Как найти время через коэффициент трения

Автор статьи

Екатерина Владимировна Мосина

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Ускорение тела, возникающее вследствие силы трения

Известно, что сила трения скольжения направлена в сторону, противоположную направлению относительной скорости движения трущихся тел.

Отсюда следует, что ускорение, которое такая сила сообщает движущемуся телу, тоже направлено против относительной скорости. А это значит, что действие силы трения приводит к уменьшению абсолютного значения скорости тела относительно того тела, по которому оно скользит.

Если на тело, которое скользит по неподвижной поверхности, никакие силы, кроме силы трения не действуют, то оно, в конце концов, останавливается. Рассмотри этот часто встречающийся случай.

Представим себе, что перед движущимся поездом неожиданно появилось некоторое препятствие и машинист отключил двигатель и включил тормоз. Начиная с это момента, на поезд действует только сила трения, так как сила тяжести скомпенсирована реакцией рельсов, а сила сопротивления воздуха мала. Через некоторое время $t$ поезд, пройдя расстояние $l$ – тормозной путь, остановится. Найдем время $t$, нужное для остановки, и расстояние $l$, которое поезд пройдет за это время.

Под действием сила трения $overline{F}_{mp} $поезд будет двигаться с ускорением, равным:

Выберем координатную ось $x$ так, чтобы ее положительное направление совпадало с направлением скорости движения поезда.

Рисунок 1.

Так как сила трения $overline{F}_{mp} $направлена в противоположном направлении, ее проекция на ось х отрицательна. Отрицательна и проекция вектора ускорения на ось $x$. Поэтому если абсолютное значение силы трения равно $left|overline{F}_{mp} right|$, то:

Но ускорение определяется также формулой:

где $v_{0} $- скорость поезда до начала торможения.

Время торможения при движении тела под действием силы трения

Так как нас интересует промежуток времени $t$ от начала торможения до остановки поезда, то конечная скорость $v=0$. Тогда:

«Движение тела под действием силы трения» 👇

Таким образом:

Получим выражения для времени торможения:

Нахождение пути, пройденного телом под действием силы трения

А теперь найдем тормозной путь $l$. Для этого воспользуемся формулой:

Так как $v=0$, то:

Так как $overline{a}=-frac{left|overline{F}_{mp} right|}{m} $, получим:

Из этой формулы видно, что пройденный до остановки путь пропорционален квадрату скорости. Если увеличить скорость вдвое, то потребуется вчетверо больший путь для остановки.

Пример 1

С какой скоростью двигался автомобиль, если после выключения двигателя он прошел до остановки путь равный $80$ м? Коэффициент трения принять равным $0,25$.

Дано: $l=80$м, $mu =0,25$.

Найти: $v$-?

Решение:

Воспользуемся раннее выведенными формулами для нахождения тормозного пути:

$l=frac{mv_{0}^{2} }{2overline{left|F_{mp} right|}} $. (1)

Так как $F_{mp} =mu mg$, подставим в формулу (1) и получим:

$l=frac{mv_{0}^{2} }{2mu mg} $. (2)

Выразив из формулы (2) $v_{0} $найдем величину искомой скорости:

$v_{0} =sqrt{2mu gl} =20$м/с

Ответ: Скорость автомобиля до выключения двигателя $v_{0} =20$ м/с.

Пример 2

Сноубордист массой $80$ кг, имеющий в конце спуска скорость $20$ м/с, останавливается через $40$ с после окончания спуска. Определите силу трения и коэффициент трения.

Дано: $m=80$кг, $v_{0} =20$м/с, $t=40$с.

Найти: $F_{mp} $, $mu $-?

Решение:

Уравнение движения сноубордиста будет иметь вид:

[ma=F_{mp} .]

Используя выражения для нахождения ускорения (конечная скорость $v=0$), получим:

[a=-frac{v_{0} }{t} .]

Тогда:

$F_{mp} =ma=-mfrac{v_{0} }{t} =40H$.

Так как сила трения $overline{F}_{mp} $равна $F_{mp} =mu Bg$, находим коэффициент трения $mu $:

[mu =frac{F_{mp} }{mg} =0,05.]

Ответ: $F_{mp} =40H$, $mu =0,05$.

Пример 3

Сани массой $16$ кг перемещают по горизонтальной плоскости под действием силы $180 H$, направленной под углом $30^circ$ к горизонтали. Коэффициент терния саней о плоскость $0,5$. Определить ускорения, с которым движутся сани.

Дано: $m=16$кг, $F=180 H$, $alpha =30^circ$, $mu =0,5$.

Найти: $a$-?

Решение:

Рисунок 2.

Уравнение движения тела:

[moverline{a}=moverline{g}+overline{N}+overline{F}+overline{F}_{mp} .]

Выберем направление осей $x$ и $y$ и спроецируем на них силы и ускорение:

[begin{array}{l} {ma=Fcos alpha -F_{mp} } \ {0=-Bg+N+Fsin alpha } end{array}]

Поскольку $F_{mp} =mu N$, а из второго уравнения $N=mg-Fsin alpha $, то $F_{mp} =mu (mg-Fsin alpha )$. Тогда из первого уравнения ускорение:

$a=frac{1}{m} [Fcos alpha -mu (mg-Fsin alpha )]approx 7,6м/с^2$

Ответ: $a$=$7,6м/с^2$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

как найти время если в условии задачи дана начальная скорость, масса и коэффициент трения?



Ученик

(209),
на голосовании



13 лет назад

Дополнен 13 лет назад

через сколько времени автомобиль остановится, если начальная скорость 15 м/с, масса 1500 кг и коэффициент сопротивления 0,4

Голосование за лучший ответ

Михаил Поликарпов

Гуру

(3834)


13 лет назад

дествующая “тормозящая” сила F=0.4*1500*9.8=(примерно) 6000 Н
ускорение a=-F/1500=-4 м/с^2
время находим из уравнения выбрав не отрицательный корень
(a*t^2)/2+a*t+v0=0
где v0=15м/c
если ничего не напутал, давно это было.. .

Задачи на Движение
под действием силы трения

Тренировочные задания для подготовки к контрольным,
самостоятельным и диагностическим работам по теме
«ЗАДАЧИ на Движение под действием силы трения» + Решения

Модуль силы трения скольжения можно определить по формуле: Fтр = µN, где µ — коэффициент трения, N— модуль силы нормального давления (и силы реакции опоры). Максимальная сила трения покоя: (Fтр)мах = µN. При одинаковых условиях сила трения скольжения намного больше силы трения качения. Вектор силы трения скольжения всегда направлен противоположно вектору скорости тела. Коэффициент трения можно определить по формуле: µ = Fтр/N. Это величина безразмерная.

Если на тело действует только сила трения, то такое тело движется равнозамедленно до остановки. Расстояние, которое тело проходит до остановки, называют тормозным путем. Обозначают буквой l. Время торможения — время, нужное для остановки.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1.
Автомобиль массой 5 т движется с постоянной скоростью по прямой горизонтальной дороге. Коэффициент трения шин о дорогу равен 0,03. Определите силу тяги, развиваемую двигателем.

ОТВЕТ: Fтяги = 1470 Н.

РЕШЕНИЕ:ЗАДАЧИ на Движение под действием силы трения

Задача № 2.
Сани со стальными полозьями перемещают равномерно по льду, прилагая горизонтальное усилие 2 Н. Каков вес саней?

ОТВЕТ: Вес саней 100 Н.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 3.
Деревянный брусок массой 3 кг тянут по горизонтальной деревянной доске с помощью пружины. Коэффициент трения равен 0,3. Найти удлинение пружины, если ее жесткость 10 кН/м.

ОТВЕТ: Удлинение пружины 0,09 см.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 4.
Велосипедист, ехавший со скоростью 36 км/ч, увидел примерно в 10 м от себя препятствие и резко затормозил. Успеет ли велосипедист остановиться до препятствия?

ОТВЕТ: Велосипедист успеет остановиться до препятствия, так как S = 10 м (расстояние до препятствия), а тормозной путь велосипедиста ≈ 7 м. Если скорость движения возрастет вдвое, то тормозной путь увеличится в 4 раза.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 5.
Автомобиль движется со скоростью 10 м/с по гладкой горизонтальной дороге. Пройдя с выключенным мотором расстояние 150 м, автомобиль останавливается. Сколько времени автомобиль двигался с выключенным мотором и каков коэффициент трения при его движении?

ОТВЕТ: t = 30 с;  µ = 0,033.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

ЗАДАЧИ на Движение под действием силы трения

Задача № 6.
Лыжник массой 60 кг, имеющий в конце спуска скорость 10 м/с, останавливается через 40 с после окончания спуска. Определить величину силы сопротивления.

ОТВЕТ: Fтp = 15 Н.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 7.
Тело скользит равномерно по наклонной плоскости с углом наклона 30°. Определите коэффициент трения тела о плоскость.

ОТВЕТ: µ ≈ 0,58.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 8.
С какой наибольшей скоростью может ехать мотоциклист по горизонтальной плоскости, описывая дугу радиусом 80 м, если коэффициент трения резины о почву 0,4? На какой угол от вертикального положения он при этом отклоняется?

ОТВЕТ: vмах = 17,7 м/с = 64 км/ч — наибольшая скорость движения; a ≈ 22°.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Задача № 9.
Шофер грузовика, едущего со скоростью 72 км/ч, заметил на дороге знак. Сможет ли он, не сбавляя скорости, проехать поворот, если его радиус равен 25 м? Считать коэффициент трения шин о дорогу 0,4.

ОТВЕТ: Шофер должен уменьшить скорость движения, так как радиус окружности, которую опишет грузовик при данной скорости, 100 м, а радиус поворота — 25 м. В противном случае грузовик занесет на обочину дороги.

Нажмите на спойлер, чтобы увидеть РЕШЕНИЕ

Дополнительный материал для решения задач

сила трения при покое сила трения при движениисвязь силы трения с силой тяжести


Конспект урока по физике «ЗАДАЧИ на Движение под действием силы трения с решениями». Тренировочные задания для подготовки к контрольным, самостоятельным, проверочным и диагностическим работам. Выберите дальнейшее действие:

  • Вернуться к Списку конспектов по физике для 7-11 классов
  • Найти конспект через Кодификатор ОГЭ по физике
  • Найти конспект через Кодификатор ЕГЭ по физике

Сила трения. Коэффициент трения

  1. Причины возникновения трения
  2. Трение покоя
  3. Трение скольжения
  4. Трение качения
  5. Задачи
  6. Лабораторная работа №8. Измерение коэффициента трения скольжения

п.1. Причины возникновения трения

При движении одного тела по поверхности другого всегда возникает сила, направленная противоположно направлению скорости и замедляющая движение. Эта сила называется силой трения.

По своей природе сила трения отличается от силы тяготения и силы упругости, которые были рассмотрены в предыдущих параграфах.

Причины возникновения силы трения можно разделить на два класса: 1) шероховатость поверхностей контактирующих тел; 2) взаимное притяжение молекул при контакте.

Неровности поверхностей проявляются на макроуровне и видны невооруженным глазом или в оптический микроскоп. Их влияние можно уменьшить, если отполировать поверхности или нанести смазку.

Взаимное притяжение молекул проявляется на микроуровне и приводит к тому, что даже на идеально отполированных поверхностях не удается избежать трения, когда частицы одного тела перемещаются относительно частиц другого.

Сила трения – это сумма межмолекулярных сил, возникающих при деформациях и изломах контактирующих поверхностей за счет разрыва межмолекулярных связей.
Сила трения направлена вдоль поверхностей контактирующих тел.

Как и сила упругости, сила трения имеет электромагнитную природу и связана с межмолекулярным взаимодействием.

Но в отличие от силы упругости, причиной силы трения является разрыв межмолекулярных связей. Кроме того, если сила упругости всегда направлена перпендикулярно поверхностям контактирующих тел, то сила трения всегда направлена вдоль этих поверхностей.

В зависимости от характера движения контактирующих тел различают трение покоя, трение скольжения и трение качения.

п.2. Трение покоя

Сила трения, возникающая при относительной скорости двух контактирующих тел равной нулю, называется силой трения покоя.
Сила трения покоя равна по модулю приложенной силе и направлена в сторону, противоположную возможному движению тела, параллельно контактирующим поверхностям.
Если параллельно поверхности контакта на тело не действует сила, сила трения покоя равна нулю. Максимальное значение силы трения, при котором тело все ещё неподвижно, называется максимальной силой трения покоя.

Пример изменения силы трения покоя

Трение покоя Сила трения покоя равна приложенной силе, которая все ещё не приводит тело в движение. Допустим, что мы прикладываем к шкафу последовательно силу 100 Н, 200 Н, 300 Н, и он начинает равномерно двигаться только при 300 Н.
Как только тело начинает скользить, на него уже действует сила трения скольжения. Получаем:
Приложенная сила, Н Движение Сила трения покоя, Н Сила трения скольжения, Н
100 Нет 100
200 Нет 200
300 Есть, равномерное 300

п.3. Трение скольжения

Силу трения, возникающую в результате движения одного тела по поверхности другого, называют силой трения скольжения.
Сила трения скольжения всегда направлена в сторону, противоположную перемещению тела («тормозит» движение).

Трение скольжения Если тело расположено на горизонтальной опоре, сила тяжести (mg), действующая на него, равна по величине силе реакции опоры (N) (см. §22 данного справочника).
Сила трения направлена противоположно силе тяги.

Сила трения скольжения прямо пропорциональна силе реакции опоры: $$ F_{text{тр}}=mu N $$ Коэффициент (mu) называют коэффициентом трения скольжения; величина (mu) зависит от материала трущихся тел и состояния их поверхностей.

Значения коэффициентов трения скольжения для различных поверхностей приводятся в справочных таблицах.

При проектировании и разработке машин и механизмов коэффициенты трения скольжения для отдельных узлов определяются в специальных лабораториях.

п.4. Трение качения

Сила трения, возникающая при качении одного тела по поверхности другого, называется силой трения качения.

Сила трения качения значительно меньше силы трения скольжения.

Трение качения Уменьшение трения за счет качения используется в шариковых и роликовых подшипниках.
Первый подшипник качения был установлен в опоре ветряка, построенного в Англии в 1780 г. Этот подшипник состоял из двух литых чугунных дорожек качения, между которыми находилось 40 чугунных шаров.
Сегодня подшипники являются незаменимой деталью во всех подвижных конструкциях; они уменьшают износ трущихся деталей и снижают потери энергии на нагрев из-за трения.

п.5. Задачи

Задача 1. Найдите коэффициент трения между шинами автомобиля и дорогой, если при равномерном движении по прямолинейному участку двигатель развивает силу тяги, равную 30 кН. Масса автомобиля 6 т.

Дано:
(m=6 text{т}=6cdot 10^3 text{кг})
(F_{text{тяги}}=30 text{кН}=3cdot 10^4 text{Н})
(gapprox 10 text{м/с}^2)
__________________
(mu-?)

Задача 1
Коэффициент трения $$ mu=frac{F_{text{тр}}}{N}. $$ При равномерном движении скорость постоянна и ускорение (overrightarrow{a}=0). По второму закону Ньютона, равнодействующая горизонтальных сил равна нулю $$ overrightarrow{F_{text{тр}}}+ overrightarrow{F_{text{тяги}}}=0. $$ Значит, сила трения и сила тяги равны по модулю: $$ F_{text{тр}}=F_{text{тяги}}. $$ Сила реакции горизонтальной опоры равна силе тяжести, действующей на автомобиль: $$ n=mg. $$ Получаем: $$ mu=frac{F_{text{тр}}}{N}= frac{F_{text{тяги}}}{mg}, mu=frac{3cdot 10^4}{6cdot 10^3cdot 10}=0,5. $$ Ответ: 0,5

Задача 2. Деревянный брусок массой 3 кг равномерно тянут по горизонтальной деревянной доске с помощью динамометра. Жесткость пружины динамометра равна 3 Н/см, коэффициент трения дерева об дерево 0,3. На сколько сантиметров растянется пружина?

Дано:
(m=3 text{кг})
(k=3frac{text{Н}}{text{см}}=frac{3 text{Н}}{0,01 text{м}}=300frac{text{Н}}{text{м}})
(mu=0,3)
(gapprox 10 text{м/с}^2)
__________________
(Delta l-?)

Показания динамометра – это сила упругости, равная силе тяги. При равномерном движении сила тяги равна по модулю силе трения. Поэтому begin{gather*} F_{text{упр}}=kDelta l=F_{text{тр}}=mu N=mu mgRightarrow kDelta l=mu mg end{gather*} Получаем: $$ Delta l=frac{mu mg}{k}, Delta l=frac{0,3cdot 3cdot 10}{300}=0,03 (text{м})=3 (text{см}) $$ Ответ: 3 см.

Задача 3. Автомобиль движется по горизонтальному участку дороги со скоростью 72 км/ч. Рассчитайте время торможения и тормозной путь до полной остановки, если коэффициент трения колес о дорогу равен 0,4.

Дано:
(v_1=72frac{text{км}}{text{ч}}=20frac{text{м}}{text{с}})
(mu=0,4)
(v_2=0)
(gapprox 10 text{м/с}^2)
__________________
(t, s-?)

Автомобиль тормозит за счет силы трения. По второму закону Ньютона begin{gather*} F_{text{тр}}=ma. end{gather*} С другой стороны на горизонтальной дороге $$ F_{text{тр}}=mu N=mu mg. $$ Получаем: $$ ma=mu mgRightarrow a=mu g. $$ По определению ускорения $$ a=frac{v_2-v_1}{t}. $$ Т.к. (v_2=0), ускорение отрицательное.
Модуль ускорения $$ |a|=frac{v_1}{t}=mu gRightarrow t=frac{v_1}{mu g} $$ Время торможения прямо пропорционально скорости и обратно пропорционально коэффициенту трения. $$ t=frac{20}{0,4cdot 10}=5 (text{с}) $$ Найдем тормозной путь $$ s=v_1t+frac{at^2}{2}=v_1t+ left(frac{overbrace{v_2}^{=0}-v_1}{t}right)frac{t^2}{2}=v_1t -frac{v_1t}{2}=frac{v_1t}{2}=frac{v_1t}{2}cdot frac{v_1}{mu g}=frac{v_1^2}{2mu g} $$ Тормозной путь прямо пропорционален квадрату(!) скорости и обратно пропорционален коэффициенту трения. $$ s=frac{20^2}{2cdot 0,4cdot 10}=50 (text{м}) $$ Ответ: 5 с; 50 м.

п.6. Лабораторная работа №8. Измерение коэффициента трения скольжения

Цель работы
Научиться измерять силу трения скольжения и определять коэффициент трения скольжения. Изучить зависимость коэффициента трения скольжения от материалов соприкасающихся тел и от площади опоры движущегося тела.

Теоретические сведения

Лабораторная работа №8 При (v=const) (равномерное движение) получаем
По вертикали (moverrightarrow{g}=-overrightarrow{N}). Модули этих сил равны
По горизонтали (overrightarrow{F_{text{тр}}}=-overrightarrow{F_{text{тяги}}}). Модули этих сил равны $$ F_{text{тяги}}=F_{text{тр}}=mu N=mu mg $$

Если тело перемещать с помощью динамометра, то сила упругости, возникающая в пружине, будет равна силе тяги. Т.е., сила тяги непосредственно измеряется динамометром.

В работе используются стандартные лабораторные грузики массой 100 г.

Измерив силу тяги и зная массу перемещаемого тела, рассчитываем коэффициент трения: $$ mu=frac{F_{text{тяги}}}{mg} $$

Для расчетов используем стандартное значение (g=9,80665 text{м/с}^2).

Погрешность для прямых измерений (F_{text{тяги}}) определяется как половина цены деления динамометра. Погрешность для массы определяется по маркировке грузиков и бруска, (Delta m=2 text{г}) для (m=100 text{г}), т.е. (delta_m=2text{%}).

Погрешность эксперимента (delta_e) рассчитывается как средняя арифметическая по результатам измерений и вычислений.

Приборы и материалы
Лабораторный динамометр на 5 Н; набор грузиков по 100 г; деревянный брусок с крючком 100 г; деревянная доска; наждачная бумага.

Ход работы
1. Прикрепите динамометр к бруску, положите доску горизонтально, поставьте брусок самой большой по площади гранью слева на доску.
2. Перемещая брусок слева направо по доске, добейтесь равномерного скольжения (со стабильными показаниями динамометра). Снимите показания динамометра и запишите.
3. Повторите эксперимент, нагружая брусок одним, двумя, тремя и четырьмя грузиками.
4. Рассчитайте коэффициент трения дерева об дерево, определите относительную и абсолютную погрешности эксперимента.
5. Повторите эксперимент, перемещая брусок по доске, обмотанной наждачной бумагой. Найдите коэффициент трения дерева об наждак, определите относительную и абсолютную погрешности эксперимента.
6. Снимите наждачную бумагу и повторите эксперимент для трения дерева об дерево. Однако на этот раз брусок должен опираться на меньшую по площади грань. Рассчитайте коэффициент трения дерева об дерево в этом случае.
7. Сравните полученные коэффициенты трения, сделайте выводы о зависимости коэффициента трения от материала соприкасающихся поверхностей и от площади опоры движущегося тела.

Результаты измерений и вычислений

Цена деления динамометра (d=0,1 text{Н}).

Таблица для расчета коэффициента трения скольжения дерева об дерево

  Опыт (m, text{кг}) (F_{text{тяги}}, text{Н}) (mu=frac{F_{text{тяги}}}{mg}) (Delta=|mu-mu_{text{ср}}|)
1 Брусок 0,1 0,3 0,306 0,026
2 Брусок + 1 грузик 0,2 0,7 0,357 0,025
3 Брусок + 2 грузика 0,3 1,0 0,340 0,008
4 Брусок + 3 грузика 0,4 1,3 0,331 0,001
5 Брусок + 4 грузика 0,5 1,6 0,326 0,006
  Всего 1,660 0,065

Среднее значение коэффициента трения $$ mu_{text{ср}}=frac{1,660}{5}=0,332 $$ Среднее значение абсолютного отклонения $$ Delta =frac{0,065}{5}=0,013 $$ Относительная погрешность begin{gather*} delta=frac{0,013}{0,332}cdot 100text{%}approx 3,9text{%}\[7pt] mu_{text{дд}}=(0,332pm 0,013), delta_mu=3,9text{%} end{gather*}

Таблица для расчета коэффициента трения скольжения дерева об наждак

  Опыт (m, text{кг}) (F_{text{тяги}}, text{Н}) (mu=frac{F_{text{тяги}}}{mg}) (Delta=|mu-mu_{text{ср}}|)
1 Брусок 0,1 0,6 0,612 0,039
2 Брусок + 1 грузик 0,2 1,1 0,561 0,012
3 Брусок + 2 грузика 0,3 1,7 0,578 0,005
4 Брусок + 3 грузика 0,4 2,2 0,561 0,012
5 Брусок + 4 грузика 0,5 2,7 0,551 0,022
  Всего 2,862 0,090

Среднее значение коэффициента трения $$ mu_{text{ср}}=frac{2,862}{5}approx 0,572 $$ Среднее значение абсолютного отклонения $$ Delta =frac{0,090}{5}=0,018 $$ Относительная погрешность begin{gather*} delta=frac{0,018}{0,572}cdot 100text{%}approx 3,1text{%}\[7pt] mu_{text{дн}}=(0,572pm 0,018), delta_mu=3,1text{%} end{gather*}

Таблица для расчета коэффициента трения скольжения дерева об дерево (узкая грань)

  Опыт (m, text{кг}) (F_{text{тяги}}, text{Н}) (mu=frac{F_{text{тяги}}}{mg}) (Delta=|mu-mu_{text{ср}}|)
1 Брусок 0,1 0,35 0,357 0,011
2 Брусок + 1 грузик 0,2 0,7 0,357 0,011
3 Брусок + 2 грузика 0,3 1,0 0,340 0,006
4 Брусок + 3 грузика 0,4 1,3 0,331 0,015
5 Брусок + 4 грузика 0,5 1,7 0,347 0,000
  Всего 1,732 0,043

Среднее значение коэффициента трения $$ mu_{text{ср}}=frac{1,732}{5}approx 0,346 $$ Среднее значение абсолютного отклонения $$ Delta =frac{0,043}{5}approx 0,009 $$ Относительная погрешность begin{gather*} delta=frac{0,009}{0,346}cdot 100text{%}approx 2,5text{%}\[7pt] mu ‘_{text{дд}}=(0,346pm 0,009), delta_mu=2,5text{%} end{gather*}

Выводы
На основании проделанной работы можно сделать следующие выводы.

В работе исследовалась зависимость коэффициента трения скольжения от поверхностей, из которых изготовлены соприкасающиеся тела.

Для скольжения дерева об дерево был получен коэффициент begin{gather*} mu_{text{дд}}=(0,332pm 0,013), delta_mu=3,9text{%} end{gather*}

Для скольжения дерева об наждак был получен коэффициент begin{gather*} mu_{text{дн}}=(0,572pm 0,018), delta_mu=3,1text{%}\[7px] mu_{text{дн}}gt mu_{text{дд}} end{gather*}

Наждак является более шероховатой поверхностью и сила трения на ней больше.

Коэффициент трения скольжения сильно зависит от материалов соприкасающихся поверхностей.

Также в работе исследовалась зависимость коэффициента трения скольжения от площади опоры движущегося тела. Брусок выставлялся на более узкую грань, и изучалось скольжение дерева об дерево в этом случае. Был получен коэффициент begin{gather*} mu’_{text{дд}}=(0,346pm 0,009), delta_mu=2,5text{%} end{gather*} Поскольку begin{gather*} 0,319le mu_{text{дд}}le 0,345 0,337le mu’_{text{дд}}le 0,355 end{gather*} Полученные отрезки значений перекрываются.

Таким образом, в рамках погрешности эксперимента коэффициент трения скольжения не зависит от площади опоры движущегося тела.

«Любую задачу реально выполнить,

если
разбить ее на выполнимые части»

Данная
тема будет посвящена решению задач на силы трения и изучению движение тела с
учетом сил трения.

Задача 1. Упряжка ездовых собак может тянуть по снегу
сани с максимальной силой 500 Н. Какой массы саней с грузом может перемещать
данная упряжка собак, двигаясь равномерно, если коэффициент трения саней о снег
составляет 0,1?

ДАНО:

РЕШЕНИЕ:

Запишем второй закон Ньютона

В проекциях на ось Ох:

В проекциях на ось Оу:

Сила трения:

Тогда искомая масса равна

Ответ: 500 кг.

Задача 2. Мальчик начинает тянуть санки по снегу,
прилагая силу 20 Н, направленную под углом 30о к горизонту.
Определите ускорение, с которым движутся санки, если их масса равна 4 кг, а
коэффициент трения между санками и снегом равен 0,01.

ДАНО:

РЕШЕНИЕ:

Запишем второй закон Ньютона

В проекциях на ось Ох:

В проекциях на ось Оу:

Из последнего уравнения выразим значение силы нормальной
реакции опоры

Сила трения определяется по формуле

Тогда

Тогда ускорение санок равно

Ответ: 4,3 м/с2.

Задача 3. Определите наименьший радиус поворота,
который может сделать автомобиль, движущийся со скоростью 15 м/с, если
коэффициент трения между шинами автомобиля и дорогой равен 0,1.

ДАНО:

РЕШЕНИЕ:

Запишем второй закон Ньютона для рассматриваемого случая

В проекциях на ось Ох:

В проекциях на ось Оу:

Сила трения определяется по формуле

Центростремительное ускорение определяется по формуле

С учётом последней формулы получаем

Ответ: 225 м.

Задача 4. Автомобиль массой 3500 кг, разгоняясь из
состояния покоя, достигает скорости 10 м/с, а затем продолжает движение с
выключенным двигателем до полной остановки. Определите весь путь, пройденный
автомобилем за время движения, если сила тяги двигателя составляет 3500 Н, а
коэффициент трения шин о дорогу равен 0,02.

ДАНО:

РЕШЕНИЕ:

Запишем второй закон Ньютона

В проекциях на ось Ох:

В проекциях на ось Оу:

Сила трения определяется по формуле

Тогда получаем

Путь, пройденный автомобилем на разгонном участке

Перейдем к рассмотрению второго участка движения автомобиля
— участка торможения

Запишем второй закон Ньютона для второго участка

В проекциях на ось Ох:

В проекциях на ось Оу:

Сила трения определяется по формуле

Тогда получаем

Длина участка торможения:

Весь путь, пройденный автомобилем, складывается из длин
участков разгона и торможения

Ответ: 312,5 м.

Добавить комментарий