достаточно интересна. В то же время, она требует умения исследовать графики, находить первую и вторую производную функции, определять знаки по числовым прямым. Получить практический опыт решения таких заданий можно на курсах по профильной математике в школе Skysmart! Там мы сможем закрепить полученные знания, подготовиться к контрольным работам и даже к ОГЭ! Заинтригованы? Тогда мы ждем вас на занятиях!

Что такое возрастание функции

В начале прочитаем определение возрастания функции.

Запомните!
!

Функция « y(x) » называется возрастающей на некотором промежутке, если

для любых
« x1 » и « x2 »
принадлежащих данному промежутку, таких, что « x2 > x1 »
выполняется неравенство

« y( x2 ) > y( x1 )».

Определение сложно понять без наглядного примера.
Поэтому сразу перейдём к разбору задачи на возрастание функции.

По-другому можно сказать, что, если каждому бóльшему значению « x »
соответствует бóльшее значение « y », значит,
функция « y(x) » возрастает.

x2 > x1
y( x2 ) > y( x1 )

Обязательное условие возрастания функции

Давайте разберем определение возрастания функции на конкретном примере.

Разбор примера

Возрастающей или убывающей является функция « y = 9x − 4 » ?

Для начала определим
область определения функции
« y = 9x − 4 ».

y = 9x − 4
D(y): x ∈ R
,
то есть « x » —
любое действительное число.

Построим график функции
« y = 9x − 4 ».
Так как функция
« y = 9x − 4 »
линейная, ее график — прямая.

Используем правила построения графика линейной функции. Нам достаточно найти две точки, чтобы построить ее график.

Область определения функции
« y = 9x − 4 » — все действительные числа,
поэтому можно подставить любое число вместо « x » и вычислить « y » по
формуле функции
« y = 9x − 4 ». Например, возьмем
« x = 0 ».

x = 0
y(x) = 9x − 4
y(0) = 9 · 0 − 4 = −4

Для второй точки возьмем « x = 1 ».

x = 1
y(x) = 9x − 4
y(1) = 9 · 1 − 4 = 5

Отметим две полученные
точки «(0; −4)» и «(1; 5)» на

координатной плоскости
и проведем через них прямую.

график линейной функции y = 9x - 4

Докажем, что функция
« y = 9x − 4 » возрастает на всей своей области определения двумя способами: по ее графику и
аналитически
(по ее формуле).

Как определить по графику, что функция возрастает

По определению возрастания функции мы знаем, что
если « x » увеличивается,
то « y » тоже должен увеличиваться.

На рисунке ниже видно, что график функции « y = 9x − 4 »
«идет в гору». Другими словами, при увеличении « x »
растет
значение « y » .

график линейной функции возрастает

В этом можно убедиться, если взять две любые точки на графике. Например, точки, по
которым мы построили график функции. Назовем эти точки:
« (·)A » и « (·)B ».

точки А и В на графике

У первой точки « (·)A »
координаты:
x1 = 0 ;   y1 = − 4

У второй точки « (·)B » координаты:
x2 = 1 ;   y2 = 5

На примере точек « (·)A » и « (·)B » видно, что
при увеличении
« x ( x2 > x1 )»
растет
« y ( y2 > y1 ) ».
Поэтому график зрительно «идет в гору».

Как по формуле доказать, что функция возрастает

Вернёмся к нашей функции
« y = 9x − 4 ».

По графику мы поняли, что
функция « y = 9x − 4 » возрастает,
так как ее график «идет в гору».
Но как доказать по формуле, что функция
возрастает на всей своей области определения?

Запомните!
!

Функция возрастает на всей области определения, когда при
« x2 > x1 »
выполняется условие
« y( x2 ) > y( x1 ) ».

Формулировка выше не самая простая для понимания. Давайте разберем ее на практике.

По определению возрастания функции нам нужно доказать, что при
« x2 > x1 » увеличивается значение функции
« y( x2 ) > y( x1 ) ».

Но как нам найти значения функции
« y( x1 )» и
«y( x2 ) »?

Для нахождения « y( x1 )» и
«y( x2 ) »

достаточно подставить « x1 » и
« x2 » в исходную формулу « y = 9x − 4 ».

y( x1 ) = 9x1 − 4
y( x2 ) = 9x2 − 4

Теперь запишем обязательное условие возрастания функции.

x2 > x1
y( x2 ) > y( x1 )

Обязательное условие возрастания функции

Подставим в неравенство
« y( x2 ) >
y( x1 ) » полученные формулы

« y( x1 ) = 9x1 − 4» и
« y( x2 ) = 9x2 − 4 » .

y( x2 ) > y( x1 )
9x2 − 4 > 9x1 − 4

Упростим полученное
неравенство.

9x2 − 9x1 > − 4 + 4
9x2 − 9x1 > 0

Вынесем общий множитель
в левой части неравенства.

9(x2 − x1) > 0

Разделим левую и правую часть на «9».

При делении нуля на любое число получается ноль.

x2 − x1 > 0
x2 > x1

Мы доказали, что выполняется исходное условие возрастания функции «x2 > x1».
Отсюда следует, что функция
« y = 9x − 4 » возрастает на всей области определения.

В завершении вместо ответа следует написать фразу:
«Что и требовалось доказать».


Посмотрим другой пример, где требуется доказать, что функция возрастает.

Разбор примера

Доказать, что функция возрастает на всей области определения: y = 13x − 1

По аналогии с предыдущим примером составим неравенства, которые доказывают, что функция возрастает.

x2 > x1
y( x2 ) > y( x1 )

Обязательное условие возрастания функции

Вместо « y( x1 )» и
«y( x2 ) » запишем
формулу функции « y = 13x − 1 » и упростим полученное неравенство.

y( x2 ) > y( x1 )

13x2 − 1 > 13x1 − 1

13x2 − 13x1 > 1 − 1

13(x2 − x1) > 0 |: 13

>

x2 − x1 > 0

x2 > x1

Что и требовалось доказать.

Что такое убывание функции

Запомните!
!

Функция « y(x) » называется убывающей на некотором промежутке, если для любых
« x1 » и « x2 »
принадлежащих данному промежутку, таких,
что « x2 > x1 »
выполняется неравенство « y( x2 ) < y( x1 )».

x2 > x1
y( x2 ) < y( x1 )

Обязательное условие убывания функции

Как по графику понять, что функция убывает

Разбор примера

Доказать, что функция убывает на всей области определения: y = 1 − 3x

По определению убывания функции мы знаем, что,
если « x »
растет, то
« y » должен уменьшаться.

Построим график функции
« y = 1 − 3x ». Ее график — прямая, поэтому нам будет достаточно двух точек.

Область определения функции
« y = 1 − 3x » — все действительные числа,
поэтому можно поставить любое число вместо « x » и вычислить « у » по
формуле функции
« y = 1 − 3x ». Например, возьмем
« x = 0 »
и « x = 1 ».

x = 0
y(x) = 1 − 3x
y(0) = 1 − 3 · 0 = 1

(·) А (0; 1)

x = 1
y(1) = 1 − 3x
y(1) = 1 − 3 · 1 = 1 − 3 = −2

(·) B (1; −2)

Построим график функции
« y = 1 − 3x » по полученным точкам
« (·)A » и « (·)B ».

график линейной функции y = 1 - 3x

На графике функции видно, что зрительно график «спускается с горы», то есть функция убывает. Другими словами, при увеличении
« x »
уменьшается
значение
« y » .

Как по формуле доказать, что функция убывает

Вернёмся к нашей функции
« y = 1 − 3x ».

По ее графику мы поняли, что функция убывает, так как график «спускается с горы». Но как доказать по формуле,
что функция « y = 1 − 3x » убывает на всей области определения?

Запомните!
!

Чтобы доказать, что функция убывает требуется доказать, что при любых
« x2 > x1 » выполняется

« y( x2 ) < y( x1 ) ».

Давайте разберем на примере функции
« y = 1 − 3x ». Докажем, что она убывает
на всей своей области определения.

x2 > x1
y( x2 ) < y( x1 )

Обязательное условие убывания функции

Подставим « y( x1 )» и
«y( x2 ) » в
формулу функции « y = 1 − 3x » и упростим полученное неравенство.

y( x2 ) < y( x1 )

1 − 3x2 < 1 − 3x1

3x1 − 3x2 < 1 − 1

3(x1 − x2) < 0 | :3

<

x1 − x2 < 0

−x2 < −x1

Умножим на « −1 » левую и правую часть неравенства. При
умножении неравенства на отрицательное число знак неравенства поменяется на
противоположный.

−x2 < −x1 | · (−1)

x2 > x1

Что и требовалось доказать.

Как по графику функции определить
возрастание и убывание

Потренируемся только по графику функции определять промежутки возрастания и убывания функции.

Разбор примера

На рисунке ниже изображён график функции, определенной на множестве действительных чисел.
Используя график, найдите промежутки возрастания и промежутки убывания функции.

Как по графику функции определить возрастает или убывает функция

Отметим с помощью штриховых линий промежутки, где график функции убывает
(«спускается с горы») и где он возрастает («идет в гору»).

промежутки возрастания и убывания функции

Запишем через знаки неравенств,
какие значения принимает « x » на полученных промежутках.
Обратите внимание, что во всех случаях при указании промежутков, мы указываем, что их
концы входят в промежуток, то есть используем знаки нестрогого неравенства.

промежутки возрастания и убывания функции через неравенства

Остаётся записать полученные промежутки возрастания и убывания функции в ответ.

Ответ:

  • функция убывает при
       x ≤ −2;     0 ≤ x ≤ 3,5
  • функция возрастает при
        −2 ≤ x ≤ 0 ;     x ≥ 3,5

Более грамотно будет записать ответ с помощью специальных
математических символов.

Ответ:

  • функция убывает на промежутках    
    x ∈ (−∞ ; −2] ∪ [0; 3,5]
  • функция возрастает на промежутках     x ∈ [−2 ; 0] ∪ [3,5 ; +∞]

При каких значениях
« m »
функция является убывающей или возрастающей

Ещё один тип заданий, в которых требуется определить,
при каких
« m » ( « а, b » или других буквах) функция убывает или возрастает.

Разбор примера

При каких значениях « m » функция

« y = mx − m − 3 + 2x » является убывающей?

Обратимся снова к определению убывания функции. Вспомним, как записать условия убывания функции с точки зрения формул.

x2 > x1
y( x2 ) < y( x1 )

Обязательное условие убывания функции

Запишем эти условия, используя формулу функции « y = mx − m − 3 + 2x », заданную в
задаче. Вместо
« x »
подставим « x1 » и « x2 ».

y( x2 ) < y( x1 )

mx2 − m − 3 + 2x2 < mx1 − m − 3 + 2x1

Упростим полученное неравенство. Перенесем из правой части все члены неравенства в левую часть с противоположными знаками.


mx2 − m − 3 + 2x2 mx1
+ m
+ 3
2x1
< 0

Упростим полученное выражение. Некоторые члены неравенства взаимоуничтожатся.


mx2 − mx1
− m + m − 3 + 3 + 2x2 − 2x1

< 0

mx2 − mx1 + 2x2 − 2x1

< 0

Вынесем общие множители за скобки.

m( x2 − x1) + 2(x2 − x1)

< 0

Теперь
вынесем общий множитель

« ( x2 − x1 ) ».

( x2 − x1) (m + 2)

< 0

Вспомним обязательное условие убывания функции.

x2 > x1
y( x2 ) < y( x1 )

Обязательное условие убывания функции

Преобразуем исходное условие убывания функции « x2 > x1 ».
Перенесем все в левую часть.

x2 > x1

x2 − x1 > 0

По условию убывания функции
« x2 − x1 > 0 »,
значит, чтобы
произведение
«( x2 − x1) (m + 2)

» было меньше нуля, требуется, чтобы множитель «(m + 2)» был меньше нуля. Так как по
правилу знаков:
плюс на минус даёт минус.

+ · < 0
(x2 − x1) · (m + 2) < 0

Решим полученное неравенство.

m + 2 < 0
m < −2

Ответ: при «m < −2» функция
« y = mx − m − 3 + 2x »
является убывающей.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Чтобы определить характер функции  и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров  и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Возрастание и убывание функции на интервале

Определение 1

Функция y=f(x) будет возрастать на интервале x, когда при любых x1∈X и x2∈X , x2>x1неравенство f(x2)>f(x1) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Определение 2

Функция y=f(x) считается убывающей на интервале x, когда при любых x1∈X, x2∈X, x2>x1  равенство f(x2)>f(x1) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Возрастание и убывание функции на интервале

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть (a;b), где х=а, х=b, точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x.

Основные свойства элементарных функций типа y=sinx – определенность и непрерывность  при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале -π2; π2, тогда возрастание на отрезке имеет вид -π2; π2.

Точки экстремума, экстремумы функции

Определение 3

Точка х0 называется точкой максимума для функции y=f(x), когда для всех значений x неравенство f(x0)≥f(x) является справедливым. Максимум функции – это значение функции в точке, причем обозначается ymax.

Точка х0 называется точкой минимума для функции y=f(x), когда для всех значений x неравенство f(x0)≤f(x) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида ymin.

Окрестностями точки х0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Точки экстремума, экстремумы функции

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Точки экстремума, экстремумы функции

Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [a;b]. Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х=b.

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Определение 4

Пусть задана функция y=f(x), которая дифференцируема в ε окрестности точки x0, причем имеет непрерывность в заданной точке x0. Отсюда получаем, что

  • когда f'(x)>0 с x∈(x0-ε; x0) и f'(x)<0 при x∈(x0; x0+ε), тогда x0 является точкой максимума;
  • когда f'(x)<0 с x∈(x0-ε; x0) и f'(x)>0 при x∈(x0; x0+ε), тогда x0 является точкой минимума.

Иначе говоря, получим их условия постановки знака:

  • когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком, то есть с + на -, значит, точка называется максимумом;
  • когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком с – на +, значит, точка называется минимумом.

Алгоритм для нахождения точек экстремума

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

  • найти область определения;
  • найти производную функции на этой области;
  • определить нули и точки, где функция не существует;
  • определение знака производной на интервалах;
  • выбрать точки, где функция меняет знак.

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Пример 1

Найти точки максимума и минимума заданной функции y=2(x+1)2x-2.

Решение

Область определения данной функции – это все действительные числа кроме х=2. Для начала найдем производную функции и получим:

y’=2x+12x-2’=2·x+12’·(x-2)-(x+1)2·(x-2)'(x-2)2==2·2·(x+1)·(x+1)’·(x-2)-(x+1)2·1(x-2)2=2·2·(x+1)·(x-2)-(x+2)2(x-2)2==2·(x+1)·(x-5)(x-2)2

Отсюда видим, что нули функции – это х=-1, х=5, х=2, то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:

Алгоритм для нахождения точек экстремума

Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х=-2, х=0, х=3, х=6.

Получаем, что

y'(-2)=2·(x+1)·(x-5)(x-2)2x=-2=2·(-2+1)·(-2-5)(-2-2)2=2·716=78>0, значит, интервал -∞; -1 имеет положительную производную. Аналогичным образом получаем, что

y'(0)=2·(0+1)·0-50-22=2·-54=-52<0y'(3)=2·(3+1)·(3-5)(3-2)2=2·-81=-16<0y'(6)=2·(6+1)·(6-5)(6-2)2=2·716=78>0

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий  с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Получим, что в точке х=-1 функция будет непрерывна, значит, производная изменит знак с + на -. По первому признаку имеем, что х=-1 является точкой максимума, значит получаем

ymax=y(-1)=2·(x+1)2x-2x=-1=2·(-1+1)2-1-2=0

Точка х=5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

ymin=y(5)=2·(x+1)2x-2x=5=2·(5+1)25-2=24

Графическое изображение

Алгоритм для нахождения точек экстремума

Ответ: ymax=y(-1)=0, ymin=y(5)=24.

Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x0, этим и упрощает вычисление.

Пример 2

Найти точки максимума и минимума функции y=16×3=2×2+223x-8.

Решение.

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

-16×3-2×2-223x-8, x<016×3-2×2+223x-8, x≥0

После чего необходимо найти производную:

y’=16×3-2×2-223x-8′, x<016×3-2×2+223x-8′, x>0y’=-12×2-4x-223, x<012×2-4x+223, x>0

Точка х=0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

lim y’x→0-0=lim yx→0-0-12×2-4x-223=-12·(0-0)2-4·(0-0)-223=-223lim y’x→0+0=lim yx→0-012×2-4x+223=12·(0+0)2-4·(0+0)+223=+223

Отсюда следует, что функция непрерывна в точке х=0, тогда вычисляем

lim yx→0-0=limx→0-0-16×3-2×2-223x-8==-16·(0-0)3-2·(0-0)2-223·(0-0)-8=-8lim yx→0+0=limx→0-016×3-2×2+223x-8==16·(0+0)3-2·(0+0)2+223·(0+0)-8=-8y(0)=16×3-2×2+223x-8x=0=16·03-2·02+223·0-8=-8

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

-12×2-4x-223, x<0D=(-4)2-4·-12·-223=43×1=4+432·-12=-4-233<0x2=4-432·-12=-4+233<0

12×2-4x+223, x>0D=(-4)2-4·12·223=43×3=4+432·12=4+233>0x4=4-432·12=4-233>0

Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x=-6, x=-4, x=-1, x=1, x=4, x=6. Получим, что

y'(-6)=-12×2-4x-223x=-6=-12·-62-4·(-6)-223=-43<0y'(-4)=-12×2-4x-223x=-4=-12·(-4)2-4·(-4)-223=23>0y'(-1)=-12×2-4x-223x=-1=-12·(-1)2-4·(-1)-223=236<0y'(1)=12×2-4x+223x=1=12·12-4·1+223=236>0y'(4)=12×2-4x+223x=4=12·42-4·4+223=-23<0y'(6)=12×2-4x+223x=6=12·62-4·6+223=43>0

Изображение на прямой имеет вид

Алгоритм для нахождения точек экстремума

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

x=-4-233, x=0, x=4+233, тогда отсюда точки максимума имеют значениx=-4+233, x=4-233

Перейдем к вычислению минимумов:

ymin=y-4-233=16×3-22+223x-8x=-4-233=-8273ymin=y(0)=16×3-22+223x-8x=0=-8ymin=y4+233=16×3-22+223x-8x=4+233=-8273

Произведем вычисления максимумов функции. Получим, что

ymax=y-4+233=16×3-22+223x-8x=-4+233=8273ymax=y4-233=16×3-22+223x-8x=4-233=8273

Графическое изображение

Алгоритм для нахождения точек экстремума

Ответ:

ymin=y-4-233=-8273ymin=y(0)=-8ymin=y4+233=-8273ymax=y-4+233=8273ymax=y4-233=8273

Второй признак экстремума функции

Если задана функция f'(x0)=0, тогда при ее f”(x0)>0 получаем, что x0 является точкой минимума, если f”(x0)<0, то точкой максимума. Признак связан с нахождением производной в точке x0.

Пример 3

Найти максимумы и минимумы функции y=8xx+1.

Решение

Для начала находим область определения. Получаем, что

D(y): x≥0x≠-1⇔x≥0

Необходимо продифференцировать функцию, после чего получим

y’=8xx+1’=8·x’·(x+1)-x·(x+1)'(x+1)2==8·12x·(x+1)-x·1(x+1)2=4·x+1-2x(x+1)2·x=4·-x+1(x+1)2·x

При х=1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение  при х=1. Получаем:

y”=4·-x+1(x+1)2·x’==4·(-x+1)’·(x+1)2·x-(-x+1)·x+12·x'(x+1)4·x==4·(-1)·(x+1)2·x-(-x+1)·x+12’·x+(x+1)2·x'(x+1)4·x==4·-(x+1)2x-(-x+1)·2x+1(x+1)’x+(x+1)22x(x+1)4·x==-(x+1)2x-(-x+1)·x+1·2x+x+12x(x+1)4·x==2·3×2-6x-1x+13·x3⇒y”(1)=2·3·12-6·1-1(1+1)3·(1)3=2·-48=-1<0

Значит, использовав 2 достаточное условие экстремума, получаем, что х=1 является точкой максимума. Иначе запись имеет вид ymax=y(1)=811+1=4.

Графическое изображение

Второй признак экстремума функции

Ответ: ymax=y(1)=4..

Третье достаточное условие экстремума

Определение 5

Функция y=f(x) имеет ее производную до n-го порядка  в ε окрестности заданной точки x0 и производную до n+1-го порядка в точке x0. Тогда f'(x0)=f”(x0)=f”'(x0)=…=fn(x0)=0.

Отсюда следует, что когда n является четным числом, то x0 считается точкой перегиба, когда n является нечетным числом, то x0 точка экстремума, причем f(n+1)(x0)>0, тогда x0 является точкой минимума, f(n+1)(x0)<0, тогда x0 является точкой максимума.

Пример 4

Найти точки максимума и минимума функции yy=116(x+1)3(x-3)4.

Решение

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

y’=116x+13′(x-3)4+(x+1)3x-34’==116(3(x+1)2(x-3)4+(x+1)34(x-3)3)==116(x+1)2(x-3)3(3x-9+4x+4)=116(x+1)2(x-3)3(7x-5)

Данная производная обратится в ноль при x1=-1, x2=57, x3=3. То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что

y”=116x+12(x-3)3(7x-5)’=18(x+1)(x-3)2(21×2-30x-3)y”(-1)=0y”57=-368642401<0y”(3)=0

Значит, что x2=57 является точкой максимума. Применив 3 достаточный признак, получаем, что при n=1 и f(n+1)57<0.

Необходимо определить характер точек x1=-1, x3=3. Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что

y”’=18(x+1)(x-3)2(21×2-30x-3)’==18(x-3)(105×3-225×2-45x+93)y”'(-1)=96≠0y”'(3)=0

Значит, x1=-1 является точкой перегиба функции, так как при n=2 и f(n+1)(-1)≠0. Необходимо исследовать точку x3=3. Для этого находим 4 производную и производим вычисления в этой точке:

y(4)=18(x-3)(105×3-225×2-45x+93)’==12(105×3-405×2+315x+57)y(4)(3)=96>0

Из выше решенного делаем вывод, что x3=3 является точкой минимума функции.

Графическое изображение

Третье достаточное условие экстремума

Ответ: x2=57 является точкой максимума, x3=3 – точкой минимума заданной функции.

Алгебра и начала математического анализа, 11 класс

Урок №15. Возрастание и убывание функции.

Перечень вопросов, рассматриваемых в теме

1) Нахождение промежутков монотонности функции,

2) Определение алгоритма нахождения промежутков возрастания и убывания функции,

3) Решение задачи на нахождения промежутков возрастания и убывания функции

Глоссарий по теме

Алгоритм нахождения промежутков возрастания и убывания функции y = f(x)

  1. Найти D(f)
  2. Найти f‘(x).
  3. Определить, при каких значениях хf‘(x) ≥ 0 (на этих промежутках функция возрастает); при каких значениях х f‘(x) ≤ 0 (на этих промежутках функция убывает))

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

1. Функция y = f(x), определенная на промежутке Х, называется возрастающей на этом промежутке, если для любой пары чисел х1 и х2 из этого промежутка из неравенства х1< х2 следует неравенство f(x1) <f(x2)

2. Функция y = f(x), определенная на промежутке Х, называется убывающей на этом промежутке, если для любой пары чисел х1 и х2 из этого промежутка из неравенства х1< х2 следует неравенство f(x1) >f(x2)

Теоремы

  1. Если во всех точках открытого промежутка Х выполняется неравенство f‘(x) ≥ 0 (причем равенство f‘(x) = 0 либо не выполняется, либо выполняется лишь в конечном множестве точек),то функция y = f(x) возрастает на промежутке Х.
  2. Если во всех точках открытого промежутка Х выполняется неравенство f‘(x) ≤ 0 (причем равенство f‘(x) = 0 либо не выполняется, либо выполняется лишь в конечном множестве точек),то функция y = f(x) убывает на промежутке Х.

Примеры и разбор решения заданий тренировочного модуля

№1. Определите промежутки монотонности функции

у = -3х3 + 4х2 + х – 10.

Решение

1.Найдем область определения функции.

D(y) =

2.Найдем производную функции.

y’ = (x – 1)(-9x – 1)

3.Определим, на каких промежутках производная положительна (на этих промежутках функция возрастает), на каких – отрицательна (на этих промежутках функция убывает).

Применим для этого метод интервалов. Для определения знака на каждом промежутке подставим произвольное значение из этого промежутка в выражение для производной.

Так как на интервале производная функции отрицательна, то на этом интервале функция убывает.

Так как на интервале производная функции положительна, то на этом интервале функция возрастает.

Так как на интервале производная функции отрицательна, то на этом интервале функция убывает.

Так как в точках функция непрерывна, то эти точки входят в промежутки возрастания и убывания данной функции.

Следовательно, функция возрастает на ; функция убывает на и на .

Ответ: Функция возрастает на

Функция убывает на и на .

№2. Определите промежутки монотонности функции

у = х5–5х4 +5х3 – 4.

Решение:

y =

  1. Функция возрастает на ; функция убывает на .

Ответ: Функция возрастает на ;

функция убывает на .

Определение
возрастающей функции.

Функция y=f(x) возрастает
на интервале X,
если для любых и выполняется
неравенство .
Другими словами – большему значению
аргумента соответствует большее значение
функции.

Определение
убывающей функции.

Функция y=f(x) убывает
на интервале X,
если для любых и выполняется
неравенство .
Другими словами – большему значению
аргумента соответствует меньшее значение
функции.

ЗАМЕЧАНИЕ:
если функция определена и непрерывна
в концах интервала возрастания или
убывания (a;b),
то есть при x=a и x=b,
то эти точки включаются в промежуток
возрастания или убывания. Это не
противоречит определениям возрастающей
и убывающей функции на промежутке X.

К
примеру, из свойств основных элементарных
функций мы знаем, что y=sinx определена
и непрерывна для всех действительных
значений аргумента. Поэтому, из возрастания
функции синуса на интервале мы
можем утверждать о возрастании на
отрезке .

Точки экстремума, экстремумы функции.

Точку называют точкой
максимума
 функции y=f(x),
если для всех x из
ее окрестности справедливо неравенство .
Значение функции в точке максимума
называютмаксимумом
функции
 и
обозначают .

Точку называют точкой
минимума
 функции y=f(x),
если для всех x из
ее окрестности справедливо неравенство .
Значение функции в точке минимума
называютминимумом
функции
 и
обозначают .

Под
окрестностью точки понимают
интервал ,
где 
достаточно малое положительное число.

Точки
минимума и максимума называют точками
экстремума
,
а значения функции, соответствующие
точкам экстремума, называют экстремумами
функции
.

Не
путайте экстремумы функции с наибольшим
и наименьшим значением функции.

На
первом рисунке наибольшее значение
функции на отрезке [a;b] достигается
в точке максимума и равно максимуму
функции, а на втором рисунке – наибольшее
значение функции достигается в точке x=b,
которая не является точкой максимума.

Достаточные условия возрастания и убывания функции.

На
основании достаточных условий (признаков)
возрастания и убывания функции находятся
промежутки возрастания и убывания
функции.

Вот
формулировки признаков возрастания и
убывания функции на интервале:

  • если
    производная функции y=f(x) положительна
    для любого x из
    интервала X,
    то функция возрастает на X;

  • если
    производная функции y=f(x) отрицательна
    для любого x из
    интервала X,
    то функция убывает на X.

Таким
образом, чтобы определить промежутки
возрастания и убывания функции необходимо:

  • найти
    область определения функции;

  • найти
    производную функции;

  • решить
    неравенства и на
    области определения;

  • к
    полученным промежуткам добавить
    граничные точки, в которых функция
    определена и непрерывна.

Рассмотрим
пример нахождения промежутков возрастания
и убывания функции для разъяснения
алгоритма.

Пример.

Найти
промежутки возрастания и убывания
функции .

Решение.

Первым
шагом является нахождение
обрасти определения функции. В нашем
примере выражение в знаменателе не
должно обращаться в ноль, следовательно, .

Переходим
к нахождению производной функции:

Для
определения промежутков возрастания
и убывания функции по достаточному
признаку решаем неравенства и на
области определения. Воспользуемся
обобщением метода интервалов. Единственным
действительным корнем числителя
является x
= 2
,
а знаменатель обращается в ноль при x=0.
Эти точки разбивают область определения
на интервалы, в которых производная
функции сохраняет знак. Отметим эти
точки на числовой прямой. Плюсами и
минусами условно обозначим интервалы,
на которых производная положительна
или отрицательна. Стрелочки снизу
схематично показывают возрастание или
убывание функции на соответствующем
интервале.

Таким
образом, и .

В
точке x=2 функция
определена и непрерывна, поэтому ее
следует добавить и к промежутку
возрастания и к промежутку убывания. В
точке x=0 функция
не определена, поэтому эту точку не
включаем в искомые интервалы.

Приводим
график функции для сопоставления с ним
полученных результатов.

Ответ:

функция
возрастает при ,
убывает на интервале (0;2].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий