Как найти время двигаясь против течения реки

Здравствуйте, дорогие читатели, подписчики и гости канала. Продолжаем разбор текстовых задач из ОГЭ 2021 года, входящие в 21 задание. Рассмотрим решение задач на движение по воде. В задачах за неизвестное (Х) будем брать то, что нужно найти.

Задача №1

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Пусть Х – собственная скорость баржи. Если баржа плывет по течению реки, то ее собственная скорость увеличивается на скорость реки, и наоборот. Все данные из задачи перенесем в таблицу.

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Так как весь путь по течению реки и против течения составил 5 часов, то составим уравнение:

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Решим уравнение:

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Задача №2

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Пусть Х – скорость лодки в неподвижной воде. Тогда по течению реки будет Х+5, против течения реки Х-5.

Важно! Скорость течения реки равна 3 км/ч, с этой же скорость плывет плот, так как у плота нет своей скорости. Зная скорость плота и расстояние, которое плыл плот. Время, которое плыл плот равно: 33:3=11 часов.

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Моторная лодка вышла вслед за плотом через один час, значит она плыла 10 часов. Составим уравнение:

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Решим уравнение:

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Задача №3

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Пусть Х – скорость лодки в неподвижной воде. Тогда скорость лодки по течению будет равна Х+4, против течения Х-4. Внесем все данные в таблицу и найдем время движения лодки по течению и против течения реки.

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Время движения против течения реки больше чем время движения по течению на 2 часа. Составим уравнение:

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Решим уравнение, найдем скорость лодки в неподвижной воде:

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Задача №4

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Пусть Х – скорость течения реки. Тогда скорость теплохода по течению реки будет 25+х, против течения – 25-х.

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Найдем, сколько времени был теплоход в пути. Теплоход вернулся в пункт отправления через 32 часа, а стоял в пункте назначения 21 час, значит в пути по воде в обе стороны теплоход плыл 32-21=11 часов.

Составим уравнение:

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Решим уравнение и найдем скорость течения реки:

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Спасибо, что дочитали. Вы меня очень поддержите, если поставите класс и подпишитесь на мой блог.

Путеводитель по каналу здесь

Текстовые задачи на движение по воде. Задание 21 ОГЭ

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 1. Катер движется против течения реки. За сколько часов он преодолеет расстояние  112  км, если его собственная скорость  30  км/ч, а скорость течения реки  2  км/ч?

Решение: Сначала узнаем скорость движения катера против течения реки, для этого от его собственной скорости отнимем скорость течения:

30 – 2 = 28 (км/ч)  — скорость движения катера против течения.

Теперь можно узнать за сколько часов катер преодолеет  112  км, разделив расстояние на скорость:

112 : 28 = 4 (ч).

Решение задачи по действиям можно записать так:

1) 30 – 2 = 28 (км/ч)  — скорость движения катера против течения,

2) 112 : 28 = 4 (ч).

Ответ: За  4  часа катер преодолеет расстояние  112  км.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки.

Задача 2. Расстояние от пункта  A  до пункта  B  по реке равно  120  км. Сколько времени потратит моторная лодка на путь от пункта  A  до  B,  если её собственная скорость  27  км/ч, а скорость течения реки  3 км/ч?

Рассмотрите два варианта:

1) лодка движется по течению реки;

2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

27 + 3 = 30 (км/ч).

Значит расстояние между пунктами лодка преодолеет за:

120 : 30 = 4 (ч).

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

27 – 3 = 24 (км/ч).

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта  A  до пункта  B,  надо расстояние разделить на скорость:

120 : 24 = 5 (ч).

Решение задачи по действиям для движения по течению реки можно записать так:

1) 27 + 3 = 30 (км/ч)  — скорость лодки,

2) 120 : 30 = 4 (ч).

Для движения против течения реки решение задачи по действиям можно записать так:

1) 27 – 3 = 24 (км/ч)  — скорость лодки,

2) 120 : 24 = 5 (ч).

Ответ:

1) При движении по течению реки моторная лодка потратит  4  часа на путь от пункта  A  до пункта  B.

2) При движении против течения реки моторная лодка потратит  5  часов на путь от пункта  A  до пункта  B.

При решении задач на движение, главное найти три ключевые величины: расстояние, время и скорость. Для этих величин можно записать один из законов движения:

(S=v*t)

Сегодня в этой статье мы познакомимся с задачами на движение по течению и против течения реки. Также рассмотрим задачи на сближение и удаление. Также стоит помнить, что в таких задачах данные величины нужно приводить к единой системе единиц.

Задача 1

. Катер плыл против течения реки (120) км, назад он плыл, затратив на путь на (2) часа меньше. Найдите скорость катера без течения реки, если скорость течения (1) км/час.

(frac{120}{x+1}+2=frac{120}{x-1})

(frac{120}{x-1}+2(x-1)(x+1)=frac{120}{x+1})  (x) не равно (-1) и (+1) так как задача  не будет иметь решения.

(120x-120+2x^2-2=120x+120)

(2x^2=242)

(x^2=121)

(x=11) км/час

Ответ: (11) км/час.

Задача 2

. Человек плывет со скоростью (5) км/ч. Если скорость течения равна (1) км/ч, то ему требуется (1) час, чтобы плыть к месту и вернуться обратно. Найдите расстояние до этого места.

Решение.

Пусть расстояние х км и скорость по течению будет равна (5+1=6) км/ч. Скорость против течения тогда (5-1=4) км /ч. Составим уравнение  (frac{x}{6}+frac{x}{4}=1), так как  (s/v=t).

Домножим обе части уравнения на (12) :

(2x+3x=12)

Решим полученное  уравнение:

(x=frac{12}{5}=2,4 ) (км.)

Задача 3

. За один час лодка проходит (11) км по течению и (5) км против течения. Найтите скорость лодки в стоячей воде.

Решение.

  1. (frac{1}{2}(a+b)=frac{1}{2}(11+5)=frac{1}{2}(16)=8) (км/ч.)
Задача 4

. Если Максим плывет (15) км против течения за (3) часа и за это же время –  (21) км по течению. Найтите скорость течения.

Решение.

cкорость вверх по течению равна  (frac{15}{3}=5 ) км/ч;

cкорость вниз по течению (frac{21}{3}) км/ч = (7) км /ч;

cостовляем уравнение и находим скорость течения (frac{1}{2}(7-5)) км / ч = (1) (км/ч.)

Задача 5

. За один час лодка проходит (11) км по течению и (5) км против него. Найтите скорость лодки в неподвижной воде.

Решение.

  1. (frac{1}{2}(a+b)) =  (frac{1}{2}(11+5)=frac{1}{2}16=8 ) (км/ч.)
Задача 6

. Вика плывет со скоростью (4) км/ч. Если скорость течения равна (1) км/ч и ей требуется (1) час, чтобы плыть к месту и вернуться обратно. Найдите расстояние до этого места.

Решение.

Пусть расстояние (x) км.

Скорость Вики  по течению равна  (4+1=5) км/ч.

Скорость Вики против течения равна  (4-1=3) км/ч.

Составим уравнение: (frac{x}{5}+frac{x}{3}=1)  так как (s:v=t).

(3X+5x=15)

= >(8x=15=1,875) (км.)

Ответ: (1,875).

Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!


Запишитесь на бесплатное тестирование знаний!

Рассказываем, как решать задачи на движение по реке. Приводим алгоритм решения и примеры. Задачи для самостоятельного решения.

Суть задач на движение по реке

Задачи на движение по реке – задачи на нахождение скорости, времени и расстояния при движении на реке.

Помни!

В решении задач на движение по реке используются те пункты алгоритма, в которых описано нахождение неизвестной величины (по условию задачи).

Алгоритм решения задач

Алгоритм решения задач на движение по воде:

  1. Выполняем краткую запись задачи;
  2. Выбираем способ решения и решаем задачу;
  3. Выписываем полный ответ.

Выбираем способ решения:

Условные обозначения:

Способы решения задач

Примеры решения задачи

Базовые знания: 

Задача 1. Катер прошел 54 км по течению реки и потратил на это 3 ч. Найти скорость течения реки, если собственная скорость катера 16 км/ч.

Краткая запись:

Решение: 

1-й способ (арифметический)

  1. (54:3=18) (км/ч) — скорость по течению;
  2. (18-16=2) (км/ч) — скорость течения реки.

2-й способ (алгебраический)

  1. Пусть x км/ч — скорость течения реки, тогда (16 + x) км/ч — скорость катера по течению.
  2. Так как за 3 часа катер по течению прошел 54 км, составим и решим уравнение:

(3⋅(16+x)=54)
(16+x=54:3)
(16+x=18)
(x=18-16)
(x=2)

Ответ: скорость течения реки равна 2 км/ч.

Задачи для самостоятельного решения

  1. Расстояние между двумя пристанями 64 км. Скорость течения реки 4 км/ч. Собственная скорость катера равна 12 км/ч. За какое время катер пройдет от одной пристани
    до другой по течению реки?
  2. Расстояние между двумя пристанями 64 км. Собственная скорость катера равна 12 км/ч. За какое время катер пройдет расстояние между пристанями против течения реки,
    если скорость течения реки 4 км/ч?
  3. Катер курсирует между двумя городами по реке, скорость течения которой равна 6 км/ч. Какое время затратит катет на один рейс туда и обратно, если его собственная скорость 18 км/ч, а расстояние между пристанями — 48 км?
  4. Моторная лодка преодолевает расстояние 72 км по течению реки за 6 ч, а против течения — за 9 ч. Найти скорость течения реки и собственную скорость лодки.

Посмотреть еще в категории: Задачи по математике 5-6 класс

  • Задачи на сложение и вычитание
  • Задачи на движение навстречу друг другу
  • Задачи на движение в одном направлении
  • Задачи на движение в противоположных направлениях
  • Задачи на нахождение дроби от числа
  • Задачи на нахождение числа по его дроби
  • Задачи на нахождение процента от числа
  • Задачи на нахождение числа по его процентам
  • Задачи на процентное отношение двух чисел
  • Задачи на проценты (с помощью пропорции)
  • Задачи на нахождение градусной меры угла
  • Задачи на нахождение периметра и площади треугольника
  • Задачи с использованием формул площадей прямоугольника и квадрата
  • Задачи на нахождение объема прямоугольного параллелепипеда и куба
  • Задачи на проценты
  • Задачи на нахождение длины окружности и площади круга

Классическим примером текстовой задачи, которая может встретиться вам на ЕГЭ, является задача на движение. Эти задачи довольно разнообразны и включают в себя: задачи на движение навстречу, задачи на движение вдогонку, задачи на движение по реке. И поэтому вопрос, как же решать задачи на движение, иногда ставят учеников в тупик.

Научиться решать такие задачи довольно легко, для этого нужно знать алгоритм, состоящий всего из 3 шагов.

  1. Формула, которую обязательно нужно знать, и секрет, как ее легко запомнить
  2. Как решать задачи на движение: 3 простых шага
  3. Задачи на движение вдогонку: примеры с решением
  4. Задачи на движение навстречу: примеры с решением
  5. Задачи на движение по течению и против течения: примеры с решением

Формула, которую обязательно нужно знать, и секрет, как ее легко запомнить

Для решения любой задачи на движение вам обязательно нужно знать всего одну формулу, которая вам уже давно известна:Kak reshat zadachi na dvigenieИ уметь правильно выражать из этой формулы скорость и время:Kak reshat zadachi na dvigenie1Многие ученики путаются при записи этих формул, допуская ошибки. Чтобы раз и навсегда запомнить формулы нахождения расстояния, скорости и времени, просто нарисуй треугольник. В верхнем углу треугольника напиши S, а внизу — V и t. Проведи горизонтальную черту между ними. Теперь мы можем закрыть рукой ту величину, которую нам нужно найти, и увидим формулу нахождения этой величины. Например, нам нужно найти расстояние. Закрываем рукой S, и на нашем рисунке останется V t – это и есть формула нахождения расстояния. Или нам нужно найти время. Закрываем рукой t, и на нашем рисунке остается  – формула нахождения времени. Нужно найти скорость? Закрываем рукой V, получаем  – формулу нахождения скорости. Главное запомнить, что S должна быть в верхнем углу. Это можно сделать, например, с помощью ассоциации, что S похожа на змею, а змея – хозяйка горы, поэтому она на вершине. Вот как выглядит такой магический треугольник:Kak reshat zadachi na dvigenie3

Чтобы правильно решить задачу на движение нужно:

  1. Определить неизвестное и составить таблицу на основании условия задачи.
  2. Составить уравнение на основании таблицы.
  3. Вернуться к условиям задачи и записать правильный ответ.

Давайте подробнее разберем каждый шаг:

  1. Вначале нам нужно внимательно прочитать условие задачи и определить, что же взять за переменную Х. Чаще всего в задачах на движение удобнее всего за переменную Х обозначить скорость. Если же скорость нам прямо дана в условиях задачи, то за переменную Х обозначаем время. Если в условиях задачи прямо указаны значения и скорости, и времени, тогда за переменную Х берем расстояние. Затем из условий задачи определить все, что нам известно и занести в таблицу.
  2. На основании полученной таблицы составляем уравнение и решаем его. После решения уравнения не торопимся записывать ответ. Ведь нахождение Х – это не всегда ответ к исходной задаче. Такую ошибку совершают многие ученики: фактически правильно решив задачу, они записывают неправильный ответ.
  3. После решения уравнения возвращаемся к условиям задачи и смотрим, что же требовалось найти. Находим неизвестное и записываем ответ.

Задачи на движение бывают разными. В таких задачах участники движения могут двигаться навстречу друг другу, вдогонку, они могут двигаться по реке (против течения или по течению). Каждая из этих задач имеет особенности решения, о которых мы поговорим ниже и разберем на примерах.

Задачи на движение вдогонку: примеры с решением

Kak reshat zadachi na dvigenie10

При решении задачи, по условия которой оба участника движения двигаются в одном направлении, как правило, сравнивается время их движения. Необходимо запомнить правила:

  1. Если время движения сравнивается (то есть присутствуют слова больше/меньше), то мы приравниваем время и прибавляем слагаемое. То есть чтобы получить большее время, мы прибавляем к меньшему времени что-то еще (из условий задачи).
  2. Если условия задачи содержат общее время, то дроби, выражающее время, складываются.

Давайте разберем, как работают эти правила при решении задач.

Задача 1

Велосипедист и автомобилист одновременно выехали из пункта А в пункт Б, расстояние между которыми равно 50 км. Известно, что скорость автомобилиста на 40 км/ч больше, чем у велосипедиста, в результате чего автомобилист приехал в пункт Б на 4 часа раньше. Найдите скорость велосипедиста.

Решение:

1. Необходимо определить, что взять за переменную Х и составить таблицу. Вспоминаем, что удобнее всего за Х обозначить скорость в том случае, если она прямо не указано в условиях задачи.

В нашем случае скорость в условиях задачи не указана, поэтому скорость велосипедиста обозначаем за Х.

Составляем таблицу, данные для которой берем из условий задачи.

Итак, расстояние (S) нам известно – 50 км, скорость велосипедиста – х, скорость автомобилиста на 40 км/ч больше, значит она равна х + 40. Чтобы определить время вспоминаем формулу t = S / V и подставляем в нее наши значения. Время, затраченное велосипедистом, получится 50 / х, а время, затраченное автомобилистом — 50 / (х + 40).Kak reshat zadachi na dvigenie42. На основании таблицы и условий задачи необходимо составить уравнение.

Из условий задачи нам известно, что автомобилист приехал раньше велосипедиста на 4 часа (смотрим наше первое правило). Это значит, что велосипедист затратил на 4 часа больше времени, чем автомобилист. Следовательно,

50 / (х + 40) + 4 = 50 / х

Решаем полученное уравнение, для этого приводим наши дроби к одному знаменателю:

50х + 4х (х + 40) – 50 (х+40) / х (х + 40) = 0

(50х + 4х2 + 160х – 50х – 2000) / х (х+40) = 0

(4х2 + 160х – 2000) / (х2 + 40х) = 0

Умножим обе части уравнение на х2 + 40х:

2 + 160х – 2000 = 0

Разделим обе части уравнения на 4:

х2 + 40х – 500 = 0

Находим дискриминант:

D = 402 – 4 * 1 * (-500) = 3600

Далее находим корни уравнения:

х1 = 10

х2 = — 50

3. Возвращаемся к условиям задачи и вспоминаем, что же требовалось найти.

Нам нужно было определить скорость велосипедиста, которую мы обозначили за Х.

Скорость велосипедиста должна быть положительна, поэтому х2 не подходит по смыслу задачи. Следовательно, нас интересует только х1 и скорость велосипедиста равна 10 км/ч.

Ответ: 10 км/ч.

Задача 2

Велосипедист выехал с постоянной скоростью из города А в город Б, расстояние между которыми равно 80 км. На следующий день он поехал обратно, при этом его скорость была на 2 км/ч больше прежней. По пути велосипедист останавливался и отдыхал 2 часа. В итоге на возвращение из города Б в город А у него ушло времени столько же, сколько на путь из города А в город Б. Найдите скорость велосипедиста на пути из города А в город Б.

Решение:

1. Обозначим скорость велосипедиста на пути из города А в город Б как переменную Х.

Составим таблицу.

Из условий задачи: расстояние — 80 км, скорость велосипедиста во второй день – х. Его скорость во второй день была на 2 км/ч больше, чем в первый день, т.е. в первый день она была ниже, следовательно, скорость велосипедиста в первый день равна х – 2. Определим затраченное велосипедистом время на путь по формуле t = S / V. Тогда время, затраченное в первый день на путь равно 80 / х, во второй день — 80 / (х + 2).Kak reshat zadachi na dvigenie52. На основании таблицы и условий задачи составим уравнение.

Из условий задачи нам известно, что во второй день велосипедист останавливался и отдыхал 2 часа, следовательно, в пути он провел на 2 часа меньше (смотрим наше первое правило).  Также нам известно, что общее затраченное велосипедистом время в первый и во второй дни равно. Следовательно:

80 / (х + 2) + 2 =  (80 / х)

Решаем полученное уравнение, для чего приводим дроби к общему знаменателю:

(80х + 160 – 80х – 2х (х+2)) / х (х + 2) = 0

Умножаем обе части уравнения на х (х + 2):

160 – 2х2 + 4х = 0

— 2х2 — 4х + 160 = 0

Делим обе части уравнения на -2:

х2 + 2х – 80 = 0

Находим дискриминант:

D = 22 – 4 * 1 * (-80) = 4 + 320 = 324

Тогда корни уравнения равны:

х1 = 8

х2 = — 10

3. Возвращаемся к условиям задачи. Нам необходимо было найти скорость велосипедиста на пути из города А в город Б, которую мы обозначали за Х.

Скорость должна быть положительна, поэтому х2 = — 10 не подходит по смыслу задачи. Следовательно, скорость велосипедиста равна 8.

Ответ: 8 км/ч.

Задачи на движение навстречу: примеры с решением

Kak reshat zadachi na dvigenie11

Главное, что нужно помнить о движении навстречу: скорости участников движения складываются.

В тех случаях, когда нам неизвестно общее расстояние, то есть мы не можем его определить из условий задачи и из составленных уравнений, данное расстояние следует принимать за единицу.

Примеры решения задач на движение навстречу:

Задача 1

Из города А в город Б выехал автомобилист, через 3 часа навстречу ему выехал мотоциклист со скоростью 60 км/ч. Автомобилист и мотоциклист встретились на расстоянии 350 км от города А. Расстояние между городами А и Б равно 470 км. Найдите скорость автомобилиста.

Решение:

1. Обозначим скорость автомобилиста как Х.

Автомобилист и мотоциклист встретились на расстоянии 350 км от города А. Следовательно, автомобилист проехал 350 км, а мотоциклист 470 – 350 = 120 км.

Составим таблицу:Kak reshat zadachi na dvigenie62. Составим уравнении на основании таблицы и условий задачи.

Из условий задачи известно, что автомобилист ехал на 3 часа дольше, чем мотоциклист (пользуемся первым правилом, которое разбирали при решении задач на движение вдогонку). Следовательно:

350/х = 120/60 + 3

350/х = 5

Решаем полученное уравнение:

5х = 350

х = 70

3. Возвращаемся к условиям задачи. Нам необходимо было найти скорость автомобилиста, которую мы обозначали за Х. Следовательно, скорость автомобилиста равна 70 км/ч.

Ответ: 70 км/ч.

Задача 2

Из городов А и Б одновременно навстречу друг другу выехали автомобилист и велосипедист. Автомобилист приехал в город А на 6 часов раньше, чем велосипедист приехал в город Б. Встретились они через 4 часа после начала движения. Сколько времени затратил автомобилист на путь из города Б в город А?

Решение:

1. Время автомобилиста обозначим как Х.

Примем расстояние между городами А и Б за единицу. Остальные данные берем из условий задачи.

Составим таблицу:Kak reshat zadachi na dvigenie72. Составим уравнение на основании таблицы и условий задачи.

Известно, что велосипедист и автомобилист встретились через  4 часа после начала движения  и в сумме преодолели все расстояние от города А до города Б. То есть все расстояние от города А до города Б было преодолено за 4 часа.

Вспоминаем, что при движении навстречу скорости движения участников складываются. Подставим в формулу пути известные нам данные:

((1 / х) +  (1 / (х — 6))) * 4 = 1

Решаем полученное уравнение:

(4 / х) +  (4 / (х — 6)) = 1

Приводим дроби к одному знаменателю:

(4х — 24 + 4х — х2 + 6х) / (х (х — 6))  = 0

Делим обе части уравнения на х (х — 6), при условии, что х > 6:

2 + 14х — 24 = 0

Умножим обе части уравнение на -1:

х2 — 14х + 24 = 0

Находим дискриминант нашего квадратного уравнения:

D = 142 – 4 * 1 * 24 = 100

Находим корни уравнения:

х1 = 12

х2 = 2

х2 < 6, следовательно, корнем уравнения не является.

3. Возвращаемся к условиям задачи. Нам необходимо было определить, сколько времени затратил автомобилист на путь из города Б в город А. Это время мы обозначали за Х. Следовательно, автомобилист затратил на путь из города Б в город А 12 часов.

Ответ: 12 часов.

Задачи на движение по течению и против течения: примеры с решением

Kak reshat zadachi na dvigenie12

В условиях задач на движение по реке всегда дано две скорости: собственная скорость судна (скорость, с которой он может двигаться в неподвижной воде) и скорость течения.

При этом возможны две ситуации: когда судно движется по течению и когда судно движется против течения.

Когда судно движется по течению, то течение помогает судну двигаться, оно начинает двигаться быстрее, следовательно, собственная скорость судна и скорость течения складываются.

Когда же судно двигается против течения, то оно ощущает сопротивление, плыть ему становится тяжелее. В этом случае скорость течения будет вычитаться из собственной скорости судна.

Давайте рассмотрим примеры решения задач на движение по реке.

Задача 1

Катер прошел против течения реки 160 км/ч и вернулся в пункт отправления, затратив времени на обратный путь на 8 часов меньше. Найдите скорость катера в неподвижной воде, если известно, что скорость течения реки равна 5 км/ч.

Решение:

1. Обозначим собственную скорость катера – х.

Составим таблицу:Kak reshat zadachi na dvigenie82. На основании таблицы и условий задачи составим уравнение.

По условиям задачи известно, что время, затраченное на путь по течению реки, на 8 часов меньше, чем время, затраченное на путь против течения реки (пользуемся первым правилом, которое разбирали при решении задач на движение вдогонку). Соответственно:

160 / (х + 5) + 8 = 160 / (х — 5)

Решаем данное уравнение. Для этого приводим дроби к общему знаменателю:

(160 (х – 5) + 8 (х – 5) (х + 5) – 160 (х + 5)) / (х – 5) (х + 5) = 0

(160х – 800 + (8х – 40) (х + 5) – 160х — 800) / (х – 5) (х + 5)  = 0

Умножаем обе части уравнения на (х – 5) (х + 5):

-1600 + 8х2 + 40х – 40х – 200 = 0

2 – 1800 = 0

2 = 1800

х2 = 225

х1,2 = ±15

3. Возвращаемся к условию задачи. Нам необходимо было найти собственную скорость катера, которую мы обозначили за Х. Так как скорость не может быть отрицательной, то х1 = -15 противоречит условию задачи. Следовательно, собственная скорость катера равна 15 км/ч.

Ответ: 15 км/ч.

Задача 2

Моторная лодка вышла в 9:00 из пункта А в пункт Б, расстояние между которыми 30 км. Пробыв в пункте Б 3 часа, моторная лодка повернула назад и вернулась в пункт А в 20:00. Найдите скорость течения реки, если известно, что собственная скорость моторной лодки 8 км/ч.

Решение:

1. Обозначим скорость течения реки за х. Остальные данные берем из условия задачи.

Составим таблицу:Kak reshat zadachi na dvigenie92. Составим уравнение.

Нам известно, что моторная лодка начала свое движение в 9:00, а закончила в 20:00, а также в течение этого времени пробыла без движения во время стоянки – 3 часа. Таким образом, общее время движения будет 20 – 9 – 3 = 8 часов. Когда речь идет об общем времени движения, то нам нужно сложить время движения по течению и время движения против течения (пользуемся вторым правилом, которое разбирали при решении задач на движение вдогонку). Получаем:

30 / (8+х) + 30 / (8-х) = 8

Решаем полученное уравнение. Для этого приводим дроби к общему знаменателю:

(30 (8+х) + 30 (8-х) – 8 (8-х) (8+х)) / (8-х) (8+х) = 0

Умножаем обе части уравнения на (8-х) (8+х):

240 + 30х + 240 – 30х – (64 – 8х) (8+х) = 0

480 – 512 – 64х + 64х – 8х2 = 0

2 = 32

х2 = 4

х1,2 = ±2

3. Возвращаемся к условию задачи. Нам необходимо было найти скорость течения, которую мы обозначили за х. Так как скорость не может быть отрицательной, то х1 = -2 противоречит условию задачи. Следовательно, скорость течения равна 2 км/ч.

Ответ: 2 км/ч.

Итак, мы разобрались, как решать задачи на движения. В ЕГЭ 2023 помимо задач на движение могут содержаться и другие текстовые задачи: на смеси и сплавы, на работу, на проценты. О том, как их решать, вы можете узнать на нашем сайте, а также .

Добавить комментарий