Как найти время лодки в пути

Давайте сегодня рассмотрим движение по реке и связанные с этим задачи.

Движение по реке отличается тем, что на движущийся объект воздействует еще и сила течения реки. В реальной жизни и вне реки на нас воздействует ветер, сопротивление воздуха и прочие вещи, но в математике мы этим пренебрегаем.

Задачи на движение по реке

В задачах на движение по реке важно учитывать направление движения – по течению и против. Если объект в задаче движется по течению, то к его собственной скорости, иногда ее еще называют скоростью в стоячей воде, скоростью в пруду, добавляется скорость реки (течения). Если объект плывет против течения, то скорость реки его сносит назад, поэтому его собственная скорость уменьшается как раз на скорость течения.

Формулы для вычисления
Формулы для вычисления

Расстояние от пункта A до пункта B по реке равно 120 км. Сколько времени потратит моторная лодка на путь от пункта A до B, если её собственная скорость 27 км/ч, а скорость течения реки 3 км/ч?

Рассмотрите два варианта: 1) лодка движется по течению реки; 2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

27 + 3 = 30 (км/ч)

Значит расстояние между пунктами лодка преодолеет за:

120 : 30 = 4 (ч)

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

27 – 3 = 24 (км/ч)

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта A до пункта B, надо расстояние разделить на скорость:

120 : 24 = 5 (ч)

Ответ:
1) При движении по течению реки моторная лодка потратит 4 часа на путь от пункта
A до пункта B.
2) При движении против течения реки моторная лодка потратит 5 часов на путь от пункта
A до пункта B.

Содержание

  1. Задачи на движение по реке
  2. Как найти собственную скорость лодки
  3. Задачи на движение по воде
  4. Задачи на движение по воде.
  5. Чем же отличается движение по озеру от движения по реке?
  6. Связь между скоростью по течению и скоростью против течения.
  7. Задачи на движение по реке
  8. Задачи на движение по реке
  9. Задачи на движение
  10. Скорость тела. Средняя скорость тела
  11. Движение по реке. Скорость течения реки
  12. Движение по кольцевым трассам

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 1. Катер движется против течения реки. За сколько часов он преодолеет расстояние 112 км, если его собственная скорость 30 км/ч, а скорость течения реки 2 км/ч?

Решение: Сначала узнаем скорость движения катера против течения реки, для этого от его собственной скорости отнимем скорость течения:

30 — 2 = 28 (км/ч) — скорость движения катера против течения.

Теперь можно узнать за сколько часов катер преодолеет 112 км, разделив расстояние на скорость:

Решение задачи по действиям можно записать так:

1) 30 — 2 = 28 (км/ч) — скорость движения катера против течения,

Ответ: За 4 часа катер преодолеет расстояние 112 км.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки.

Задача 2. Расстояние от пункта A до пункта B по реке равно 120 км. Сколько времени потратит моторная лодка на путь от пункта A до B, если её собственная скорость 27 км/ч, а скорость течения реки 3 км/ч?

Рассмотрите два варианта:

1) лодка движется по течению реки;

2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

Значит расстояние между пунктами лодка преодолеет за:

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта A до пункта B, надо расстояние разделить на скорость:

Решение задачи по действиям для движения по течению реки можно записать так:

1) 27 + 3 = 30 (км/ч) — скорость лодки,

Для движения против течения реки решение задачи по действиям можно записать так:

1) 27 — 3 = 24 (км/ч) — скорость лодки,

1) При движении по течению реки моторная лодка потратит 4 часа на путь от пункта A до пункта B.

2) При движении против течения реки моторная лодка потратит 5 часов на путь от пункта A до пункта B.

Источник

Как найти собственную скорость лодки

  • Как найти собственную скорость лодки
  • Как решить задачу на скорость реки
  • Как решать задачи на движение

Первое, что необходимо выучить и знать «на зубок» — формулы. Запишите и запомните:

Vпр. теч=Vпо теч. — 2Vтеч.

Vпо теч.=Vпр. теч+2Vтеч.

Vтеч.=(Vпо теч. — Vпр. теч)/2

Vс=(Vпо теч.+Vпр теч.)/2 или Vс=Vпо теч.+Vтеч.

На примере разберем, как находить собственную скорость и решать задачи такого типа.

Пример 1.Скорость лодки по течению 21,8км/ч, а против течения 17,2 км/ч. Найти собственную скорость лодки и скорость течения реки.

Решение: Согласно формулам: Vс=(Vпо теч.+Vпр теч.)/2 и Vтеч.=(Vпо теч. — Vпр. теч)/2, найдем:

Vтеч = (21,8 — 17,2)/2=4,62=2,3 (км/ч)

Vс = Vпр теч.+Vтеч=17,2+2,3=19,5 (км/ч)

Ответ: Vc=19,5 (км/ч), Vтеч=2,3 (км/ч).

Пример 2. Пароход прошел против течения 24 км и вернулся обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите его собственную скорость в неподвижной воде, если скорость течения равна 3 км/ч.

За Х примем собственную скорость парохода. Составим таблицу, куда занесем все данные.

Против теч. По течению

Расстояние 24 24

время 24/ (Х-3) 24/ (Х+3)

Зная, что на обратный путь пароход затратил на 20 минут времени меньше, чем на путь по течению, составим и решим уравнение.

24/ (Х-3) – 24/ (Х+3) = 1/3

Х=21(км/ч) – собственная скорость парохода.

Источник

Задачи на движение по воде

Разделы: Математика

Данный материал представляет собой систему задач по теме “Движение”.

Цель: помочь учащимся более полно овладеть технологиями решения задач по данной теме.

Задачи на движение по воде.

Очень часто человеку приходится совершать движения по воде: реке, озеру, морю.

Сначала он это делал сам, потом появились плоты, лодки, парусные корабли. С развитием техники пароходы, теплоходы, атомоходы пришли на помощь человеку. И всегда его интересовали длина пути и время, затраченное на его преодоление.

Представим себе, что на улице весна. Солнце растопило снег. Появились лужицы и побежали ручьи. Сделаем два бумажных кораблика и пустим один из них в лужу, а второй — в ручей. Что же произойдет с каждым из корабликов?

В луже кораблик будет стоять на месте, а в ручейке — поплывет, так как вода в нем «бежит» к более низкому месту и несет его с собой. То же самое будет происходить с плотом или лодкой.

В озере они будут стоять на месте, а в реке – плыть.

Рассмотрим первый вариант: лужа и озеро. Вода в них не движется и называется стоячей.

Кораблик поплывет по луже только в том случае, если мы его подтолкнем или если подует ветер. А лодка начнет двигаться в озере при помощи весел или если она оснащена мотором, то есть за счет своей скорости. Такое движение называют движением в стоячей воде.

Отличается ли оно от движения по дороге? Ответ: нет. А это значит, что мы с вами знаем как действовать в этом случае.

Задача 1. Скорость катера по озеру равна 16 км/ч.

Какой путь пройдет катер за 3 часа?

Следует запомнить, что скорость катера в стоячей воде называют собственной скоростью.

Задача 2. Моторная лодка за 4 часа проплыла по озеру 60 км.

Найдите собственную скорость моторной лодки.

Задача 3. Сколько времени потребуется лодке, собственная скорость которой

равна 28 км/ч, чтобы проплыть по озеру 84 км?

Итак, чтобы найти длину пройденного пути, необходимо скорость умножить на время.

Чтобы найти скорость, необходимо длину пути разделить на время.

Чтобы найти время, необходимо длину пути разделить на скорость.

Чем же отличается движение по озеру от движения по реке?

Вспомним бумажный кораблик в ручье. Он плыл, потому что вода в нем движется.

Такое движение называют движением по течению. А в обратную сторону – движением против течения.

Итак, вода в реке движется, а значит имеет свою скорость. И называют ее скоростью течения реки. ( Как ее измерить?)

Задача 4. Скорость течения реки равна 2 км/ч. На сколько километров река относит

любой предмет (щепку, плот, лодку) за 1час, за 4 часа?

Ответ: 2 км/ч, 8 км/ч.

Каждый из вас плавал в реке и помнит, что по течению плыть гораздо легче, чем против течения. Почему? Потому, что в одну сторону река «помогает» плыть, а в другую — «мешает».

Те же, кто не умеет плавать, могут представить себе ситуацию, когда дует сильный ветер. Рассмотрим два случая:

1) ветер дует в спину,

2) ветер дует в лицо.

И в том и в другом случае идти сложно. Ветер в спину заставляет бежать, а значит, скорость нашего движения увеличивается. Ветер в лицо сбивает нас, притормаживает. Скорость при этом уменьшается.

Остановимся на движении по течению реки. Мы уже говорили о бумажном кораблике в весеннем ручье. Вода понесет его вместе с собой. И лодка, спущенная на воду, поплывет со скоростью течения. Но если у нее есть собственная скорость, то она поплывет еще быстрее.

Следовательно, чтобы найти скорость движения по течению реки, необходимо сложить собственную скорость лодки и скорость течения.

Задача 5. Собственная скорость катера равна 21 км/ч, а скорость течения реки 4 км/ч. Найдите скорость катера по течению реки.

Теперь представим себе, что лодка должна плыть против течения реки. Без мотора или хотя бы весел, течение отнесет ее в обратную сторону. Но, если придать лодке собственную скорость ( завести мотор или посадить гребца), течение будет продолжать отталкивать ее назад и мешать двигаться вперед со своей скоростью.

Поэтому, чтобы найти скорость лодки против течения, необходимо из собственной скорости вычесть скорость течения.

Задача 6. Скорость течения реки равна 3 км/ч, а собственная скорость катера 17 км/ч.

Найдите скорость катера против течения.

Задача 7. Собственная скорость теплохода равна 47,2 км/ч, а скорость течения реки 4,7 км/ч. Найдите скорость теплохода по течению и против течения.

Ответ: 51,9 км/ч; 42,5 км/ч.

Задача 8. Скорость моторной лодки по течению равна12,4 км/ч. Найдите собственную скорость лодки, если скорость течения реки 2,8 км/ч.

Задача 9. Скорость катера против течения равна 10,6 км/ч. Найдите собственную скорость катера и скорость по течению, если скорость течения реки 2,7 км/ч.

Ответ: 13,3 км/ч; 16 км/ч.

Связь между скоростью по течению и скоростью против течения.

Введем следующие обозначения:

Vс. — собственная скорость,

Vтеч. — скорость течения,

V по теч. — скорость по течению,

V пр.теч. — скорость против течения.

Тогда можно записать следующие формулы:

Попытаемся изобразить это графически:

Вывод: разность скоростей по течению и против течения равна удвоенной скорости течения.

Vno теч — Vnp. теч = 2 Vтеч.

Vтеч = (V по теч — Vnp. теч ): 2

1) Скорость катера против течения равна 23 км/ч, а скорость течения 4 км/ч.

Найдите скорость катера по течению.

2) Скорость моторной лодки по течению реки равна 14 км/ч/ а скорость течения 3 км/ч. Найдите скорость лодки против течения

Задача 10. Определите скорости и заполните таблицу:

Источник

Задачи на движение по реке

Задачи на движение по реке трудны для пятиклассников, а взрослые недоумевают: чего же там трудного? Бревно или плот плывут со скоростью течения реки Vт., которая считается постоянной.

Скорость катера в стоячей воде Vс. называют собственной скоростью катера. Скорость катера по течению реки Vпо теч. больше собственной скорости катера на скорость течения реки: Vпо теч. = Vс. + Vт.

Скорость катера против течения реки Vпр теч. меньше собственной скорости катера на скорость течения реки: Vпо теч. = Vс. + Vт.

Эти соотношения полезно проиллюстрировать рисунком.

Скорость катера по течению больше его скорости против течения на две скорости течения.

Задача 1. Скорость катера в стоячей воде равна 15 км/ч, а скорость течения реки — 3 км/ч. Какова скорость катера по течению и против течения реки?

1) 15 + 3 = 18 (км/ч) — скорость катера по течению реки,

2) 15 — 3 = 12 (км/ч) — скорость катера против течения реки.

Ответ. 18 км/ч и 12 км/ч.

Обратим внимание: скорость катера по течению реки — это сумма его собственной скорости и скорости течения реки, а скорость катера против течения реки— это разность его собственной скорости и скорости течения реки, поэтому скорость по течению реки больше скорости против течения на удвоенную скорость течения.

Задача 2. Скорость моторной лодки по течению реки равна 48 км/ч, а против течения — 42 км/ч. Какова скорость течения реки и собственная скорость моторной лодки?

1) 48 — 42 = 6 (км/ч) — удвоенная скорость течения реки,

2) 6: 2 = 3 (км/ч) — скорость течения реки,

3) 48 — 3 = 45 (км/ч) — собственная скорость.

Ответ. 3 км/ч и 45 км/ч.

Задачи для закрепления берём в учебнике «Математика» для 5 класса (Просвещение, С. М. Никольский и др.) или в книге для учителя «Обучение решению текстовых задач в 5-6 классах» (раздел Книги на сайте www.shevkin.ru). Приведём три задачи из учебника.

В качестве примера применения формируемого умения приведём задачу из сборника для подготовки к ГИА-9.

Задача 3. Теплоход проходит по течению реки до пункта назначения 160 км и после стоянки возвращается в пункт отправления. Найдите скорость течения реки, если скорость теплохода в неподвижной воде равна 18 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается ровно через 20 часов после отплытия из него.

Составлять и решать уравнение с неизвестным в знаменателе научат в 8 классе, если новый стандарт не отменит изучение таких уравнений, а находить скорость теплохода по течению и против течения реки надо научиться в 5 классе.

Источник

Задачи на движение по реке

Задачи на движение по реке трудны для пятиклассников, а взрослые недоумевают: чего же там трудного? Бревно или плот плывут со скоростью течения реки V т., которая считается постоянной.

Скорость катера в стоячей воде V с. называют собственной скоростью катера. Скорость катера по течению реки V по теч. больше собственной скорости катера на скорость течения реки: V по теч. = V с. + V т.

Скорость катера против течения реки V пр теч. меньше собственной скорости катера на скорость течения реки: V пр. теч. = V с. – V т.

Эти соотношения полезно проиллюстрировать рисунком.

Скорость катера по течению больше его скорости против течения на две скорости течения.

Задача 1. Скорость катера в стоячей воде равна 15 км/ч, а скорость течения реки – 3 км/ч. Какова скорость катера по течению и против течения реки?

Решение.
1) 15 + 3 = 18 (км/ч) — скорость катера по течению реки,
2) 15 – 3 = 12 (км/ч) — скорость катера против течения реки.

Ответ. 18 км/ч и 12 км/ч.

Обратим внимание: скорость катера по течению реки — это сумма его собственной скорости и скорости течения реки, а скорость катера против течения реки— это разность его собственной скорости и скорости течения реки, поэтому скорость по течению реки больше скорости против течения на удвоенную скорость течения .

Задача 2. Скорость моторной лодки по течению реки равна 48 км/ч, а против течения — 42 км/ч. Какова скорость течения реки и собственная скорость моторной лодки?

Решение.
1) 48 – 42 = 6 (км/ч) — удвоенная скорость течения реки,
2) 6 : 2 = 3 (км/ч) — скорость течения реки,
3) 48 – 3 = 45 (км/ч) — собственная скорость.

Ответ. 3 км/ч и 45 км/ч.

Задачи для закрепления берём в учебнике «Математика» для 5 класса (Просвещение, С.М. Никольский и др.) или в книге для учителя «Обучение решению текстовых задач в 5-6 классах» (раздел Книги на сайте www.shevkin.ru ). Приведём только три задачи из учебника.

Если текст понравился, то ставим «палец вверх», подписываемся на канал. В комментариях оставляем возражения, предложения и пожелания.

Ваш наблюдатель Шевкин Александр Владимирович.

Источник

Задачи на движение

Скорость тела. Средняя скорость тела

Решение задач на движение опирается на хорошо известную из курса физики формулу

позволяющую найти путь S , пройденный за время t телом, движущимся с постоянной скоростью v .

Сразу же сделаем важное

Замечание 1 . Единицы измерения величин S , t и v должны быть согласованными. Например, если путь измеряется в километрах, а времяв часах, то скорость должна измеряться в км/час.

В случае, когда тело движется с разными скоростями на разных участках пути, вводят понятие средней скорости , которая вычисляется по формуле

Например, если тело в течение времени t1 двигалось со скоростью v1 , в течение времени t2 двигалось со скоростью v2 , в течение времени t3 двигалось со скоростью v3 , то средняя скорость

(2)

Задача 1 . По расписанию междугородный автобус должен проходить путь в 100 километров с одной и той же скоростью и без остановок. Однако, пройдя половину пути, автобус был вынужден остановиться на 25 минут. Для того, чтобы вовремя прибыть в конечный пункт, водитель автобуса во второй половине маршрута увеличил скорость на 20 км/час. Какова скорость автобуса по расписанию?

Решение . Обозначим буквой v скорость автобуса по расписанию и будем считать, что скорость v измеряется в км/час. Изобразим данные, приведенные в условии задачи 1, на рисунке 1.

– время движения автобуса по расписанию (в часах);

– время, за которое автобус проехал первую половину пути (в часах);

v + 20 – скорость автобуса во второй половине пути (в км/час);

– время, за которое автобус проехал вторую половину пути (в часах).

В условии задачи дано время остановки автобуса – 25 минут. Его необходимо выразить в часах, чтобы все единицы измерения были согласованными:

Теперь можно составить уравнение, исходя из того, что автобус прибыл в конечный пункт вовремя, а, значит, время, которое он был в пути, плюс время остановки должно равняться времени движения автобуса по расписанию:

Решим это уравнение:

По смыслу задачи первый корень должен быть отброшен.

Задача 2. (МИОО) Первый час автомобиль ехал со скоростью 120 км/час, следующие три часа – со скоростью 105 км/час, а затем три часа – со скоростью 65 км/час. Найдите среднюю скорость автомобиля на протяжении всего пути.

Решение . Воспользовавшись формулой (2), получаем

Ответ . 90 км/час.

Задача 3 . Первую половину пути поезд шел со скоростью 40 км/час, а вторую половину пути – со скоростью 60 км/час. Найдите среднюю скорость поезда на протяжении всего пути.

Решение . Обозначим буквой S длину всего пути, выраженную в километрах. Изобразим данные, приведенные в условии задачи 3, на рисунке 2.

– время, за которое поезд прошел первую половину пути, выраженное в часах;

– время, за которое поезд прошел вторую половину пути, выраженное в часах.

Следовательно, время, за которое поезд прошел весь путь, равно

В соответствии с формулой (1) средняя скорость поезда на протяжении всего пути

Ответ . 48 км/час.

Замечание 2 . Средняя скорость поезда в задаче 3 равна 48 км/час, а не 50 км/час, как иногда ошибочно полагают, вычисляя среднее арифметическое чисел (скоростей) 40 км/час и 60 км/час. Средняя скорость не равна среднему арифметическому скоростей, а является величиной, вычисляемой по формуле (1).

Движение по реке. Скорость течения реки

В отличие от задач на движение по суше, в задачах на движение по реке появляется новая величина – скорость течения реки.

По отношению к берегу, который неподвижен, скорость тела, движущегося по течению реки, равна сумме собственной скорости тела ( скорости тела по озеру, скорости тела в неподвижной воде, скорости тела в стоячей воде ) и скорости течения реки. По отношению к берегу скорость тела, движущегося против течения реки, равна разности собственной скорости тела и скорости течения реки.

Задача 4 . Моторная лодка прошла по течению реки 14 км, а затем 9 км против течения, затратив на весь путь 5 часов. Скорость лодки в стоячей воде 5 км/час. Найдите скорость течения реки.

Решение . Обозначим буквой v скорость течения реки и будем считать, что скорость v измеряется в км/час.Изобразим данные, приведенные в условии задачи 4, на рисунке 3.

5 + v – скорость, с которой лодка шла по течению реки (в км/час);

– время движения лодки по течению реки (в часах);

5 – v – скорость, с которой лодка шла против течения реки (в км/час);

– время движения лодки против течения реки (в часах);

Теперь можно составить уравнение, принимая во внимание тот факт, что лодка находилась в пути 5 часов:

Решим это уравнение:

По смыслу задачи первый корень должен быть отброшен.

Задача 5. (Бюро «Квантум») Моторная лодка прошла по течению реки 34 км и 39 км против течения, затратив на это столько же времени, сколько ей нужно, чтобы пройти 75 километров в стоячей воде. Найдите отношение скорости лодки в стоячей воде к скорости течения реки.

Решение . Обозначим vс (км/ч) скорость лодки в стоячей воде и обозначим vр (км/ч) скорость течения реки. Изобразим данные задачи 5 на рисунках 4 и 5.

Учитывая тот факт, что в обеих ситуациях лодка провела в пути одно и то же время, можно составить уравнение:

(3)

Если ввести обозначение

то, воспользовавшись формулой

перепишем уравнение (3) в виде

(4)

Умножая уравнение (4) на vр , получим

По смыслу задачи первый корень должен быть отброшен.

Движение по кольцевым трассам

Задача 6. (www.reshuege.ru) Из пункта A круговой трассы длиной 46 км выехал велосипедист, а через 20 минут из пункта A следом за велосипедистом отправился мотоциклист. Через 5 минут после отправления мотоциклист догнал велосипедиста в первый раз, а еще через 46 минут после этого мотоциклист догнал велосипедиста во второй раз. Найдите скорости велосипедиста и мотоциклиста.

Решение . К тому моменту, когда мотоциклист в первый раз догнал велосипедиста, мотоциклист ехал 5 минут, а велосипедист ехал 25 минут, причем проехали они один и тот же путь. Отсюда вытекает, что скорость мотоциклиста в 5 раз больше скорости велосипедиста.

Таким образом, обозначив буквой v (км/час) скорость велосипедиста, получаем, что скорость мотоциклиста равна 5v (км/час).

В условии задачи дано время, прошедшее между двумя последовательными встречами мотоциклиста и велосипедиста, – 46 минут. Это время необходимо выразить в часах, чтобы все единицы измерения были согласованными:

Изобразим данные задачи, касающиеся движения мотоциклиста и велосипедиста между первой и второй встречами, на рисунке 6.

Поскольку за время часа, прошедшее от момента первой встречи до момента второй встречи, мотоциклист проехал 46 км (вся круговая трасса) плюс путь, который проехал велосипедист за часа, то можно составить следующее уравнение:

Решая это уравнение, находим скорость велосипедиста:

Ответ . Скорость велосипедиста 15 км/час, скорость мотоциклиста 75 км/час.

Задача 7 . На дороге, представляющей собой окружность длиной 60 км, пункты A и B являются диаметрально противоположными точками. Велосипедист выехал из пункта A и сделал два круга. Первый круг он прошел с постоянной скоростью, после чего уменьшил скорость на 5 км/час. Время между двумя прохождениями велосипедиста через пункт B равно 5 часам. Найти скорость, с которой велосипедист прошел первый круг.

Решение . Для определенности будем считать, что велосипедист двигался по кругу по часовой стрелке и рассмотрим рисунок 7.

Если обозначить буквой v (км/час) скорость, с которой велосипедист прошел первый круг, то скорость велосипедиста на втором круге будет равна v – 5 (км/час), и можно составить уравнение

Решая это уравнение, находим скорость велосипедиста на первом круге:

Поскольку скорость велосипедиста на первом круге больше, чем 5 км/час, то первый корень должен быть отброшен.

Ответ . 15 км/час.

Желающие ознакомиться с примерами решения различных задач по теме «Проценты» и применением процентов в экономике и финансовой математике могут посмотреть разделы нашего справочника «Проценты. Решение задач на проценты», «Простые и сложные проценты. Предоставление кредитов на основе процентной ставки», а также наши учебные пособия «Задачи на проценты» и «Финансовая математика».

Приемы, используемые для решения задач на выполнение работ представлены в разделе нашего справочника «Задачи на выполнение работ».

С примерами решения задач на смеси, сплавы и растворы можно ознакомиться в разделе нашего справочника «Задачи на смеси, сплавы и растворы».

С демонстрационными вариантами ЕГЭ и ОГЭ , опубликованными на официальном информационном портале Единого Государственного Экзамена, можно ознакомиться на специальной страничке нашего сайта.

Источник

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 1. Катер движется против течения реки. За сколько часов он преодолеет расстояние  112  км, если его собственная скорость  30  км/ч, а скорость течения реки  2  км/ч?

Решение: Сначала узнаем скорость движения катера против течения реки, для этого от его собственной скорости отнимем скорость течения:

30 – 2 = 28 (км/ч)  — скорость движения катера против течения.

Теперь можно узнать за сколько часов катер преодолеет  112  км, разделив расстояние на скорость:

112 : 28 = 4 (ч).

Решение задачи по действиям можно записать так:

1) 30 – 2 = 28 (км/ч)  — скорость движения катера против течения,

2) 112 : 28 = 4 (ч).

Ответ: За  4  часа катер преодолеет расстояние  112  км.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки.

Задача 2. Расстояние от пункта  A  до пункта  B  по реке равно  120  км. Сколько времени потратит моторная лодка на путь от пункта  A  до  B,  если её собственная скорость  27  км/ч, а скорость течения реки  3 км/ч?

Рассмотрите два варианта:

1) лодка движется по течению реки;

2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

27 + 3 = 30 (км/ч).

Значит расстояние между пунктами лодка преодолеет за:

120 : 30 = 4 (ч).

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

27 – 3 = 24 (км/ч).

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта  A  до пункта  B,  надо расстояние разделить на скорость:

120 : 24 = 5 (ч).

Решение задачи по действиям для движения по течению реки можно записать так:

1) 27 + 3 = 30 (км/ч)  — скорость лодки,

2) 120 : 30 = 4 (ч).

Для движения против течения реки решение задачи по действиям можно записать так:

1) 27 – 3 = 24 (км/ч)  — скорость лодки,

2) 120 : 24 = 5 (ч).

Ответ:

1) При движении по течению реки моторная лодка потратит  4  часа на путь от пункта  A  до пункта  B.

2) При движении против течения реки моторная лодка потратит  5  часов на путь от пункта  A  до пункта  B.

Как расчитать время за которое плот доплывёт из пункта “А” в пункт “В”?



Ученик

(120),
закрыт



13 лет назад

Вера

Профи

(502)


13 лет назад

1) Найдем скорость моторной лодки по течению
30/2=15 (км/ч)
2) Найдем скорость моторной лодки против течения
30/3=10 (км/ч)
3) Найдем разность скоростей
15-10=5 (км/ч)
4) Найдем скорость течения реки
5/2=2.5(км/ч)
5) Найдем время, за которое плот доплывет отА до В
30/2.5=12(ч)
Ответ плот доплывет за 12 часов

Ирина Ракитина

Ученик

(148)


13 лет назад

30/2=15 – скорость лодки по течению
30/3=10 – скорость лодки против течения
15-10=5 – скорость течения
сорость плота = скорости течения и = 5 км/ч
30/5=6 часов

Через уравнение.

S – пройденный путь, растояние, которое прошла, например, лодка. (км)

t – время, за которое она прошла расстояние S. (часов, минут)

V – собственная её скорость (км/ч, м/ч)

Такие задачи решаются далее: если известны: (под формулы подставляем числа)

t и V, то перемножаем – t * V, получаем S.

t и S, то расстояние делим время – S : t, получаем V

S и V, также – S : V, получаем t

Также если в задаче указана V (её ищем)

по течению, то V собственная + V по течению

против течения, то V собств. – V прот. теч.

Тогда формулы звучат так: если известны:

t и V, то t * (V с. +/- V) = S

t и S, то S : t = V с. +/- V

V и S, то S : (V c. +/- V) = t

Теперь ещё раз:

V c. – собственная скорость

V c. + V – скорость + скорость по теч.

V c. – V – скорость + скорость прот. теч.

Ну так чтоли… Плохой из меня учитель(((

Добавить комментарий