Как найти время через которое догонит

Движение является способом существования всего, что человек видит вокруг себя. Поэтому задачи на перемещение разных объектов в пространстве являются типичными проблемами, которые предлагается разрешить школьникам. В данной статье подробно рассмотрим движение вдогонку и формулы, которые необходимо знать, чтобы уметь решать задачи такого типа.

Что такое движение?

Примеры движения

Перед тем, как переходить к рассмотрению формул движения вдогонку, необходимо разобраться с этим понятием подробнее.

Под движением подразумевают изменение пространственных координат объекта за определенный промежуток времени. Например, автомобиль, который движется по дороге, самолет, который летит в небесах, или кошка, бегущая по траве, – все это примеры движения.

Важно отметить, что рассматриваемый движущийся объект (автомобиль, самолет, кошка) считают безмерным, то есть его размеры не имеют совершенно никакого значения для решения проблемы, поэтому ими пренебрегают. Это своего рода математическая идеализация, или модель. Для подобного объекта существует название: материальная точка.

Движение вдогонку и его особенности

Теперь перейдем к рассмотрению популярных школьных задач на движение вдогонку и формул для него. Под этим видом движения понимают перемещение двух или более объектов в одном направлении, которые отправляются в свой путь из разных пунктов (материальные точки имеют разные начальные координаты) или/и в разное время, но из одного и того же пункта. То есть создается ситуация, при которой одна материальная точка пытается догнать другую (другие), поэтому эти задачи получили такое название.

Согласно определению, особенностями движения вдогонку являются следующие:

  • Наличие двух и более движущихся объектов. Если двигаться будет только одна материальная точка, то ей “некого” будет догонять.
  • Прямолинейное перемещение в одном направлении. То есть объекты осуществляют движение вдоль одной и той же траектории и в одном направлении. Движение навстречу друг другу не входит в число рассматриваемых задач.
  • Пункт отправления играет важную роль. Идея заключается в том, чтобы в момент начала движения объекты были разделены в пространстве. Такое разделение будет иметь место, если они стартуют в одинаковое время, но из разных пунктов или же из одного пункта, но в разное время. Старт двух материальных точек из одного пункта и в одинаковое время к задачам вдогонку не относится, поскольку в этом случае один объект будет постоянно удаляться от другого.

Формулы движения вдогонку

Прямолинейное движение

В 4 классе общеобразовательной школы обычно рассматриваются подобные задачи. Это означает, что формулы, которые необходимы для решения, должны быть максимально простыми. Такому случаю удовлетворяет равномерное прямолинейное движение, в котором фигурируют три физических величины: скорость, пройденный путь и время движения:

  • Скорость – величина, показывающая расстояние, которое проходит тело за единицу времени, то есть она характеризует быстроту изменения координат материальной точки. Обозначается скорость латинской буквой V и измеряется, как правило, в метрах в секунду (м/с) или в километрах в час (км/ч).
  • Путь – это расстояние, которое проходит тело за время своего движения. Он обозначается буквой S (D) и выражается обычно в метрах или километрах.
  • Время – период движения материальной точки, который обозначается буквой T и приводится в секундах, минутах или часах.

Описав основные величины, приведем формулы движения вдогонку:

  • s = v*t;
  • v = s/t;
  • t = s/v.

Решение любой задачи рассматриваемого типа базируется на применении этих трех выражений, которые необходимо запомнить каждому школьнику.

Пример решения задачи №1

Автомобиль обгоняет грузовик

Приведем пример задачи движения вдогонку и решения (формулы, необходимые для него, приведены выше). Проблема формулируется следующим образом: “Грузовик и легковой автомобиль одновременно выезжают из пунктов A и B со скоростями 60 км/ч и 80 км/ч соответственно. Оба транспортных средства движутся в одном направлении так, что автомобиль приближается к пункту A, а грузовик удаляется от обоих пунктов. Через какое время автомобиль догонит грузовик, если расстояние между A и B составляет 40 км?”.

Перед тем как решать задачу, необходимо научить ребят определять суть проблемы. В данном случае она заключается в неизвестном времени, которое проведут оба транспортных средства в пути. Предположим, что это время равно t часам. То есть через время t автомобиль догонит грузовик. Найдем это время.

Рассчитаем расстояние, которое пройдет каждый из движущихся объектов за время t, имеем: s1 = v1*t и s2 = v2*t, здесь s1, v1 = 60 км/ч и s2, v2 = 80 км/ч – пройденные пути и скорости движения грузовика и автомобиля до того момента, когда второй догонит первого. Поскольку расстояние между пунктами A и B равно 40 км, то автомобиль, догнав грузовик, пройдет путь на 40 км больше, то есть s2 – s1 = 40. Подставляя в последнее выражение формулы для путей s1 и s2, получим: v2*t – v1*t = 40 или 80*t – 60*t = 40, откуда t = 40/20 = 2 ч.

Отметим, что данный ответ можно получить, если использовать понятие скорости сближения между движущимися объектами. В задаче она равна 20 км/ч (80-60). То есть при этом подходе возникает ситуация, когда один объект движется (автомобиль), а второй относительно него стоит на месте (грузовик). Поэтому достаточно поделить расстояние между пунктами A и B на скорость сближения, чтобы решить задачу.

Пример решения задачи №2

Автомобиль обгоняет велосипедиста

Приведем еще один пример задач на движение вдогонку (формулы для решения используются те же): “Из одного пункта выезжает велосипедист, а через 3 часа в ту же сторону выезжает автомобиль. Через какое время после начала своего движения автомобиль догонит велосипедиста, если известно, что он движется в 4 раза быстрее?”.

Решать эту задачу следует так же, как и предыдущую, то есть необходимо определить, какой путь пройдет каждый участник движения до момента, когда один догонит другого. Предположим, что автомобиль догнал велосипедиста через время t, тогда получаем следующие пройденные пути: s1 = v1*(t+3) и s2 = v2*t, здесь s1, v1 и s2, v2 – пути и скорости велосипедиста и автомобиля соответственно. Заметим, что до того, как автомобиль догнал велосипедиста, последний находился в пути t + 3 часа, так как он выехал на 3 часа раньше.

Зная, что оба участника отправились из одного пункта, и пройденные ими пути будут равны, получаем: s2 = s1 или v1*(t+3) = v2*t. Скорости v1 и v2 нам не известны, однако в условии задачи сказано, что v2 = 4*v1. Подставляя это выражение в формулу для равенства путей, получим: v1*(t+3) = 4*v1*t или t+3 = 4*t. Решая последнее, приходим к ответу: t = 3/3 = 1 ч.

Некоторые советы

Занятия в 4 классе

Формулы движения вдогонку являются простыми, тем не менее школьников в 4 классе важно научить мыслить логически, понимать значение величин, с которыми они имеют дело, и осознавать проблему, которая перед ними стоит. Ребят рекомендуется призывать к рассуждениям вслух, а также к командной работе. Кроме того, для наглядности задач можно использовать компьютер и проектор. Все это способствует развитию у них абстрактного мышления, коммуникативных навыков, а также математических способностей.

задачи на движение в противоположных направленияхЗадачи на движение (скорость, время и расстояние) являются одной из основных типов задач по математике, которые должен уметь решать каждый школьник. В данной статье рассмотрены все типы задач на движение:
— простые задачи на скорость, время и расстояние;
— задачи на встречное и противоположное движение;
— задачи на движение в одном направлении (на сближение и удаление);
— решение задач на движение по реке.

Скорость, время и расстояние: определения, обозначения, формулы

скорость = расстояние: время — формула нахождения скорости;

время = расстояние: скорость — формула нахождения времени;

расстояние = скорость · время — формула нахождения расстояния.

Скорость – это расстояние, пройденное за единицу времени: за 1 секунду, за 1 минуту, за 1 час и так далее.
Пример обозначения: 7 км/ч (читается: семь километров в час).
Если весь путь проходится с одинаковой скоростью, то такое движение называется равномерным.

На сайте представлены калькуляторы онлайн, с помощью которых можно перевести скорость, время и расстояние в другие единицы измерения:

1.Конвертер единиц измерения скорости
2.Конвертер единиц измерения времени
3.Конвертер единиц измерения расстояния (длины)

Примеры простых задач.

Задача 1. 

Автомобиль проехал 180 км за 2 часа. Чему равна скорость автомобиля?
Решение: 180:2=90 (км/ч.)
Ответ: Скорость автомобиля равна 90 км/ч.

Задача 2. 

Автобус проехал путь в 240 км со скоростью 80 км/ч. Сколько времени ехал автобус?
Решение: 240:80=3 (ч.)
Ответ: Автобус проехал 3 часа.

Задача 3. 

Грузовик ехал 5 часов со скоростью 70 км/ч. Какое расстояние проехал грузовик за это время?
Решение: 70 · 3 = 350 (км)
Ответ: Грузовик за 5 часов проехал 350 км.

Задачи на встречное движение

В таких задачах два объекта движутся навстречу друг другу.
Задачи на встречное движение можно решать двумя способами:
1. Найти значения скорости, времени и расстояния для каждого объекта.
2. Найти скорость сближения объектов (как сумму их скоростей), общие время и расстояние. Скорость сближения — это расстояние, пройденное двумя объектами навстречу друг другу за единицу времени.

Задача 4. 

Из двух пунктов навстречу друг другу одновременно выехали два поезда и встретились через 3 часа. Первый поезд ехал со скоростью 80 км/ч, а второй – со скоростью 70 км/ч. На каком расстоянии друг от друга находятся пункты?
Решение: 
Первый способ. Найти расстояние, которое проехал каждый автобус, и сложить полученные данные:
80*3=240 (км) – проехал 1й автобус, 70*3=210 (км) – проехал 2й поезд,
240+210=450 (км) – проехали два поезда.
Второй способ. Найти скорость сближения поездов, то есть на сколько сокращалось расстояние между ними каждый час; а затем найти расстояние:
80+70=150 (км/ч), 150*3=450 (км).
Ответ: города находятся на расстоянии 450 км.

Задача 5. 

Из двух городов навстречу друг другу одновременно выехали два автобуса. Первый автобус ехал со скоростью 80 км/ч, а второй – со скоростью 70 км/ч. Какое расстояние будет между ними через 2 часа, если расстояние между городами 450 км?
Решение: 
Первый способ. Определить, сколько километров проехал каждый автобус и найти расстояние, которое осталось проехать:
80*2=160 (км)-проехал 1й автобус, 70*2=140 (км)-проехал 2й автобус,
160+140=300 (км)-проехали два автобуса, 450-300=150 (км)-осталось проехать.
Второй способ. Найти скорость сближения автобусов и умножить ее на время в пути.
80*70=150 (км/ч) – скорость сближения; 150*2=300 (км) – проехали два автобуса; 450-300=150 (км) – осталось проехать.
Ответ: Через 2часа расстояние между автобусами будет 150 км.

Задачи на движение в противоположных направлениях

В таких задачах два объекта движутся в противоположных направлениях, отдаляясь друг от друга. В таком типе задачи используется скорость удаления. Задачи на движение в противоположных направлениях также можно решить двумя способами:
1. Найти значения скорости, времени и расстояния для каждого объекта.
2. Найти скорость удаления объектов (как сумму их скоростей), общие время и расстояние. Скорость удаления — это расстояние, которое увеличивается за единицу времени между двумя объектами, двигающимися в противоположных направлениях.

Задача 6. 

Два автомобиля выехали одновременно из одного и того же пункта в противоположных направлениях. Скорость первого автомобиля 100 км/ч, скорость второго – 70 км/ч. Какое расстояние будет между автомобилями через 4 часа?
Решение: 
Первый способ. Определить расстояние, которое проехал каждый автомобиль и найти сумму полученных результатов:
1) 100 · 4 = 400 (км) – проехал первый автомобиль
2) 70 · 4 = 280 (км) – проехал второй автомобиль
400 + 280 = 680 (км)
Второй способ. Найти скорость удаления, то есть значение увеличения расстояния между автомобилями за каждый час, а затем скорость удаления умножить на время в пути.
100 + 70= 170 км/ч – это скорость удаления автомобилей.
170 · 4 = 680 (км)
Ответ: Через 4 часа между автомобилями будет 680 км.

Задача 7. 

Из двух населённых пунктов, расстояние между которыми 40 км, вышли в противоположных направлениях два туриста. Первый турист шёл со скоростью 4 км/ч, а второй — 5 км/ч. Какое расстояние между туристами будет через 5 часов?
Решение: 
Первый способ. Определить сколько километров прошёл каждый из туристов за 5 часов, сложить полученные результаты, а затем к полученному расстоянию прибавить расстояние между населенными пунктами.
1) 4 · 5 = 20 (км) – прошёл первый турист;
2) 5 · 5 = 25 (км) – прошёл второй турист;
3) 20 + 25 = 45 (км);
4) 45 + 40 = 85 (км).
Второй способ. Найти скорость удаления пешеходов, затем найти пройденное расстояние, к полученному результату прибавить расстоянием между населёнными пунктами.
4 + 5 = 9 (км/ч);
9 · 5 = 45 (км);
45 + 40 = 85 (км);
Ответ: Через 5 часов расстояние между пешеходами будет 85 км.

Задачи на движение в одном направлении

В таких задачах два объекта движутся в одном направлении с разной скоростью, при этом они сближаются друг с другом или отдаляются друг от друга. Соответственно находится скорость сближения или скорость удаления объектов.

Формула нахождения скорости сближения или удаления двух объектов, которые движутся в одном направлении: из большей скорости вычесть меньшую.

Задача 8. 

Из города выехал автомобиль со скоростью 40 км/ч. Через 4 часа вслед за ним выехал второй автомобиль со скоростью 60 км/ч. Через сколько часов второй автомобиль догонит первый?,
Решение: 
Задачу можно решить с помощью уравнения.
В этом случае скорость первого автомобиля 40 км/час, время в пути на 4 часа больше, чем время второго автомобиля (или t+4). Скорость второго автомобиля 60 км/час, время в пути – t. Расстояние оба автомобиля проехали одинаковое. Поэтому можно составить уравнение: 40*(t+4)=60*t. Отсюда получаем t=8 (часов) – время в пути второго автомобиля, за которое он догонит первый.
Решение задачи без использования уравнения.
Так как на момент выезда второго автомобиля из города первый уже был в пути 4 часа, то за это время он успел удалиться от города на: 40 · 4 = 160 (км).
Второй автомобиль движется быстрее первого, значит, каждый час расстояние между автомобилями будет сокращаться на разность их скоростей: 60 — 40 = 20 (км/ч) – это скорость сближения.
Разделив расстояние между автомобилями на скорость их сближения, можно узнать, через сколько часов они встретятся: 160 : 20 = 8 (ч)
Ответ: Второй автомобиль догонит первый через 8 часов.

Задача 9. 

Из двух посёлков между которыми 5 км, одновременно в одном направлении вышли два пешехода. Скорость пешехода, идущего впереди, 4 км/ч, а скорость пешехода, идущего позади 5 км/ч. Через сколько часов после выхода второй пешеход догонит первого?
Решение: Так как второй пешеход движется быстрее первого, то каждый час расстояние между ними будет сокращаться. Значит можно определить скорость сближения пешеходов: 5 — 4 = 1 (км/ч).
Оба пешехода вышли одновременно, значит расстояние между ними равно расстоянию между посёлками (5 км). Разделив расстояние между пешеходами на скорость их сближения, узнаем через сколько второй пешеход догонит первого: 5 : 1 = 5 (ч)
Ответ: Через 5 часов второй пешеход догонит первого.

Задача 10. 

Два автомобиля выехали одновременно из одного и того же пункта в одном направлении. Скорость первого автомобиля 80 км/ч, а скорость второго – 40 км/ч.
1) Чему равна скорость удаления между автомобилями?
2) Какое расстояние будет между автомобилями через 3 часа?
3) Через сколько часов расстояние между ними будет 200 км?
Решение: 
1) 80 — 40 = 40 (км/ч) — скорость удаления автомобилей друг от друга.
2) 40 · 3 = 120 (км) – расстояние между ними через 3 часа./
3) 200 : 40 = 5 (ч) – время, через которое расстояние между автомобилями станет 200 км.
Ответ:
1) Скорость удаления между автомобилями равна 40 км/ч.
2) Через 3 часа между автомобилями будет 120 км.
3) Через 5 часов между автомобилями будет расстояние в 200 км.

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки. Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 11. 

Лодка движется по реке. За сколько часов она преодолеет расстояние 120 км, если ее собственная скорость 27 км/ч, а скорость течения реки 3 км/ч?
Решение: 
1) лодка движется по течению реки.
27 + 3 = 30 (км/ч) – скорость лодки по течению реки.
120 : 30 = 4 (ч) – проплывет путь.
2) лодка движется против течения реки.
27 — 3 = 24 (км/ч) — скорость лодки против течения реки
120 : 24 = 5 (ч) – проплывет путь.
Ответ:
1) При движении по течению реки лодка потратит 4 часа на путь.
2) При движении против течения реки лодка потратит 5 часов на путь.

Итак, для решения задач на движение:

  1. Основная формула:S=ν*t;
  2. Нужно сделать чертеж, который поможет определить тип задачи.
  3. Все цифры нужно привести в единые единицы измерения: длина и время

Заключение.

Решая много задач по данной теме, ученик обязательно научится быстро ориентироваться в понятиях «скорость», «время» и «расстояние» и быстро решать задачи всех типов.

Весь курс начальной школы (за 1-4 классы) в краткой форме на сайте edu.intmag24.ru. С помощью курса можно быстро повторить основные моменты и правила по предметам: русский язык, математика, окружающий мир.

Для решения более сложных задач на движение посмотрите, как составлять схемы и таблицы данных для наглядного представления и структурирования данных.

Задачи в которых двигаются вдогонку из разных пунктов решаются по определенному правилу. Два объекта могут сближаться или удаляться в зависимости от их скоростей.

  • Если скорость объекта, который впереди больше, то они удаляются. 

Движение вдогонку

  • Если скорость объекта, который впереди меньше, то они сближаются

Движение вдогонку


Задача 1.  (S) между двумя станциями (60) км. Одновременно в одном и том же направлении выехали поезд и мотоциклист, так что поезд едет впереди. Через сколько часов мотоциклист догонит поезд, если его скорость равна (90) км/ч, а скорость  поезда — (60) км/ч?

Движение вдогонку

Решение:

1) (90-60=30) км/час скорость сближения.

2)(60:30 =2) часа понадобится мотоциклисту, чтобы догнать поезд.

Ответ(2) часа.


Задача 2.  (S) между двумя пристанями равно (80) км. Одновременно из этих пристаней в одном направлении выплывают катер и моторная лодка, так что  моторная лодка плывет впереди. Скорость моторной лодки равна (20) км/ч, скорость катера — (40) км/ч. На каком расстоянии от своей пристани катер догонит моторную лодку?

Движение вдогонку

Решение: 

1)(40-20=20) км/час скорость сближения.

2)(80:20= 4) через такое время катер догонит моторную лодку.

3)(4*40=160 ) км такой путь пройдет катер, прежде чем догонит моторную лодку.

Ответ(160 ) км.

Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

В задачах на движение обычно используются формулы, выражающие закон равномерного движения, т.е.

s = v · t.

При составлении уравнений в таких задачах удобно использовать геометрическую иллюстрацию процесса движения.

При движении по окружности удобно пользоваться понятием угловой скорости, т.е. угла, на который поворачивается вокруг центра движущийся объект за единицу времени. Бывает, что для усложнения задачи, ее условие формулируют в разных единицах измерения. В таких случаях для составления уравнений необходимо выразить все данные значения через одну и ту же единицу измерения.

Источником составления уравнений в задачах на движение служат следующие соображения:

1) Объекты, начавшие движение навстречу друг другу одновременно, движутся до момента встречи одинаковое время. Время, через которое они встретятся, находят по формуле

t = s/(v1 + v2)     (*).

2) Если одно тело догоняет другое, то время, через которое первый догонит второго, вычисляется по формуле

t = s/(v1 – v2)    (**).

3) Если объекты прошли одинаковое расстояние, то величину этого расстояния удобно принять за общее неизвестное задачи.

4) Если при одновременном движении двух объектов по окружности из одной точки, один из них догоняет в первый раз другого, то разность пройденных ими к этому моменту расстояний равна длине окружности

c = 2πR.

5) Для времени новой встречи при движении в противоположных направлениях получим формулу (*), если в одном направлении – то формулу (**).

6) При движении по течению реки скорость объекта равна сумме скоростей в стоячей воде и скорости течения. При движении против течения скорость движения есть разность этих скоростей.

Аналитическое решение задач на движение

Задача 1.

Два пешехода одновременно вышли навстречу друг другу и через 3 часа 20 минут встретились. Сколько времени понадобилось каждому пешеходу, чтобы пройти все расстояние, если известно, что первый пришел в пункт, из которого вышел второй, на 5 часов позже, чем второй пришел в пункт, откуда вышел первый?

Решение.

В этой задаче нет никаких данных о пройденном расстоянии. Это является ее главной особенностью. В таких случаях будет удобно принять за единицу все расстояние, тогда скорость первого пешехода будет равна
v1 = 1/x, а второго – v2 = 1/y, где x часов – время в пути первого, а y – время в пути второго пешеходов.

Условия задачи позволяют составить систему уравнений:

{3⅓ · 1/x + 3⅓ · 1/y = 1,
{x – y = 5.

Решая эту систему, получим, что y = 5, x = 10.

Ответ: 10 часов и 5 часов.

Задача 2.

Из пункта А в пункт В выехал велосипедист. Через 3 часа навстречу ему из пункта В выехал мотоциклист, со скоростью в 3 раза большей, чем скорость велосипедиста. Встреча велосипедиста и мотоциклиста происходит посередине, между пунктами А и В. В случае выезда мотоциклиста позже велосипедиста на 2 часа, их встреча произошла бы на 15 километров ближе а пункту А. Найти расстояние АВ.

Решение.

Сделаем иллюстрацию к задаче (рис. 1).Задачи на движение

Пусть АВ = s км, v км/ч – скорость велосипедиста, 3v км/ч – скорость мотоциклиста.

t1 = 0,5 s/v часов – время до встречи велосипедиста,

t2 = 0,5 s/3v часов – время до встречи мотоциклиста.

По условию  t1 – t2 = 3, значит 0,5 s/v – 0,5s / 3v = 3, откуда s = 9v.

Если бы мотоциклист выехал на 2 часа позже велосипедиста, то они встретились бы в точке F.

AF = 0,5s – 15, BF = 0,5s + 15.

Составим уравнение: (0,5s – 15)/v – (0,5s + 15)/3v = 2, откуда s – 60 = 6v.

Получим систему уравнений:

{s = 9v,
{s = 60 + 6v.

Имеем:

{v = 20,
{s = 180.

Ответ: v = 20 км/ч, s = 180 км.

Графический метод при решении задач на движение

Существует и графический метод решения заданий. Рассмотрим применение этого метода для решения задач на движение. Графическое изображение функций, описывающих условие задачи – зачастую очень удобный прием, который позволяет наглядно представить ситуацию задачи. Так же он позволяет составить новые уравнения или заменить алгебраическое решение задачи чисто геометрическим.

Задача 3.

Пешеход вышел из пункта А в пункт В. Вслед за ним из пункта А выехал велосипедист, но с задержкой в 2 часа. Еще через 30 минут по направлению к пункту В выехал мотоциклист. Пешеход, велосипедист и мотоциклист двигались в пункт В без остановок и равномерно. Через некоторое время после того, как выехал мотоциклист, оказалось, что к этому моменту все трое преодолели одинаковую часть пути от А до В. На сколько минут  раньше пешехода велосипедист прибыл в пункт В, если мотоциклист прибыл в пункт В на 1 час раньше пешехода?

Решение.

Для алгебраического решения требуется введение многих переменных и составления громоздкой системы. Графически ситуация, описанная в задаче, представлена на рисунке 2.Задачи на движение

Используя подобие треугольников AOL и KOM, а так же треугольников AOP и KON можно составить пропорцию:

x/1 = 2/2,5;

x = 4/5 ч = 48 минут.

Ответ: 48 минут.

Задача 4.

Из двух городов навстречу друг другу одновременно вышли два посыльных. После встречи один из них был в пути еще 16 часов, а второй – 9 часов. Определить, сколько времени был в пути каждый посыльный.

Решение.

Пусть время движения до встречи каждого посыльного будет t. По условию задачи строим график (рис. 3).Задачи на движение

Аналогично задаче 3, необходимо использовать подобие треугольников.

Имеем:

t/16 = 9/t;

t2 = 144;

t = 12.

Значит, 12 + 16 = 28 (часов) – был в пути первый, 12 + 9 = 21 (час) – был в пути второй.

Ответ: 21 час и 28 часов.

Вот мы и разобрали основные методы решения задач на движение. В ЕГЭ они встречаются очень часто, поэтому обязательно практикуйтесь в решении данных задач.

 Остались вопросы? Не знаете, как решать задачи на движение?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим задачи на движение вдогонку, в которых объекты движутся в одном направлении, но выезжают из разных пунктов, находящихся на некотором расстоянии друг от друга.

При движении вдогонку объекты могут как сближаться, так и удаляться.

Если скорость объекта, который идет впереди, меньше скорости идущего вслед за ним объекта, то второй догоняет первого и они сближаются.

Чтобы найти скорость сближения, надо из большей скорости вычесть меньшую:

    [{v_c} = {v_1} - {v_2}]

    [({v_1} > {v_2}).]

Если скорость идущего впереди объекта больше скорости объекта, который движется следом, то второй не сможет  догнать первого и они удаляются друг от друга.

Чтобы найти скорость удаления, надо из большей скорости вычесть меньшую:

    [{v_y} = {v_2} - {v_1}]

    [({v_2} > {v_1}).]

Скорость, время и расстояние связаны между собой формулой пути:

    [s = v cdot t]

Задача 1.

Расстояние между двумя пунктами 20 км. Из этих пунктов в одном направлении одновременно выехали автомобиль и мотоциклист, причем автомобиль двигался впереди. Через 5 часов расстояние между ними стало 170 км. Найти скорость мотоциклиста, если скорость автомобиля 70 км/ч.

Решение:

dvizhenie vdogonku

v, км/ч

t, ч

s, км

Автомобиль

70

5

?

Мотоциклист

?

5

?

1) 170-20=150 (км) на столько увеличилось расстояние между автомобилем и мотоциклистом за 5 часов

2) 150:5=30 (км/ч) скорость удаления автомобиля от мотоциклиста

3) 70-30=40 (км/ч) скорость мотоциклиста.

Ответ: 40 км/ч.

Задача 2.

Расстояние между двумя станциями 40 км. Из этих станций одновременно в одном направлении вышли скорый и товарный поезда, причем товарный поезд едет впереди. Через сколько часов скорый поезд догонит товарный, если его скорость равна 80 км/ч, а скорость товарного поезда — 60 км/ч?

Решение:

zadachi na dvizhenie vdogonku

v, км/ч

t, ч

s, км

Пассажирский

80

?

? на 40 км больше

Товарный

60

?

?

1) 80-60=20 (км/ч) скорость сближения поездов

2) 40:20=2 (ч) через такое время скорый поезд догонит товарный.

Ответ: через 2 ч.

Задача 3.

Расстояние между пунктами равно 50 км. Из этих пунктов одновременно в одном направлении выезжают велосипедист и мотоциклист, причем велосипедист едет впереди. Скорость велосипедиста равна 13 км/ч, скорость мотоциклиста — 38 км/ч. На каком расстоянии от пункта своего выезда мотоциклист догонит велосипедиста?

Решение:

reshenie zadach na dvizhenie vdogonku

v, км/ч

t, ч

s, км

Мотоциклист

38

?

? на 50 км больше

Велосипедист

13

?

?

1) 38-13=25 (км/ч) скорость сближения мотоциклиста и велосипедиста

2) 50:25=2 (ч) через столько часов после своего выезда мотоциклист догонит велосипедиста

3) 38∙2=76 (км) на таком расстоянии от пункта своего выезда мотоциклист догонит велосипедиста.

Ответ: 76 км.

Добавить комментарий