Как найти временную нагрузку на перекрытие

Расчет нагрузки на перекрытие — один из обязательных этапов проектирования здания. В идеальном случае, когда вы заказываете или покупаете профессиональный проект, эту задачу решает проектировщик. Вам остается просто сделать точно такие же перекрытия, какие нарисованы на чертежах.

Но в индивидуальном строительстве такие ситуации редки. Самый распространенный вариант — использование типового проекта, доработанного под свои нужды самостоятельно. Или не менее самостоятельная разработка проекта дома с нуля. Иногда строительство и вовсе ведется без проекта — со схемами и чертежами от руки.

Как посчитать нагрузку на перекрытие

В любом из этих случаев делать все вычисления, в том числе и расчет нагрузки на перекрытие, вам придется самостоятельно. Ниже — инструкция, на что смотреть в маркировке плиты перекрытия и как правильно считать эту нагрузку.

Как узнать расчетную нагрузку на плиту перекрытия

Для пустотных плит делать расчет допустимой нагрузки на перекрытие вручную не нужно — его уже сделали специалисты на заводе ЖБИ и включили полученное значение в маркировку. Нужно просто знать, как ее читать.

Согласно нормативам ГОСТ 9561-2016 и ГОСТ 23009 марка плиты перекрытия состоит из двух групп символов, разделенных дефисом:

  1. В первой группе указан тип плиты, ее длина и ширина в дециметрах, округленных до целого значения.
  2. Во второй группе первое значение — это как раз нужная нам расчетная нагрузка на плиту перекрытия в кПа (кгс·м2). Дальше указывают класс стали напрягаемой арматуры, вид бетона и дополнительные характеристики, если они есть: сейсмостойкость, химическая стойкость и тому подобное.

Маркировка бетонной плиты перекрытия

Например, если на плиту нанесена маркировка 1ПК 42.15-8, значит, перед вами плита:

  • толщиной 220 мм с пустотами круглого сечения 159 мм (1ПК);
  • длиной примерно 4200 мм;
  • шириной примерно 1500 мм;
  • с расчетной допустимой нагрузкой на перекрытие 8 кПа.

Но некоторые компании маркируют плиты перекрытия не в соответствии с требованиями актуальных ГОСТов, а по старинке. В этом случае вместо точки, разделяющей длину и ширину плиты, будет дефис. Кроме того, вместо 1ПК часто пишут просто ПК, а индекс проставляют, начиная с 2ПК.

Сбор нагрузок на перекрытие

Расчетная нагрузка из маркировки — это максимальная нагрузка, которую гарантированно способна выдержать плита перекрытия при штатном использовании. Вся суть дальнейшего расчета — вычислить сумму реальных нагрузок на плиту и сравнить ее с этим нормативным значением.

Сбор нагрузок на перекрытие

Если сумма нагрузок меньше норматива, значит, конкретную марку плиты можно использовать для перекрытия. Если больше или запас минимальный, то нужно выбирать плиту с большей несущей способностью.

Общая нагрузка на плиту перекрытия — это сумма трех составляющих:

  • вес самой плиты;
  • постоянные нагрузки;
  • временные нагрузки.

Все они рассчитываются отдельно, а затем просто складываются.

Поскольку большинство нагрузок считаются в килограммах на единицу площади, норматив тоже желательно привести к этому стандарту. Для этого значение в кПа нужно просто умножить на 101,97. То есть плита 1ПК 18.12-8 может выдержать нагрузку в 8 кПа или около 815 кг/м2.

Вес плиты перекрытия

Первая составляющая нагрузки на перекрытие — вес самого перекрытия, то есть плиты. Его можно взять из ГОСТ 26434-2015, в котором приведена справочная масса для всех плит перекрытия стандартных размеров.

В частности, для плиты из нашего примера (1ПК 42.15-8) справочная масса равна 2,3 тонны. То есть нагрузка на 1 м2 составит 2,3/(4,2×1,5) = 0,365 т или 365 кг.

Постоянные нагрузки на перекрытие

К постоянным нагрузкам относится вес строительных конструкций:

  • выравнивающей цементно-песчаной стяжки;
  • напольного покрытия;
  • скрытых коммуникаций;
  • перегородок (не стен);
  • отделки потолка.

Постоянные нагрузки на перекрытие

Масса плиты перекрытия — это тоже постоянная нагрузка. Но при расчетах ее удобнее выносить за скобки, поскольку толщину стяжки или состав отделки можно изменить, если нагрузка на перекрытие будет слишком большая, а вот вес плиты — нет.

Равномерно распределенную часть постоянной нагрузки (вес отделки) можно не считать, а взять по СП 20.13330.2016. Согласно нормативу для жилых зданий она равна 1,5 кПа или примерно 153 кг/м2. А вот массу перегородок, если они есть, придется рассчитать. Причем по этому же нормативу она не должна быть меньше 0,5 кПа или примерно 51 кг/м2.

Временные нагрузки на плиту перекрытия

Временные нагрузки на перекрытие бывают двух видов:

  1. Длительные. Это нагрузки от тех стационарных конструкций и предметов, которые потенциально с плиты перекрытия можно убрать. Например, вес станка — это длительная нагрузка. Более бытовой пример — радиаторы отопления напольной установки, встроенная ванна.
  2. Кратковременные. Это нагрузки от людей, животных, а также мебели и других вещей, которые легко перенести с места на место.

Такое разделение нужно из-за разных правил сложения таких нагрузок.

Так, самая большая длительная нагрузка на перекрытие учитывается как есть, а все остальные берутся с коэффициентом 0,95. Самая значимая кратковременная нагрузка тоже не уменьшается, вторая по значимости умножается на коэффициент 0,9, а все остальные — на 0,7.

Например, в ванной комнате есть:

  • из длительных нагрузок — встроенная ванна весом 200 кг, душевая кабина весом 75 кг и стиральная машина весом 50 кг;
  • из кратковременных — человек весом 70 кг, напольный шкаф, который вместе с содержимым весит 25 кг, и тумбочка массой 10 кг.

Тогда суммарная длительная нагрузка на плиту перекрытия будет равна: 200+75×0,95+50×0,95 = 318,75 кг. А кратковременная — 70+25×0,9+10×0,7 = 99,5 кг. Итого: 418,25 кг. Дальше полученную сумму нужно разделить на площадь помещения. Если на плите перекрытия расположено несколько комнат, их площадь перед делением нужно сложить.

Общая величина нагрузки

Последний этап — простое арифметическое суммирование всех видов нагрузки. Но и здесь есть тонкость.

По СП 20.13330.2016 для бетонных плит, сделанных в заводских условиях, нужно использовать коэффициент надежности по нагрузке 1,2. Это значит, что полученную общую нагрузку нужно дополнительно умножить на 1,2. И уже это значение сравнивать с расчетной допустимой нагрузкой на плиту перекрытия.

Подведем итоги

Допустимую нагрузку на плиту перекрытия не нужно считать самостоятельно — она указана в маркировке. А вот рассчитать реальные нагрузки придется. Для этого суммируют:

  • вес плиты перекрытия;
  • постоянные нагрузки (отделка, перегородки);
  • длительные нагрузки (оборудование и мебель, которые сложно куда-либо убрать);
  • кратковременные нагрузки (обычная мебель, животные, человек).

Дальше полученную сумму умножают на коэффициент надежности 1,2 и сравнивают с допустимой нагрузкой на плиту. Если сумма меньше, значит, плиту можно использовать для перекрытия.


Будьте в курсе!

Подпишитесь на новостную рассылку

Нормативные
значения равномерно распределенных
нагрузок на плиты перекрытий, лестницы
и полы на грунтах приведены в таблице
3.

Т
а б л и ц а 3 – Временные нагрузки

Здания и помещения

Нормативные
значения

нагрузок
р, кПа (кгс/м2)

полное

Пониженное

1

2

3

1.Квартиры
жилых зданий; спальные помещения
детских и дошкольных учреждений и
школ-интернатов; жилые помещения домов
отдыха и пансионатов, общежитий и
гостиниц; палаты больниц и санаториев;
террасы

1.5
(150)

0.3 (30)

2.
Служебные помещения административного,
инженерно-технического, научного
персонала организаций и учреждений;
классные помещения учреждений
просвещения; бытовые помещения
(гардеробные, душевые, умывальные,
уборные) промышленных

предприятий
и промышленных зданий и сооружений

2.0
(200)

0.7 (70)

7

Продолжение
таблицы 3

1

2

3

3.
Кабинеты и лаборатории учреждений
здравоохранения; лаборатории учреждений
просвещения, науки; помещения
электронно-вычислительных машин;
кухни общественных зданий; технические
этажи; подвальные помещения

Не
менее

2.0
(200)

Не
менее

1.0
(100)

4.
Залы:

а)
читальные

б)
обеденные (в кафе, ресторанах, столовых)

в)
собраний и совещаний, ожидания,
зрительные и концертные, спортивные

г)
торговые, выставочные и экспозиционные

2.0
(200)

3.0
(300)

4.0
(400)

Не
менее

4.0
(400)

0.7
(70)

1.0
(100)

1.4
(140)

Не
менее

1.4
(140)

5.
Книгохранилища; архивы

Не
менее

5.0
(500)

Не
менее

5.0
(500)

6.
Сцены зрелищных предприятий

Не
менее

5.0
(500)

Не
менее

5.0
(500)

7.
Трибуны:

а)
с закрепленными сидениями

б)
для стоящих зрителей

4.0
(500)

5.0
(500)

1.4
(140)

1.8
(180)

8.
Чердачные помещения

0.7 (70)

9.
Покрытия на участках:

а)
с возможным скоплением людей

(выходящих
из производственных

помещении,
залов, аудиторий и т.п.)

б)
используемых для отдыха

в)
прочих

4.0
(400)

1.5
(150)

1.4
(140)

0.5 (50)

10.
Балконы (лоджии) с учетом нагрузки:

а)
полосовой равномерной на участке

шириной
0,8 м вдоль ограждения

балкона
(лоджии);

б)
сплошной равномерной на площади

балкона
(лоджии), воздействие которой
неблагоприятнее, чем определяемое по
поз. 10а

4.0
(400)

2.0
(200)

1.4
(140)

0.7 (70)

11.Участки
обслуживания и ремонта оборудования
в производственных помещениях

Не
менее

1.5
(150)

8

Продолжение
таблицы 3

1

2

3

12.
Вестибюли, фойе, коридоры, лестницы
(с относящимися к ним проходами),
примыкающие к помещениям, указанным
в позициях:

а)
1,2 и 3

б)
4,5,6 и 11

в)
7

3.0
(300)

4.0
(400)

5.0
(500)

1.0
(100)

1.4
(140)

1.8
(180)

13.
Перроны вокзалов

4.0
(400)

1.4
(140)

14.Помещение
для скота:

мелкого;

крупного

Не
менее

2.0
(200)

Не
менее

5.0
(500)

Не
менее

0.7
(70)

Не
менее

1.8
(180)

При
расчете оснований и фундаментов нагрузки
на балконы (лоджии) следует принимать
равными нагрузкам примыкающих основных
помещений зданий и снижать их с учетом
понижающего коэффициента n

Проектирование
многоэтажных зданий требует учета малой
вероятности одновременного загружения
всех междуэтажных перекрытий временной
нагрузкой. Для этого вводят понижающий
коэффициент n.
Для квартир жилых зданий, спальных
комнат общежитий, домов отдыха, санаториев,
больниц, служебных помещений
административного и научно-технического
персонала

.
(1)

Для
зрительных, читальных, спортивных и
обеденных залов, выставочных, торговых,
концертных и других аналогичных помещений

,

(2)

где
n
– количество этажей, от двух и более
перекрытий;

,


зависят от площади загружения:

,

(3)

где
A1=9
м2
– фактическая грузовая площадь, м2.

,

(4)

где
А2

36 м2;

А
– фактическая грузовая площадь, м2.

В
курсовом проекте допускается принять
A=A1
для A1
и

A=A2
для A2.

Все
расчеты оснований должны выполняться
по расчетным значениям характеристик
грунтов, определяемым по формуле

X=Xn/g
,
(5)

где
Xn
– нормативное значение характеристики
грунта;

g
– коэффициент надежности по грунту.

9

В
расчетах основании по деформациям g
=1.

В
расчетах оснований по несущей способности:

для
удельного сцепления g
(c)
=
1,5;

для
угла внутреннего трения песчаных грунтов
g
()
= 1,1;

то
же, пылевато – глинистых g
()
= 1,15.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Требуется собрать нагрузки на монолитную плиту перекрытия жилого дома. Толщина плиты 200 мм. Состав пола представлен на рис. 1.
Пирог перекрытия
Решение

Определим нормативные значения действующих нагрузок. Для удобства восприятия материала постоянные нагрузки будем обозначать индексом q, кратковременные — индексом ν, длительные — индексом p.

Жилые здания относятся ко II уровню ответственности, следовательно, коэффициент надежности по ответственности γн = 1,0. На этот коэффициент будем умножать значения всех нагрузок. (Для выбора коэффициента см. статью Коэффициент надежности по ответственности зданий и сооружений)

Сначала рассмотрим нагрузки от плиты перекрытия и конструкции пола.  Эти нагрузки являются постоянными, т.к. действуют на всем протяжении эксплуатации здания.

1. Объемный вес железобетона равен 2500 кг/м3 (25 кН/м3). Толщина плиты δ1 = 200 мм = 0,2 м, тогда нормативное значение нагрузки от собственного веса плиты перекрытия составляет:

q1 = 25*δ1*γн = 25*0,2*1,0 = 5,0 кН/м2.

2. Нормативная нагрузка от звукоизоляционного слоя из экструдированного пенополистирола плотностью ρ2 = 35 кг/м3 (0,35 кН/м3) и толщиной δ2 = 30 мм = 0,03 м:

q2 = ρ2*δ2*γн = 0,35*0,03*1,0 = 0,01 кН/м2.

3. Нормативная нагрузка от цементно-песчаной стяжки плотностью ρ3 = 1800 кг/м3 (18 кН/м3) и толщиной δ3 = 40 мм = 0,04 м:

q3 = ρ3*δ3*γн = 18*0,04*1,0 = 0,72 кН/м2.

4. Нормативная нагрузка от плиты ДВП плотностью ρ4 = 800 кг/м3 (8 кН/м3) и толщиной δ4 = 5 мм = 0,005 м:

q4 = ρ4*δ4*γн = 8*0,005*1,0 = 0,04 кН/м2.

5. Нормативная нагрузка от паркетной доски плотностью ρ5 = 600 кг/м3 (6 кН/м3) и толщиной δ5 = 20 мм = 0,02 м:

q5 = ρ5*δ5*γн = 6*0,02*1,0 = 0,12 кН/м2.

Суммарная нормативная постоянная нагрузка составляет

q = q1 + q2 + q3 + q4 + q5 = 5 + 0,01 + 0,72 + 0,04 + 0,12 +5,89 кН/м2.

Расчетное значение нагрузки получаем путем умножения ее нормативного значения на коэффициент надежности по нагрузке γt.

Теперь определим временные (кратковременные и длительные) нагрузки. Полное (кратковременное) нормативное значение нагрузки от людей и мебели (так называемая полезная нагрузка) для квартир жилых зданий составляет 1,5 кПа (1,5 кН/м2). Учитывая коэффициент надежности по ответственности здания γн = 1,0, итоговая кратковременная нагрузка от людей составляет:

ν1p = ν1*γt = 1,5*1,3 = 1,95 кН/м2.

Длительную нагрузку от людей и мебели получаем путем умножения ее полного значения на коэффициент 0,35, указанный в табл. 6, т.е:

р1 = 0,35*ν1 = 0,35*1,5 = 0,53 кН/м2;

р1р = р1*γt =0,53*1,3 = 0,69 кН/м2.

Полученные данные запишем в таблицу 1.

Помимо нагрузки от людей необходимо учесть нагрузки от перегородок. Поскольку мы проектируем современное здание со свободной планировкой и заранее не знаем расположение перегородок (нам известно лишь то, что они будут кирпичными толщиной 120 мм при высоте этажа 3,3 м), принимаем эквивалентную равномерно распределенную нагрузку с нормативным значением 0,5 кН/м2. С учетом коэффициента γн = 1,0 окончательное значение составит:

р2 = 0,5*γн = 0,5*1,9 =0,5 кН/м2.

При соответствующем обосновании в случае необходимости нормативная нагрузка от перегородок может приниматься и большего значения.

Коэффициент надежности по нагрузке γt = 1,3, поскольку перегородки выполняются на строительной площадке. Тогда расчетное значение нагрузки от перегородок составит:

р2р = р2*γt = 0,5*1,3 = 0,65 кН/м2.

(Для выбора плотности основных строй материалов см. статьи:

  1. Классификация нагрузок по продолжительности действия.
  2. Плотность стройматериалов по данным СНиП II-3-79

Для удобства все найденные значения запишем в таблицу сбора нагрузок (табл.1).

 Таблица 1

Сбор нагрузок на плиту перекрытия

Вид нагрузки 

 Норм. кН/м2

Коэф. γt

Расч. кН/м2

   Постоянная нагрузка

 1. Ж.б. плита

5,0

1,1

5,5

 2. Пенополистирол

 0,01

1,3

0,013

 3. Цем — песч. стяжка

 0,72

1,3

0,94

 4. Плита ДВП

0,04

1,1

0,044

 5. Паркетная доска

0,12

1,1

0,132

 Всего:

 5,89

 

 6,63

    Временная нагрузка

 1. Полезная нагрузка  

 кратковременная ν1

 1,5

1,3

1,95

  длительная р1

 0,53

1,3

0,69

 2. Перегородки (длительная) р2

 0,5

1,3

0,65

В нашем примере сейсмические, взрывные и т.п. воздействия (т.е. особые нагрузки) отсутствуют. Следовательно, будем рассматривать основные сочетания нагрузок.

I сочетание: постоянная нагрузка (собственный вес перекрытия и пола) + полезная (кратковременная).

При учете основных сочетаний, включающих постоянные нагрузки и одну временную нагрузку (длительную или кратковременную), коэффициенты Ψl, Ψt вводить не следует.

Тогда qI = q + ν1 = 5,89 + 1,5 = 7,39, кН/м2;

qIр = qp + ν1p = 6,63 + 1,95 = 8,58 кН/м2.

II вариант: постоянная нагрузка (собственный вес перекрытия и пола) + полезная (кратковременная) + нагрузка от перегородок (длительная).

Для основных сочетаний коэффициент сочетаний длительных нагрузок Ψl принимается: для первой (по степени влияния) длительной нагрузки — 1,0, для остальных — 0,95. Коэффициент Ψt для кратковременных нагрузок принимается: для первой (по степени влияния) кратковременной нагрузки — 1,0, для второй — 0,9, для остальных — 0,7.

Поскольку во II сочетании присутствует одна кратковременная и одна длительная нагрузка, то коэффициенты Ψl и Ψt = 1,0.

qII = q + ν1 + p2 = 5,89 + 1,5 + 0,5 =7,89 кН/м2;

qIIр = qр + ν1р + p2р = 6,63+ 1,95 + 0,65 =9,23 кН/м2.

Совершенно очевидно, что II основное сочетание дает наибольшие значения нормативной и расчетной нагрузки.

Смотрите также:

Понятие нормативных и расчетных нагрузок. Коэффициенты надежности.

Нормативные и расчетные значения нагрузок

Коэффициент надежности по ответственности зданий и сооружений

Справочные данные

Примеры:

  • Пример 1.2 Сбор нагрузок на плиту покрытия

  • Пример 1.3 Сбор нагрузок на балку перекрытия

  • Пример 1.4. Сбор нагрузок на колонну

  • Пример 2.1 Определение несущей способности буронабивной сваи длиной 2,2 м

  • Пример 2.2. Определение несущей способности забивной сваи по грунту

  • Пример 2.3. Определение несущей способности сваи по материалу

  • Пример 2.4. Определение нагрузок на сваи во внецентренно-нагруженном фундаменте

  • Пример 3.1. Расчет стыка балки с накладками

  • Пример 3.2. Расчет соединения столика с колонной

  • Пример 3.3. Расчет балки настила

  • Пример 3.4. Расчет заделки в кладку консольной балки и проверка кладки на местное смятие

  • Пример 3.5. Проверка сечения колонны из двутавра на сжатие

  • Пример 4.1. Проверка сечения центрально-сжатого элемента

  • Пример 5.1. Расчет ботового соединения двух листов с двумя накладками

  • Пример 6.1. Проверка устойчивости ленточного фундамента на действие сил морозного пучения

  • Пример 6.2. Расчет основания фундамента по несущей способности

  • Пример 6.3. Проверка фундамента на сдвиг

Сбор нагрузок производится всегда, когда нужно рассчитать несущую способность строительных конструкций. В частности, для перекрытий нагрузки собираются с целью определения толщины, шага и сечения арматуры железобетонного перекрытия, сечения и шага балок деревянного перекрытия, вида, шага и номера металлических балок (швеллер, двутавр и т.д.).

Сбор нагрузок производится с учетом требований СНиПа 2.01.07-85* (или по новому СП 20.13330.2011) “Актуализированная редакция” [1].

Данное мероприятие для перекрытия жилого дома включает в себя следующую последовательность:

1. Определение веса “пирога” перекрытия.

В “пирог” входят: ограждающие конструкции (например, монолитная железобетонная плита), теплоизоляционные и пароизоляционные материалы, выравнивающие материалы (например, стяжка или наливной пол), покрытие пола (линолеум, паркет, ламинат и т.д.).

Для определения веса того или иного слоя нужно знать плотность материала и его толщину.

2. Определение временной нагрузки.

К временным нагрузкам относятся мебель, техника, люди, животные, т.е. все то, что способно двигаться или переставляться местами. Их нормативные значения можно найти в таблице 8.3. [1]. Например, для квартир жилых домов нормативное значение равномерно распределенной нагрузки составляет 150 кг/м2.

3. Определение расчетной нагрузки.

Делается это с помощью коэффициентов надежности по нагрузки, которые можно найти в том же СНиПе. Для веса строительных конструкций и грунтов – это таблица 7.1 [1]. Что касается равномерно распределенной временной нагрузки и нагрузки от материалов, то здесь коэффициент надежности берется в зависимости от нормативного значения по пункту 8.2.2 [1]. Так, по нему, если вес составляет менее 200 кг/м2 коэффициент равен 1,3, если равен или более 200 кг/м2 – 1,2. Также данный пункт регламентирует значение нормативной нагрузки от веса перегородок, которая должна равняться не менее 50 кг/м2.

4. Сложение.

В конце необходимо сложить все расчетные и нормативные значения с целью определения общего значения для дальнейшего использования их в расчете на несущую способность.

В случае сбора нагрузок на балку ситуация та же. Только после получения конечных значений их нужно будет преобразовать из кг/м2 в кг/м. Делается это с помощью умножения общей расчетной или нормативной нагрузки на величину пролета.

Для того, чтобы материал был более понятен, рассмотрим два примера. В первом примере соберем нагрузки на перекрытие, а во втором на балку.

А после рассмотрения примеров с целью экономии времени можно воспользоваться специальным калькулятором. Он позволяет в режиме онлайн собрать нагрузки на перекрытие, стены и балки перекрытия.

Пример 1. Сбор нагрузок на междуэтажное перекрытие жилого дома.

Имеется перекрытие, состоящее из следующих слоев:

1. Многопустотная железобетонная плита – 220 мм.

2. Цементно-песчаная стяжка (ρ=1800 кг/м3) – 30 мм.

3. Утепленный линолеум.

сбор нагрузок на перекрытие

На перекрытие опирается одна кирпичная перегородка.

Определим нагрузки, действующие на 1 м2 грузовой площади (кг/м2) перекрытия. Для наглядности весь процесс сбора нагрузок произведем в таблице.

Вид нагрузки Норм.
Коэф. Расч.

Постоянные нагрузки:

– железобетонная плита перекрытия (многопустотная) толщиной 220 мм

– цементно-песчаная стяжка (ρ=1800 кг/м3) толщиной 30 мм

– утепленный линолеум

– перегородки

Временные нагрузки:

– жилые помещения

290 кг/м2

54 кг/м2

5 кг/м2

50 кг/м2

150 кг/м2

1,1

1,3

1,3

1,1

1,3

319 кг/м2

70,2 кг/м2

6,5 кг/м2

55 кг/м2

195 кг/м2

ИТОГО 549 кг/м2   645,7 кг/м2

Пример 2. Сбор нагрузок на балку перекрытия.

Имеется перекрытие, которое опирается на деревянные балки, состоящее из следующих слоев:

1. Доска из сосны (ρ=520 кг/м3) – 40 мм.

2. Линолеум.

Шаг деревянных балок – 600 мм.

сбор нагрузок на перекрытие

Также на перекрытие опирается перегородка из гипсокартонных листов.

Определение нагрузок на балку производится в два этапа:

1 этап – составляем таблицу, как описано выше, т.е. определяем нагрузки, действующие на 1 м2.

2 этап – преобразовываем нагрузки из 1кг/м2 в 1 кг/п.м.

Вид нагрузки Норм.
Коэф. Расч.

Постоянные нагрузки:

– дощатый пол из сосны (ρ=520 кг/м3) толщиной 40 мм

– линолеум

– перегородки

Временные нагрузки:

– жилые помещения

20,8 кг/м2

5 кг/м2

50 кг/м2

150 кг/м2

1,1

1,3

1,1

1,3

22,9 кг/м2

6,5 кг/м2

55 кг/м2

195 кг/м2

ИТОГО 225,8 кг/м2   279,4 кг/м2

Определение нормативной нагрузки на балку:

qнорм = 225,8кг/м2*(0,3м+0,3м) = 135,48 кг/м.

Определение расчетной нагрузки на балку:

qрасч = 279,4кг/м2*(0,3м+0,3м) = 167,64 кг/м.

Поделиться статьей с друзьями:

foto51498-2Плиты перекрытий – это несущие конструкции зданий, воспринимающие постоянные и временные нагрузки в пределах одного этажа.

Плиты укладываются в пролёте между вертикальными опорами – стенами, пилонами или колоннами.

Преимущественно работают на изгиб и выполняют роль жёсткого диска, объединяющего отдельные элементы каркаса сооружения в единую геометрически неизменяемую систему.

При расчёте плит перекрытий определяются такие важные параметры, как их толщина, армирование, прогиб и необходимость устройства дополнительных подпирающих элементов (балок или капителей).

Как провести расчет нагрузок на перекрытие, расскажем далее.

Содержание

  • 1 Что это такое?
  • 2 Виды нагрузок на плиты перекрытий по СНиП и СП
  • 3 Расчёт пролетных конструкций
  • 4 Как рассчитать значения?
    • 4.1 Предельные
    • 4.2 Точечные
    • 4.3 Пересчёт на м2
      • 4.3.1 Пример
    • 4.4 Изгибающий момент
    • 4.5 Как посчитать несущую способность?
    • 4.6 Прочность ЖБ элемента
  • 5 Возможные сложности и ошибки
  • 6 Заключение

Что это такое?

Нагрузки, прикладываемые к перекрытию, представляют собой сочетание внешних сил, действующих на конструктивный элемент, вызывая в нём внутренние усилия. Несущая способность элемента определяется из условия равновесия, достигаемого при приложении нагрузок.

Виды нагрузок на плиты перекрытий по СНиП и СП

Нагрузки на пролётные конструкции определяются, исходя из требований нормативных документов – СНиП 2.01.07-85 и его обновлённой версии – СП 20.13330.2011 «Нагрузки и воздействия».

В соответствии с пунктами этих нормативов, нагрузки классифицируются на следующие виды:

  1. foto51498-3Полезные – нагрузки, необходимые для обеспечения комфортной эксплуатации помещения, в соответствии с его функциональным назначением.

    Например, в жилых квартирах или частных домах – это нагрузки от мебели, бытовых приборов и самих жильцов.

    В магазинах – от посетителей, персонала, прилавков, стеллажей и оборудования, необходимого для функционирования помещения.

  2. Допустимые – сочетание внешних сил, приложенных к перекрытию, при котором оно продолжает удовлетворять всем предъявляемым к нему эксплуатационным требованиям без наступления необратимых последствий.
  3. Постоянные – нагрузки, которые действуют на протяжении всего периода эксплуатации помещения. К таким видам загружения относятся собственный вес плит, масса пирога пола и штамповые нагрузки от конструктивных элементов, без которых эксплуатация помещения не представляется возможной.
  4. Временные – нагрузки от веса оборудования, мебели, людей и другие виды сил, которые прикладываются к несущему элементу на определённый промежуток времени.
  5. Предельные – максимальная величина нагрузки, при приложении которой в конструктивном элементе начинают происходить необратимые процессы – пластические деформации, бесконтрольное раскрытие трещин, а также обрушение перекрытия.

В зависимости от функционального назначения помещений, величины полезных нагрузок различаются.

В жилом помещении равномерно распределённые по площади временные нагрузки составляют 150 – 200 кгс/м2, а в общественных зданиях, в зависимости от особенностей технологического процесса они составляют уже 250 – 500 кгс/м2.

Расчёт пролетных конструкций

Расчёт пролётных конструкций ведётся по двум группам предельных состояний:

  • 1 группа – подбирается такие параметры жёсткости конструктивного элемента, при которых оно не потеряет прочность под действие сочетания постоянных, временных и особых нагрузок;
  • 2 группа – расчёт по деформациям, при котором определяется фактический прогиб перекрытия, после чего это значение сравнивается с предельно допустимыми значениями из СНиП.

На несущую способность плит перекрытий влияет величины постоянных и полезных нагрузок, толщина элемента, длина пролёта и условия эксплуатации помещения.

Как рассчитать значения?

Расчёт нагрузок на плиту перекрытия производится методом суммирования всех приложенных к конструктивному элементу внешних сил, с учётом различных коэффициентов запаса, принимаемых по указанному выше СНиП. Если рассмотреть теоретические выкладки, то расчёт нагрузок делится на следующие категории:

Предельные

foto51498-4Расчёт сводится к вычислению максимально допустимого значения приложенных на конструкцию внешних сил, при которых конструкция достигает предельного равновесия.

Например, на основании представленного ниже расчёта – при приложении суммарной расчётной нагрузки 900 кг/м2 на плиту перекрытия толщиной 200 мм, армированную прутками d10 A500s с шагом 200 мм, достигается фактический изгибающий момент М = 2812,5 кН*см при пролёте 5 м.

А сечение с такими параметрами остаётся в равновесии при достижении момента Мпред = 2988.5 кН*см, что всего на 5,8% выше предельного значения.

Учитывая, что момент в изгибаемом сечении под действием равномерно распределённой нагрузки равняется M = q х l2 / 8, то qпред = 8M/l2, или qпред = 8 х 2998.5 / 25 = 956.32 кг/м2 – при такой внешней силе сечение установленных параметров перестанет удовлетворять предельному равновесию, и данная нагрузка является предельной.

Точечные

Как правило, такие силы не прикладываются к перекрытию отдельно – всегда существуют постоянные нагрузки, и единичное точечное загружение суммируется с ними.

Приложенная точечная нагрузка влияет на значение опорных реакций и величину изгибающего момента в расчётном сечении. Усилия от точечного загружения определяется как произведение силы на плечо (расстояние от ближайшей точки опоры).

Например, если в комнате с пролётом 5 метров стоит декоративная колонна массой 500 кг на расстоянии от стены 2 м, то расчётная нагрузка с учётом коэффициента запаса (gn для постоянных сил = 1,05) составит 525 кг. Момент в данной точке составит 525 кг х 2 м = 1050 кг * м, или 1050 кН * см.

Соответственно, при добавлении равномерно распределённого загружения, описанного выше, стандартное сечение плиты с армированием d10 A500s с шагом 200 мм не будет удовлетворять расчёту прочности, и данное место следует усилить дополнительными стержнями, например, d10 A500s ш. 200 + d12 A500s ш. 200.

Пересчёт на м2

foto51498-5Учитывая, что жб плита перекрытия работает по упруго-пластической схеме, все внутренние усилия в ней перераспределяются по площади и объёму.

СНиП допускает не производить расчёт временных нагрузок на плиту от конкретных предметов, а учитывать приведённую равномерно-распределённую по площади поверхности силу.

Например, вдоль стены комнаты, на протяжении 3 м стоит гарнитур общей массой 400 кг, напротив – диван массой 200 кг и другие предметы мебели с разными весами. По данному помещению каждый день передвигаются 4 человека с массами тела от 50 до 120 кг.

По факту, точно посчитать нагрузку не представляется возможным, но СП 20.13330.2011 допускает учитывать в статическом расчёте приведённую равномерно распределённую нагрузку для жилых помещений 150 кг/м2.

Пример

Ниже представлен пример сбора нагрузок на перекрытие в частном жилом доме. По условию задачи, габариты комнаты составляют 7 х 4 м, плита перекрытия 200 мм, поверх которой уложена ц/п стяжка толщиной 50 мм по подложке из экструдированного пенополистирола 30 мм, а в качестве чистового пола применяется керамогранитная плитка толщиной 12 мм с клеевым составом 3 мм.

Требуется собрать расчётные нагрузки на данную конструкцию для последующего расчёта. Задача решается с выполнением следующих этапов:

Собственный вес плиты – M1 = S x h x rбет, где:

  • S – площадь поверхности перекрытия, равный 5 м х 4 м, или 2 м2,
  • h – толщина плиты, которая составляет 200 мм, или 0,2 м,
  • rбет – средняя плотность армированного бетона, которая равна 2500 кг/м2.
  • M1 = 20 м2 х 0,2 м х 2500 кг/м2 = 10 000 кг.

Масса полов – M2 = mподл + mстяж + mплит, где:

  • mподл = S x hподл х rпенопол = 20 м2 х 0,03 м х 40 кг/м2 = 24 кг,
  • mстяж = S x hстяж х rц/п р-ра = 20 м2 х 0,05 м х 1800 кг/м2 = 1800 кг,
  • mплит = S x hплит х rкерамогр = 20 м2 х 0,015 м х 2400 кг/м2 = 720 кг (значение принимается с учётом слоя плиточного клея).

M2 = 24 кг + 1800 кг + 720 кг = 2544 кг. В жилом помещении рекомендуемая по СНиП временная нагрузка составляет q = 150 кгс/м2.

Таким образом, суммарная полезная нагрузка на плиту составляет F = q x S = 150 х 20 = 3000 кг:

  1. Общая вертикальная нагрузка, приложенная к плите, равняется Fобщ = M1 + M2 + F = 10000 кг + 2544 кг + 3000 кг = 15544 кг, или 1554,4 кН.
  2. Как правило, нормативные нагрузки необходимо привести к расчётным величинам, учитывая коэффициенты надёжности. Данный показатель записывается как gn, и для постоянных загружений он составляет 1,1, а для полезной нагрузки – 1,4.

Таким образом, Fобщ расч = (M1 + M2) x gnс пост + F x gn врем = (10000 кг + 2544 кг) х 1,1 + 3000 кг х 1,4 = 13798,4 кг + 4200 кг = 17998.4 кг ~ 18000 кг, или 1800 кН.

Чтобы привести суммарное значение данной величины в равномерно распределённую нагрузку, достаточно разделить его на общую площадь комнаты. То есть Qобщ расч = Fобщ расч / S = 1800 кН / 20 м2 = 90 кН/м2, или 900 кг/м2.

При наличии точечной или штамповой нагрузки от веса какого-либо оборудования, она участвует в расчёте отдельно, формируя линейную, а не квадратичную зависимость изгибающего момента.

В отдельных случаях допускается разложить точечную нагрузку на равномерно распределённую по площади, с учётом повышающего коэффициента, так как железобетон не является упругим материалом, и все усилия в нём перераспределяются в большей части его объёма.

Изгибающий момент

Безбалочная плита перекрытия должна удовлетворять расчёту по прочности, или первой группе предельных состояний. Чтобы определить несущую способность перекрытия, необходимо выполнить следующий алгоритм:

  1. foto51498-6Если соотношения габаритов перекрытия а/b или b/a > 2, то такая плита работает по короткой стороне.

    Если данные показатель меньше 2, то плита считается опёртой по контуру, и расчёт ведётся относительно того пролёта, в котором возникает наибольший изгибающий момент.

    Значение момента прямо пропорционально величине пролёта, поэтому в рассматриваемом примере расчёт ведётся относительно стороны a = 5 м.

  2. Из плиты выделяется расчётная полоса шириной 1 м, которая будет рассматриваться как изгибаемый линейный элемент, или балка с приложенной к ней равномерно распределённой по длине нагрузкой.

В рассматриваемом примере балка имеет сечение b x h = 1 м х 0,2 м, и к ней приложена нагрузка qрасч = 900 кг/м, или 90 кН/м.

Величина изгибаемого момента для подобной конструкции составляет M = qрасч х l2 / 8, где l – величина пролёта, или 5 м. M = 90 кН/м х 5 х 5 / 8 = 281.25 кН*м, или 2812,5 кН*см.

Величина изгибающего момента может быть отображена на эпюре данного вида усилия, возникающего в конструкции.

Как посчитать несущую способность?

При известной величине изгибающего момента и габаритов (жёсткости сечения) можно определить несущую способность данного пролётного элемента по следующим формулам:

Высота сечения плиты складывается из двух величин h = h0 + a, где h0 – рабочая высота от нижней арматуры, находящейся в зоне растяжения до верхней грани бетона. а – величина защитного слоя бетона. Как правило, этот показатель в тонких плитах варьируется в пределах от 15 до 25 мм. h0 = h – a = 200 мм – 20 мм = 180 мм.

В строительной механике, согласно по СП 63.13330.2018 «Бетонные и железобетонные конструкции», существуют два условия, при которых конструкция достигает предельного равновесия под действием внешних сил.

Rs As = Rbbx, где:

  • M = Rbbx (h0 – x/2),
  • Rs – предел прочности арматурной стали заданного класса на растяжение,
  • Rb – тот же показатель, но для бетона, на сжатие, зависящий от марки материала.

Если в плите принимается наиболее распространённая арматура класса A500s, то Rs = 43,5 кН/см2. Если бетон в рассматриваемом примере имеет класс B30, то Rb = 1,7 кН/см2.

В условии равновесия х – абсолютная величина сжатой зона бетона, которая равняется х = Rs Аs / gb1 Rbb (по СП 63.13330.2018 «Бетонные и железобетонные конструкции»):

  • As – площадь всех стержней рабочей арматуры в растянутой зоне сечения плиты,
  • gb1 – коэффициент запаса, зависящий от условий работы бетона в конструкции, для стандартных вариантов эксплуатации перекрытия принимается равным 0,9.

Требуемая площадь рабочей арматуры зависит от расчётных параметров сечения и величины внутренних усилий (в плите перекрытия – изгибающего момента).

Аs = gb1Rbbeh0/Rs (по СП 63.13330.2018):

  • foto51498-7e – безразмерная величина, характеризующая относительную высоту сжатой части бетонного сечения, которая определяется из соотношения e = (1 – (1 – 2am)1/2),
  • am – это показатель, описывающий отношение изгибающего момента к прочностным характеристикам жб сечения, определяемый по формуле СП,
  • am = M / (gb1 Rbbh02) = 2812,5 / (0,9 х 1,7 х 100 х 324) = 2812,5 кН*см / 49572 = 0,057.

Аs = 0,9 х 1,7 х 100 х 0,057 х 18 / 43,5 = 3,61 см2.

Для предотвращения образования трещин от усадки бетона, в плитах перекрытий шаг рабочей арматуры, чаще всего, назначается 200 мм. Таким образом, в расчётной полосе шириной 1 м располагается 5 рабочих стержней.

В данном примере допускается рассмотреть армирование из 5d10, и реальная площадь стержней составит 3,93 см2, что больше, чем требуемое значение, с учётом повышающих коэффициентов. При известных значениях площади армирования, можно определить величину х: х = Rs Аs / gb1 Rbb = 43,5 х 3,93 / (0,9 х 1,7 х 100) = 1,12 см.

На завершающем этапе из основного условия равновесия определяется предельно допустимый момент, который может возникнуть в сечении плиты перекрытия. M = gb1 Rbbx(h0 – x/2) = 0,9 х 1,7 х 100 х 1,12 х (18 – 1,12/2) = 2988.5 кН*см.

Далее остаётся сравнить предельно допустимый момент 2988.5 кН*см с фактическим усилием, возникающим после приложения нагрузок – 2812,5 кН*см, который оказался меньше, значит, условие прочности выполняется.

В случае, если условие предельного равновесия не достигается, толщина плиты, а также расчётное количество рабочей арматуры должны быть пересмотрены.

Прочность ЖБ элемента

В строительной механике понятия прочности и несущей способности практически не имеют различий. Однако, на практике это не совсем так. Прочность – это способность конструктивного элемента не разрушаться под действием внешних сил. Несущая способность – это способность конструктивного элемента удовлетворять предъявленным к нему эксплуатационным требованиям под действием сочетания нагрузок.

Таким образом, расчёт по предельным состояниям 1 группы, приведённый выше, показывает, что плита перекрытия остаётся в статическом положении не разрушается, (то есть, обеспечивается её прочность) и может эксплуатироваться в нормальных условиях (так как в расчёте были учтены все коэффициенты условий работы). Проведения дополнительных прочностных расчётов не требуется.

Возможные сложности и ошибки

При расчёте сечения плиты перекрытия на прочность, следует учитывать важные нюансы, чтобы не допустить серьёзных ошибок:

  1. foto51498-8Расчёты должны проводиться в строгом соответствии с требованиями нормативных документов.
  2. При вычислениях все единицы измерения должны быть приведены к единым значениям, а, в противном случае, результат будет далёким от истины.
  3. При определении изгибающего момента следует учесть характер опирания плиты перекрытия, так как формулы для жёсткой заделки или шарнирного сопряжения отличаются друг от друга.
  4. При сборе нагрузок не следует забывать коэффициенты надёжности, которые усугубляют теоретическую работу конструкции и приближают её к реальным условиям.

Последствия неверных расчётов могут привести к обрушению строительных конструкций, недопустимым прогибам и другим непоправимым проблемам во время эксплуатации сооружения.

Заключение

Перед назначением толщины и армирования плиты перекрытия необходимо провести расчёт прочности изгибаемого элемента. Вычисления выполняются после сбора постоянных и временных нагрузок и определения внутренних усилий в конструкции.

Если результаты расчёта не удовлетворяют условиям предельного равновесия, необходимо задать другую толщину плиты и провести вычисления заново.

Добавить комментарий