4545456
+35
Решено
9 лет назад
Физика
5 – 9 классы
как найти время зная работу,силу тока,напряжение?
Смотреть ответ
2
Комментарии
danafizik
А=UIt отсюда t=A/UI
Ответ
4
(5 оценок)
8
Очаровашка99
9 лет назад
Светило науки – 136 ответов – 0 раз оказано помощи
I=A/Ut
t=A/IU
))))))))))))))))))))))))
(5 оценок)
Ответ проверен экспертом
3
(7 оценок)
6
MashaPutnaj
9 лет назад
Светило науки – 15179 ответов – 183972 помощи
ак найти время зная работу,силу тока,напряжение?
А= U*I*t t=A/U*I
А= U^2*t/R t= A*R/U^2
A=I^2*R*t t= A/I^2*R
(7 оценок)
https://vashotvet.com/task/8578837
Как найти время,если известна мощность,напряжение и сила тока?
Мэри
Профи
(516),
на голосовании
11 лет назад
Дополнен 11 лет назад
Напишите пожалуйста формулу)
Дополнен 11 лет назад
и если надо найти работу, то как? там тоже надо знать время!
Голосование за лучший ответ
Mihail Ropot
Оракул
(55389)
11 лет назад
Узнать работу совершаемую током, а затем мощьность поделить на работу
Вячеслав Мельников
Профи
(929)
11 лет назад
мощность есть отношение работы ко времени или произведение силы тока на напряжение.. .
другими словами время равно напряжение * сила тока / работа
Сергей Акимов
Мыслитель
(5958)
11 лет назад
Как раз наоборот, работу поделить на мощность! P=A/t=UI. t=A/P=A/UI.
Похожие вопросы
На этой странице вы узнаете
- Что общего у электрического тока с водой?
- В чем отличие сопротивления от удельного сопротивления?
- Почему нежелательно использовать телефон, подключенный к зарядке?
- Фамилия какого ученого стоит миллион?
«Все, кина не будет. Электричество кончилось». Наверное, никого не оставит равнодушным популярная фраза из широко известного фильма «Джентльмены удачи». Ведь действительно: бесит, когда сидишь за просмотром любимого сериальчика, вдруг — бамс! Вырубили свет, и зарядки ноута, как назло, не хватило. И не выработаешь электричество в домашних условиях, а жаль… Но вот понять, как оно работает — это мы сможем сделать в статье.
Электрический ток
В наше время трудно себе представить жизнь без электричества. Телевизор не посмотреть, телефон не зарядить, чай не попить… Ни один электроприбор в доме не будет работать без электричества. А объявление об отключении электроэнергии, вызывает тихий ужас.
Электричество — это форма энергии, которая существует в виде статических или подвижных электрических зарядов.
Поток. И то и другое представляет собой направленное движение частиц. Из чего состоит вода? Из молекул. Когда эти молекулы движутся в одном направлении, то они образуют поток воды, который течет, например, по трубам.
Так же и электрический ток. Он образуется потоком заряженных частиц, которые движутся по проводам.
Сформулируем определение:
Электрический ток — это упорядоченное движение заряженных частиц.
Чтобы электрический ток существовал, необходимо выполнение следующих условий:
- наличие свободных заряженных частиц;
- наличие электрического поля;
- наличие замкнутой электрической цепи.
Основными количественными характеристиками электрического тока являются сила тока и напряжение.
Напряжение
Чтобы внутри цепи существовал электрический ток, цепь должна быть замкнута и между концами участка цепи должно существовать напряжение.
Напряжение — скалярная (не имеющая направления) физическая величина, значение которой равно работе тока на участке цепи, совершаемой при переносе единичного электрического заряда из одной точки в другую.
U — напряжение (В),
A — работа тока на участке цепи (Дж),
q — электрический заряд (Кл).
Единица измерения U — В (Вольт) = (frac{Дж}{Кл})
Электрический ток – результат “труда” множества частиц. Они любят работать – не ленятся перемещаться из одного конца цепи в другой. И чем больше они будут работать, тем большее напряжение получится. Так запоминаем связь напряжения (U) с работой (A).
Услышав слова из известной песни Димы Билана «Это ты, это я, между нами молния, С электрическим разрядом 220 Вольт…» любой физик (и электрик) приобретает новую пару седых волосинок. Такое напряжение очень опасно для человека. Однако, 220 Вольт — это то самое напряжение в наших розетках!
Прибор для измерения напряжения — вольтметр. Он включается в цепь параллельно. Пример подключения представлен на рисунке:
Сила тока
Это еще одна немаловажная характеристика электрического тока.
Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени .
I — сила тока (А),
q — электрический заряд (Кл),
t — время (с).
Единица измерения I — А (ампер) = (frac{Кл}{с}).
Представим, что внутри проводника «бежит» в одном направлении огромное количество заряженных частиц. Так вот, чем больше общий заряд частиц, пробегающих через поперечное сечение проводника за единицу времени, тем больше будет значение силы тока. Это поможет вам запомнить зависимость силы тока (I) от электрического заряда (q).
Прибор для измерения силы тока — амперметр. Он включается в цепь последовательно. Пример подключения представлен на рисунке:
Направление тока совпадает с направлением движения положительно заряженных частиц.
Давайте разберемся, как можно определить направление тока в цепи на примере.
Задача. На рисунке изображена электрическая цепь с источником тока и сопротивлением R. Определите направление тока в данной цепи (по часовой стрелке/против часовой стрелки).
Решение:
Обратите внимание, «большая» пластина реостата расположена справа (именно она и направляет ток), а «маленькая» слева. Положительно заряженные частицы двигаются от катода к аноду (от положительно заряженной пластинки к отрицательно заряженной), а направление тока всегда совпадает с направлением положительно заряженных частиц. Значит, ток в цепи направлен по часовой стрелке.
Ответ: по часовой стрелке
Электрическое сопротивление
Оно является электрической характеристикой проводника.
Сопротивление — физическая величина, характеризующая электрические свойства участка цепи.
R — сопротивление (Ом),
p — удельное сопротивление проводника,
l — длина проводника (м),
S — площадь поперечного сечения проводника (мм²).
Единица измерения R — Ом.
Удельное сопротивление проводника (p) можно посмотреть в специальной таблице в справочнике или в интернете. Для каждого материала будет свое значение. Мы приведем для примера лишь фрагмент такой таблицы.
Таблица удельных сопротивлений проводников
Металл | Удельное сопротивление, Ом * (мм^2)/ м |
Серебро | 0,0015 |
Медь | 0,018 |
Золото | 0,023 |
Алюминий | 0,029 |
Вольфрам | 0,055 |
Железо | 0,098 |
Сопротивление — это внешнее свойство, зависящее от количества присутствующего материала, от геометрических характеристик проводника и от самого материала, из которого сделан проводник.
Удельное сопротивление — это внутреннее свойство проводника, которое не зависит от его размера, а зависит от химического состава вещества и температуры.
Условно можно сказать, что сопротивление — это свойство проводника, а удельное сопротивление — свойство материала.
Получается, что прежде всего на то, каким будет сопротивление, влияют размеры проводника, его форма, материал, из которого он сделан.
Удельное сопротивление проводника зависит также от температуры. Когда температура твердых тел увеличивается, то удельное сопротивление возрастает. А в растворах и расплавах — наоборот, уменьшается. В экзаменационных задачах случаи с изменением удельного сопротивления не рассматриваются, а вот в олимпиадных задачах такое встретить можно.
Давайте поразмышляем: что чему сопротивляется?
Причина электрического сопротивления кроется во взаимодействии зарядов разного знака при протекании тока по проводнику. Это взаимодействие можно сравнить с силой трения, стремящейся остановить движение заряженных частиц.
Чем сильнее взаимодействие свободных электронов с положительными ионами в узлах кристаллической решетки проводника, тем больше сопротивление проводника.
Проводник с определенным постоянным сопротивлением называется резистор.
Вернемся к сравнению электрического тока с водой: как молекулы воды из крана движутся сверху вниз, так и электрический ток имеет определенное направление — от катода к аноду. Электрический заряд условно в нашем примере аналогичен массе воды, а напряжение — напору воды из крана.
Закон Ома
Сила тока, напряжение и сопротивление связаны между собой соотношением, которое называется закон Ома:
I — сила тока (А),
U — напряжение (В),
R — сопротивление (Ом).
Для упрощенного понимания закона Ома можно использовать данный треугольник. Чтобы вспомнить формулу для нахождения той или иной величины, нужно ее закрыть рукой. Если оставшиеся открытыми величины стоят бок о бок, то они перемножаются друг с другом (U=IR). А если одна величина стоит выше другой, то в таком случае мы делим их друг на друга (I=U/R или R=U/I)
Данный закон справедлив для участка цепи, на который не действуют сторонние силы.
Разберем задачу из контрольно-измерительных материалов ЕГЭ (номер 12).
Ниже на рисунке приведена схема электрической цепи, в которой провода можно считать идеальными. Определите сопротивление резистора, если показания амперметра 0,2 А, а вольтметра — 8 В.
Решение:
Вольтметр подключен параллельно резистору. Следовательно, он показывает напряжение на резисторе U.
Амперметр подключен последовательно. Следовательно, он показывает силу тока I на всей цепи.
Чтобы найти сопротивление на резисторе, воспользуемся законом Ома:
I=(frac{U}{R}), где R — сопротивление резистора.
Выразим R и подставим значения:
R=(frac{U}{I})
R=(frac{8}{0,2})=40 (Ом)
Ответ: 40
Работа и мощность электрического тока
Вернемся к понятию работы. Мы говорили, при перемещении заряда по проводнику электрическое поле совершает работу (А):
A = qU
Если мы выразим заряд из формулы силы тока q=It, то получим, формулу для расчета работы электрического поля (А) при протекании постоянного тока (или просто работа тока):
A — работа электрического тока (Дж),
U — напряжение (В),
I — сила тока (А),
t — время прохождения тока (с).
Единица измерения А — Дж (Джоуль).
В быту ток совершает работу длительное время, поэтому при определении затраченной электрической энергии используют единицу измерения кВт * ч. Киловатт в час — это энергия, которая потребляется устройством мощностью 1 кВт в течении 1 часа. Учитывая, что 1 ч=3600 с, получим:
1 кВт*ч = 1000 Вт * 3600 с = 3600000 Дж = 3600 кДж
Если же работу тока рассчитать за единицу времени, то мы получим мощность постоянного электрического тока.
Мощность — величина, обозначающая интенсивность передачи электрической энергии.
P — мощность (Вт),
A — работа электрического тока (Дж),
t — время прохождения тока (с).
Единица измерения P — Вт (Ватт).
Средняя мощность тока равна:
(P = frac{A}{t} = frac{qU}{t} = IU = frac{U^2}{R} = I^2R)
Теперь мы знаем все про мощность и работу тока, а значит, нужно отработать это на практике. Тем более что такие задачи встречаются в ЕГЭ (номер 12).
Задача.
Какую работу совершит электрический ток в электродвигателе вентилятора за 20 мин., если сила тока в цепи 0,2 А, а напряжение 12 В?
Решение.
Вспомним формулу для работы тока A=U*I*t , где U=12 В — напряжение в электродвигателе, I=0,2 A — сила тока, t=20 мин=1200 с — время.
Все данные нам уже известны, поэтому можем подставить их в формулу для работы тока и получить ответ.
A=12*0,2*1200=2880 Дж
Ответ: 2880 Дж
Мощность электроприбора всегда указывается в документации, прилагающейся к нему. Кроме того, нередко ее пишут на самом приборе. Давайте посмотрим на утюг, или стиральную машину дома. Мы увидим, что утюг имеет мощность 1000 Вт, а обычная энергосберегающая лампочка, всего 40 Вт (на то она и сберегающая). Чем больше мощность прибора, тем больше энергии он будет потреблять. Примеры мощностей различных приборов представлены на рисунке.
Закон Джоуля — Ленца
Теперь же свяжем работу тока и теплоту, которая выделяется на проводнике за некоторое время t.
Когда приборы подключены в сеть, мы можем заметить, что они нагреваются. Очень часто это наблюдается, когда телефон подключен на зарядку, а мы продолжаем по нему звонить, использовать интернет и прочее. Это плохо влияет на телефон: перегрев батареи и корпуса могут быстрее привести девайс в негодность.
Почему так происходит?
Электрический ток оказывает тепловое действие на проводник. Количество теплоты, которое при этом выделяется, будет рассчитываться по закону Джоуля — Ленца:
Количество теплоты, выделяемое за время в проводнике с током, пропорционально произведению квадрата силы тока на этом участке и сопротивления проводника:
Q — количество теплоты (Дж),
I — работа электрического тока (Дж),
R — сопротивление (Ом),
t — время прохождения тока (с).
Единица измерения Q — Дж (Джоуль).
В электронагревательных приборах используются проводники с высоким сопротивлением, что обеспечивает выделение тепла на определенном участке.
Так, проволоку из нихрома (сплав никеля с хромом) применяют в электронагревательных элементах, работающих при температуре до 1000 ℃ (резисторах, например). Нихром относится к классу сплавов с высоким электрическим сопротивлением, что определяет его применение в качестве электрических нагревателей. Этот сплав используется также в печах обжига и сушки и различных аппаратах теплового воздействия, например, в фенах, паяльниках или обогревателях.
Кто первый ввел понятие «электрический ток» в науку? Ответ: Андре-Мари Ампер.
Такой был финальный вопрос (ценой в 1 000 000) в игре «Кто хочет стать миллионером?» от 20 января 2018 г. Но участники не смогли ответить на него, и мечту получить свой миллион не исполнили.
Еще немного про электричество…
- Постоянный электрический ток используется в работе двигателей электротранспорта, схемах автомобилей, электронике и др.
- Электричество есть и в нашем организме. Мышечные клетки сердца при сокращении производят электроэнергию, эти импульсы можно измерить с помощью электрокардиограммы (ЭКГ).
- Бенджамин Франклин (да-да, президент Америки) провел множество опытов в 18 веке и создал громоотвод. Также он является человеком, который вывел закон сохранения электрического заряда.
- В древности люди считали, что, если молния ударила в курган, значит, там зарыто сокровище.
Термины
Источник тока — устройство, разделяющее положительные и отрицательные заряды.
Сторонние силы — силы неэлектрического происхождения, вызывающие разделение зарядов в источнике тока.
Фактчек
- Сила тока — это физическая величина, показывающая, какой заряд переносится через рассматриваемую площадь поперечного сечения за единицу времени: (I = frac{q}{t})
- Напряжение — скалярная физическая величина, равная отношению полной работы кулоновских и сторонних сил А при перемещении положительного заряда на участке цепи к значению этого заряда: (U = frac{A}{q})
- Сопротивление — физическая величина, характеризующая электрические свойства участка цепи: (R = frac{pl}{S})
- Мощность — величина, обозначающая интенсивность передачи электрической энергии: (P = frac{A}{t})
- Закон Ома: сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении и обратно пропорциональна сопротивлению участка при постоянном напряжении: (I = frac{U}{R}).
- Закон Джоуля— Ленца: количество теплоты Q, выделяемое за время t в проводнике с током, пропорционально произведению квадрата силы тока I на этом участке и сопротивления R проводника: Q = I2Rt.
- Работа электрического поля при протекании постоянного тока (или просто работа тока): А = UIt.
Проверь себя
Задание 1.
Упорядоченное движение заряженных частиц — это:
- электрическое поле
- электрический ток
- электрическая мощность
- работа тока
Задание 2.
Удельное сопротивление проводника:
- зависит от температуры
- не зависит от температуры
- зависит от силы протекающего через проводник тока
- не зависит от напряжения
Задание 3.
Формула для расчета силы тока:
- I = Ut
- I = UIt
- I = I2Rt
- (I = frac{q}{t})
Задание 4.
Что такое мощность электрического тока:
- работа за единицу времени
- отношение заряда к единице времени
- произведение силы тока на сопротивление
- тепло, выделяемое на резисторе
Задание 5.
Причина электрического сопротивления:
- во взаимодействии зарядов одинакового знака
- в отсутствии взаимодействия между зарядами
- во взаимодействии зарядов разного знака
- в передаче тепла
Ответы: 1.— 2; 2. — 1; 3.— 4; 4.— 1; 5. — 3.
Содержание
- Как найти силу тока?
- Формулами
- Через заряд и время
- Через мощность и напряжение
- Через напряжение или мощность и сопротивление
- Через ЭДС, внутреннее сопротивление и нагрузку R
- Закон Джоуля-Ленца
- Измерительными приборами
- Амперметром
- Мультиметром
- Примеры
- Расчет силы тока по мощности, напряжению, сопротивлению
- Формулы расчета силы тока
- Работа и мощность электрического тока. Закон Джоуля-Ленца
- ПРИМЕРЫ ЗАДАНИЙ
- Часть 1
- Часть 2
- Вычисления напряжения в сети электричества
- Что такое напряжение в сети электричества.
- Чему равно напряжение.
- Формула закона Ома
- Как найти сопротивление нагрузки
- Как найти с помощью формулы напряжение
- Как найти силу тока через сопротивление и напряжение
- Работа и мощность электрического тока
- теория по физике 🧲 постоянный ток
- Закон Джоуля-Ленца
- Мощность тока
- Подсказки к задачам
- Конденсатор в цепи постоянного тока
- Подсказки к задачам
Как найти силу тока?
Расчет электрических параметров необходим для правильных построений цепей. Поскольку целью использования электричества в электротехнике является задача по выполнению током работы, то встает вопрос о том, как найти силу тока. Данный параметр используют при вычислениях мощности и в расчетах потребления электрической энергии.
Существуют разные способы определения этого важного параметра, которые мы рассмотрим в данной статье.
Формулами
Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.
Через заряд и время
Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.
Рис. 1. Определение понятия сила тока
Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t
Через мощность и напряжение
В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.
Данное выражение вытекает из формулы для расчета мощности: P = IU.
Через напряжение или мощность и сопротивление
Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I 2 R, откуда
Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.
Через ЭДС, внутреннее сопротивление и нагрузку R
Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:
- внешнее сопротивление проводников (R);
- ЭДС источника питания (ε);
- внутреннее сопротивление источника, обладающего ЭДС (r′).
Закон Джоуля-Ленца
Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.
Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.
Рис. 2. Закон Джоуля-Ленца
Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:
Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.
Измерительными приборами
Если под руками имеются измерительные приборы, то с их помощью довольно просто найти силу тока. Необходимо лишь соблюдать правила измерений и не забывать о правилах безопасности.
Амперметром
Пользуясь приборами для измерения ампеража, следует помнить, что они подключаются в цепи последовательно. Внутреннее сопротивление амперметра очень маленькое, поэтому прибор легко выводится из строя, если проводить измерения пределами значений, для которых он рассчитан.
Схема подключения амперметра показана на рисунке 3. Обратите внимание на то, что на участке измеряемой электрической цепи обязательно должна быть нагрузка.
Рис. 3. Схема подключения амперметра
Большинство аналоговых амперметров, например, таких, как на рисунке 4, предназначены для измерений параметров в цепях с постоянными токами.
Рис. 4. Аналоговый амперметр
Обратите внимание распределение шкалы амперметра. Цена первого деления 50 А, а всех последующих – 10 А. Максимальная величина, которую можно измерить данным амперметром не должна превышать 300 А. Для измерений электрической величины в меньших либо в больших пределах следует применять соответствующие приборы, предназначенные для таких диапазонов. В этом смысле универсальность амперметра ограничена.
При измерениях постоянных токов необходимо соблюдать полярность щупов при подключении амперметра. Для подключения прибора требуется разрывать цепь. Это не всегда удобно. Иногда вычисление силы тока по формуле является предпочтительней, особенно если приходится проводить измерения в сложных электротехнических схемах.
Мультиметром
Преимущество мультиметра в том, что этот прибор многофункциональный. Современные мультиметры цифровые. У них есть режимы для измерений в цепях постоянных и переменных токов. В режиме измерения силы тока этот измерительный прибор подключается в цепь аналогично амперметру.
Перед включением мультиметра в цепь, всегда проверяйте режим измерений, а пределы измерения выбирайте заведомо большие предполагаемой силы тока. После первого измерения можно перейти в режим с меньшим диапазоном.
Для работы с переменным напряжением переводите прибор в соответствующий режим. Считывайте значения с дисплея после того, как цифры перестанут мелькать.
Примеры
Покажем на простых примерах, как решать задачи на вычисление силы тока по формуле.
Задача 1.
Рис. 5. Пример 1
Решение: При параллельном соединении нагрузочных элементов U = const, то есть, напряжение одинаково на всех резисторах и составляет 100 В. Тогда, по закону Ома I = U/R
Для вычисления искомого параметра на всем участке цепи, нам необходимо знать общее сопротивление этого участка. Учитывая тот факт, что при параллельном соединении нагрузочных элементов в цепи их общее сопротивление равно:
Имеем: 1/R= 1/5 + 1/25 + 1/50 = 13/50; R = 50/13 ≈ 3.85 (Ом)
Тогда: I = U/R = 100 В/3,85 Ом ≈26 А.
Ответ:
- Сила тока на сопротивлениях: I1 =20 А; I2 = 4А; I3 = 2 А.
- Сила тока, поступающего на рассматриваемый участок цепи равна 26 А.
Задача 2.
Решение:
Воспользуемся формулой для нахождения силы тока, включающей напряжение и мощность: I = P/U.
- 2 кВт преобразим в ватты: 2 кВт = 2000 Вт.
- Подставляем данные: I = 2 000 Вт/ 220 В ≈ 9 А
- Ответ: Нагревательный элемент электрочайника рассчитан на 9 А.
Задача 3.
Решение.
Применяя закон Ома для полной цепи, запишем: I = ε / (R+r′)
I = 6 В / (5 Ом + 1 Ом) = 1 А.
Ответ: сила тока 1 А.
Задача 4.
Решение:
За время t электричество выполнит работу A = U*I*t.
Напряжение сети известно – оно составляет 220 В.Силу тока находим по формуле: I = U/R, тогда A = (U 2 /R)*t или
A = ((220 В) 2 / 40 Ом) * 2 ч = 2420 Втч = 2,42 кВтч
Ответ: За 2 часа работы электроплита потребляет 2,42 кВт часов электроэнергии.
Применяя формулы для вычисления параметров электричества, пользуясь фундаментальными законами физики можно находить неизвестные данные для составных элементов цепей и электроприборов с целью оценки их состояния. В каждом отдельном случае необходимо определить известные параметры тока, которые можно использовать в дальнейших вычислениях. Обычно, это напряжение, мощность или сопротивление нагрузки.
Если можно обойтись без измерений амперметром – лучше прибегнуть к вычислениям, даже если при этом потребуется измерить напряжение. Такое измерение можно проводить без разрыва электрической цепи, чего нельзя сделать при помощи амперметра.
Источник
Расчет силы тока по мощности, напряжению, сопротивлению
Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!
Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.
Смежные нормативные документы:
- СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
- СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
- СП 76.13330.2016 «Электротехнические устройства»
- ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
- ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
- ГОСТ Р 50571.1-93 «Электроустановки зданий»
Формулы расчета силы тока
Электрический ток — это направленное упорядоченное движение заряженных частиц.
Сила тока (I) — это, количество тока, прошедшего за единицу времени сквозь поперечное сечение проводника. Международная единица измерения — Ампер (А / A).
— Сила тока через мощность и напряжение (постоянный ток): I = P / U
— Сила тока через мощность и напряжение (переменный ток однофазный): I = P / (U × cosφ)
— Сила тока через мощность и напряжение (переменный ток трехфазный): I = P / (U × cosφ × √3)
— Сила тока через мощность и сопротивление: I = √(P / R)
— Сила тока через напряжение и сопротивление: I = U / R
- P – мощность, Вт;
- U – напряжение, В;
- R – сопротивление, Ом;
- cos φ – коэффициент мощности.
Коэффициент мощности cos φ – относительная скалярная величина, которая характеризует насколько эффективно расходуется электрическая энергия. У бытовых приборов данный коэффициент практически всегда находится в диапазоне от 0.90 до 1.00.
Источник
Работа и мощность электрического тока. Закон Джоуля-Ленца
1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.
Как было показано, напряжение ( (U) ) на участке цепи равно отношению работы ( (F) ) , совершаемой при перемещении электрического заряда ( (q) ) на этом участке, к заряду: ( U=A/q ) . Отсюда ( A=qU ) . Поскольку заряд равен произведению силы тока ( (I) ) и времени ( (t) ) ( q=It ) , то ( A=IUt ) , т.е. работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.
Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:
( [A] ) = 1 Дж = 1 В · 1 А · 1 с
Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.
Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: ( A=fract ) или ( A=I^2Rt ) .
2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: ( P=A/t ) или ( P=IUt/t ) ; ( P=IU ) , т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.
Единицей мощности является ватт (1 Вт): ( [P]=[I]cdot[U] ) ; ( [P] ) = 1 А · 1 В = 1 Вт.
Используя закон Ома, можно получить другие формулы для расчета мощности тока: ( P=frac;P=I^2R ) .
Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.
3. При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: ( Q=A ) или ( Q=IUt ) . Учитывая, что ( U=IR ) , ( Q=I^2Rt ) .
Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.
Этот закон называют законом Джоуля-Ленца.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?
1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза
3. Сопротивления резистор ( R_1 ) в четыре раза меньше сопротивления резистора ( R_2 ) . Работа тока в резисторе 2
1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1
4. Сопротивление резистора ( R_1 ) в 3 раза больше сопротивления резистора ( R_2 ) . Количество теплоты, которое выделится в резисторе 1
1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2
5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если
1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую
6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ( A_1 ) и ( A_2 ) в этих проводниках за одно и то же время.
1) ( A_1=A_2 )
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )
7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока ( A_1 ) и ( A_2 ) в этих проводниках за одно и то же время.
1) ( A_1=A_2 )
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )
8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то
А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.
Верным(-и) является(-ются) утверждение(-я)
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?
1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А
10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?
1) 10000 с
2) 2000 с
3) 10 с
4) 2 с
11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.
ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой
ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась
12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока
Часть 2
13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?
Источник
Вычисления напряжения в сети электричества
Время на чтение:
В наши дни электричество играет в жизни человека очень большую роль, в следствие чего базовые знания в области физики и электротехники нужны практически каждому. Напряжение является одной из главных физических величин, которая позволяет объяснить теорию возникновения электрического поля и методы подбора оптимального сечения кабеля для применения его в повседневной жизни.
Что такое напряжение в сети электричества.
Напряжение – это физическая величина, которая характеризует электрическое поле. Иными словами, оно показывает, какую работу оно совершает при перемещении одного положительного заряда на определённое расстояние.
Показатель напряжения на вольтметре
За единицу напряжения в международной системе принимается такой показатель на концах проводника, при котором заряд в 1 Кл совершает работу в 1 Дж для перемещения его по этому проводнику. Общепринятой единицей измерения напряжения считается 1 В – Вольт.
Важно! Работа измеряется в Джоулях, заряды в Кулонах, а напряжение в Вольтах, следовательно, 1 Вольт равняется 1 Джоулю, деленному на 1 Кулон.
Чему равно напряжение.
Напряжение напрямую связано с работой тока, зарядом и сопротивлением. Чтобы измерить напряжение непосредственно в электрической цепи, к ней нужно подключить вольтметр. Он присоединяется к цепи параллельно, в отличие от амперметра, который подключается последовательно. Зажимы измерительного прибора крепятся к тем точкам, между которыми нужно вычислить напряжение. Чтобы он правильно показал значение, нужно включить цепь. На схемах вольтметр обозначается буквой V, обведенной в кружок.
Изображение вольтметра и электрической цепи
Напряжение обозначается латинской [U], а измеряется в [В]. Оно равно работе, которое совершает поле при перемещении единичного заряда. Формула напряжения тока – это U = A/q, где A – работа тока, q – заряд, а U – само напряжение.
Обратите внимание! В отличие от магнитного поля, где заряды неподвижны, в электрическом поле они находятся в постоянном движении.
Формула закона Ома
Свои опыты Ом направлял на изучение такой физической величины, как сопротивление, в результате чего в 1826 году он стал автором закона, который не потерял совей актуальность вплоть до сегодняшнего дня. Из своих опытов Ом вывел, что в различных цепях сила тока может возрастать с различной скоростью, и происходит это по мере увеличения напряжения.
Также, Ом сделал вывод, что каждый проводник обладает индивидуальными свойствами проводимости.
Сопротивление обозначается заглавной латинской [R] и измеряется в Омах. Сопротивление – физическая величина, характеризующая свойства проводника оказывать влияние на идущий по нему ток. Оно прямо пропорционально напряжению в сети и обратно пропорционально силе тока. В виде формулы данный закон можно записать как R = U/I, где U – напряжение, а I – сила тока. 1 Ом равняется 1 Вольту, деленному на 1 Ампер.
Запомните! Реостат – прибор, обеспечивающий возможность изменять сопротивление. Прежде всего, он влияет на показатель R в цепи, а, следовательно, на 2 другие величины, описанные в законе Ома. Силу тока может помочь определить амперметр.
Из формулы закона Ома можно вывести практически любую зависимость, связанную с электричеством. Также, существует понятие удельного сопротивления проводника – физической величины, которая демонстрирует, каким сопротивлением будет обладать проводник из определенного вещества. Обозначается эта величина буквой ρ и через неё можно также найти сопротивление в цепи как произведению удельного сопротивления и длины проводника, деленного на площадь его поперечного сечения.
Важно! В виде формулы нахождение сопротивления через удельное сопротивление выглядит так: R = ρ*(l/S), где l – длина проводника, а S – площадь поперечного сечения.
Физический смысл удельного сопротивления показывает, какое влияние будет оказывать проводник длиной в 1 м с площадью поперечного сечения в 1 квадратный мм, изготовленный из определенного вещества. Измеряется в Омах, умноженных на метр: [ρ] = [Ом*м].
Ом и формула
Как найти сопротивление нагрузки
Сопротивление нагрузки обозначается латинскими буквами Rn или Rн. По сути, это является тем же сопротивлением участка цепи и вычисляется также по формулам закона Ома. Нагрузка обозначается символами, которые на электрической схеме изображаются в виде крестиков в кружке – лампочкой; то есть двигатель, лампа, конкретный прибор и т. д.
Каждая нагрузка имеет своё собственное сопротивление. Например, если к сети подключена одна лампочка, то сопротивление нагрузки – показатель этого единственного прибора в цепи. Если к цепи подключено несколько нагрузок, то сопротивление считается суммарно для каждой из них.
Сопротивление нагрузки вычисляется в соответствии с законом Ома, то есть Rn = U/I. Если к сети подключено несколько нагрузок, то оно будет рассчитываться следующим образом: сначала находится сопротивление каждой отдельной «лампочки». Далее Rn вычисляется в зависимости от того, какой тип подключения в цепи: последовательное или параллельное. При параллельном 1/R = 1/R1 + 1/R2 + 1/Rn, где n –количество подключенных приборов. Если же соединение последовательное, общее R равно сумме всех R цепи.
Последовательное/параллельное соединения
Как найти с помощью формулы напряжение
Людей, интересующихся электричеством и физикой, всегда волнует вопрос, как найти напряжения, если известны другие характеристики. Его можно найти через многие формулы: в соответствии с законом Ома, через работу тока, путём сложения всех напряжений в электрической цепи и практическим способом – с помощью вольтметра. Как вычислить показатель с помощью последнего способа было описано выше.
Важно! В цепях с последовательным соединением общее напряжение – сумма значений каждой нагрузки. При параллельном соединении общее напряжение равно значению каждой лампочки, у которых оно также эквивалентно.
По каким формулам вычисляется напряжение через работу и сама сила тока, рассказывают на уроках физики, так как эти величины считаются базовыми. Работа тока равна произведению напряжения и заряда: A = U*q. Также, из этой формулы выводится A = U*I*t, так как заряд – произведение силы тока и времени. Из них следует, что U = A/q или U = A/(I*t). Кроме того, одной из основных является формула напряжения, выведенная из закона Ома: U = R/I.
Важно! Определить напряжение можно и через мощность электрического тока. Мощность [P] равна A/t, и, так как A = U*I*t, конечная формула выглядит, как P = (U*I*t)/t. Здесь t сократится, и останется P = U*I, из которой следует, что U = P/I.
Как найти силу тока через сопротивление и напряжение
Сила тока обозначается латинскими [I] или [Y], и она зависит от количества заряда, перенесенного от одного полюса к другому за определенный промежуток времени, т.е. I = q/t. Измеряется сила тока в амперах, а узнать её значение в цепи можно при помощи амперметра.
Мужчина считает силу тока
Существуют формулы определения силы тока через напряжение и сопротивление. В первом случае произведение силы тока на время равняется работе, деленной на напряжение: I*t = A/U, во втором – по закону Ома, I = U/R. Через мощность сила будет равняться P/U.
При последовательном соединении, сила тока одинакова на всех участках цепи, следовательно, равна общему значению в цепи. В противоположном случае сила электрического тока равняется сумме силы тока всех нагрузок.
Таким образом, существует огромное множество формул для нахождения силы тока, напряжения и сопротивления. Они всегда могут пригодиться для теории, а на практике всегда помогут специальные приборы – амперметр и вольтметр.
Источник
Работа и мощность электрического тока
теория по физике 🧲 постоянный ток
При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу. Ее принято называть работой тока.
Рассмотрим произвольный участок цепи. Это может быть однородный проводник, к примеру, обмотка электродвигателя или нить лампы накаливания. Пусть за время ∆t через поперечное сечение проводника проходит заряд ∆q. Тогда электрическое поле совершит работу:
Но сила тока равна:
Тогда работа тока равна:
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.
Выражая через закон Ома силу тока и напряжение, получим следующие формулы для вычисления работы тока:
A = I 2 R Δ t = U 2 R . . Δ t
Работа тока измеряется в Джоулях (Дж).
Пример №1. Определите работу тока, совершенную за 10 секунд на участке цепи напряжением 200В и силой тока 16 А.
A = I U Δ t = 16 · 220 · 10 = 35200 ( Д ж ) = 35 , 2 ( к Д ж )
Закон Джоуля-Ленца
В случае, когда на участке цепи не совершается механическая работа, и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.
Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818—1889) и русским Э.Х. Ленцем (1804—1865). Закон Джоуля—Ленца сформулирован следующим образом:
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.
Количество теплоты измеряется в Джоулях (Дж).
Пример №2. Определить, какое количество теплоты было выделено за 2 минуты проводником при напряжении 12 В и сопротивлении 2 Ом.
Используем закон Ома и закон Джоуля—Ленца:
Q = I 2 R Δ t = ( U R . . ) 2 Δ t = U 2 R . . Δ t = 12 2 2 . . = 72 ( Д ж )
Мощность тока
Любой электрический прибор (лампа, электродвигатель и пр.) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощности тока.
Мощность тока — это работа, производимая за 1 секунду. Обозначается как P. Единица измерения — Ватт (Вт).
Численно мощность тока равна отношению работы тока за время ∆t к этому интервалу времени:
Это выражение для мощности можно переписать в нескольких эквивалентных формах, если использовать закон Ома для участка цепи:
P = I U = I 2 R = U 2 R . .
Пример №3. При силе тока в электрической цепи 0,3 А сопротивление лампы равно 10 Ом. Определите мощность электрического тока, выделяющуюся на нити лампы.
P = I 2 R = 0 , 3 2 · 10 = 0 , 9 ( В т )
Выразив силу тока через заряд, прошедший за единицу времени, получим:
Мощность тока равна мощности на внешней цепи. Ее также называют мощностью на нагрузке, полезной мощностью или тепловой мощностью. Ее можно выразить через ЭДС:
P = ( ε R + r . . ) 2 R
Мощность тока на внешней цепи будет максимальная, если сопротивление внешней цепи равно внутреннему сопротивлению: R = r.
P m a x = ( ε r + r . . ) 2 r = ε 2 4 r . .
Мощность тока внутренней цепи:
P в н у т р = I 2 r = ( ε R + r . . ) 2 r
P п о л н = I 2 ( R + r ) = ε 2 R + r . .
Пример №4. ЭДС постоянного тока ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключенном к источнику, P = 0,75 Вт. Чему равно минимальное значение силы тока в цепи?
Используем формулу для нахождения полезной мощности:
P = ( ε R + r . . ) 2 R
Применим закон Ома для полной цепи:
Выразим сопротивление внешней цепи:
P = ( ε ε I . . − r + r . . ) 2 ( ε I . . − r ) = I 2 ( ε I . . − r ) = I ε − r I 2
Так как внутреннее сопротивление равно единице, получаем квадратное уравнение следующего вида:
r I 2 − I ε + P = 0
I 2 − 1 I + 0 , 75 = 0
Решив это уравнение, получим два корня: I = 0,5 и I = 1,5 А. Следовательно, наименьшая сила тока равна 0,5 А.
Подсказки к задачам
Конденсатор в цепи постоянного тока
Постоянный ток через конденсатор не идет, но заряд на нем накапливается, и напряжение между обкладками поддерживается. Напряжение на конденсаторе такое же, как на параллельном ему участке цепи.
Ток не проходит через те резисторы, что соединены с конденсатором последовательно. При расчете электрической цепи их сопротивления не учитывают.
Подсказки к задачам
W = q 2 2 C . . = C U 2 2 . .
Пример №5. К источнику тока с ЭДС ε = 9 В и внутренним сопротивлением r = 1 Ом подключили параллельно соединенные резистор с сопротивлением R = 8 Ом и плоский конденсатор, расстояние между пластинами которого d = 0,002 м. Какова напряженность электрического поля между пластинами конденсатора?
Напряжение на конденсаторе равно напряжению на резисторе, так как он подключен к нему последовательно. Чтобы найти это напряжение, сначала выразим силу тока на этом резисторе:
Применим закон Ома:
Приравняем правые части выражений и получим:
Отсюда напряжение на конденсаторе равно:
Напряженность электрического поля равна:
E = U d . . = ε R d ( R + r ) . . = 9 · 8 0 , 002 ( 8 + 1 ) . . = 72 0 , 018 . . = 4000 ( В м . . )
Вольтметр подключён к клеммам источника тока с ЭДС ε = 3 В и внутренним сопротивлением r = 1 Ом, через который течёт ток I = 2 А (см. рисунок). Вольтметр показывает 5 В. Какое количество теплоты выделяется внутри источника за 1 с?
Источник
Как найти Время, если известно Сила тока, Напряжение, Работа?
-
Для начала записать формулу работы эл. тока
Работа = напряжение умножить на силу тока умножить на время.
- Комментировать
- Жалоба
- Ссылка
Найди верный ответ на вопрос ✅ «Как найти Время, если известно Сила тока, Напряжение, Работа? …» по предмету 📙 Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Главная » Физика » Как найти Время, если известно Сила тока, Напряжение, Работа?