Как найти время облучения

До́за излуче́ния — в радиационной безопасности, физике и радиобиологии — величина, используемая для оценки степени воздействия ионизирующего излучения на любые вещества, живые организмы и их ткани.

Экспозиционная доза[править | править код]

Основная характеристика взаимодействия ионизирующего излучения со средой — это ионизационный эффект. Количественная мера, основанная на величине ионизации сухого воздуха при нормальном атмосферном давлении, достаточно легко поддающаяся измерению, получила название экспозиционная доза.

Экспозиционная доза — это отношение суммарного электрического заряда ионов одного знака, образованных после полного торможения в воздухе электронов и позитронов, освобождённых или порождённых фотонами в элементарном объёме воздуха, к массе воздуха в этом объёме.

В международной системе единиц (СИ) единицей измерения экспозиционной дозы является кулон, делённый на килограмм (Кл/кг). Внесистемная единица — рентген (Р). 1 Кл/кг = 3876 Р.

Поглощённая доза[править | править код]

При расширении круга известных видов ионизирующего излучения и сфер его приложения оказалось, что мера воздействия ионизирующего излучения на вещество не поддаётся простому определению из-за сложности и многообразности протекающих при этом процессов. Важным из них, дающим начало физико-химическим изменениям в облучаемом веществе и приводящим к определённому радиационному эффекту, является поглощение энергии ионизирующего излучения веществом. В результате этого возникло понятие поглощённая доза. Она показывает, какое количество энергии излучения поглощено в единице массы облучаемого вещества и определяется отношением поглощённой энергии ионизирующего излучения к массе поглощающего вещества.

За единицу измерения поглощённой дозы в системе СИ принят грей (Гр). 1 Гр — это такая доза, при которой массе 1 кг передаётся энергия ионизирующего излучения в 1 джоуль. Внесистемной единицей поглощённой дозы является рад. 1 Гр = 100 рад.

Эквивалентная доза (биологическая доза)[править | править код]

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощённых дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжёлая частица (например протон) производит на единице длины пути в ткани больше ионов, чем лёгкая (например электрон). При одной и той же поглощённой дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путём умножения значения поглощённой дозы на специальный коэффициент — взвешивающий коэффициент излучения, учитывающий относительную биологическую эффективность различных видов радиации.

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощённой в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощённая доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1954 года — биологический эквивалент рентгена, после 1954 года — биологический эквивалент рада[1]). 1 Зв = 100 бэр.

Эффективная доза[править | править код]

Эффективная доза (E) — величина, используемая как мера риска возникновения отдалённых последствий облучения всего тела человека и отдельных его органов и тканей с учётом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в лёгких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется взвешивающим коэффициентом ткани. Умножив значение эквивалентной дозы на соответствующий взвешивающий коэффициент и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешивающие коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу.

Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Ожидаемая эффективная доза E(τ) — доза внутреннего облучения от поступивших в организм человека радионуклидов[2][3]. Время облучения человека такими радионуклидами определяется периодами их полураспада и биологического удержания в организме и может составлять многие месяцы и даже годы[4]. Для целей регулирования полный период накопления дозы устанавливается равным 50 лет для взрослого человека или, если оценивается доза для детей, до достижения 70 лет. При оценке годовой дозы ожидаемая эффективная доза суммируется с эффективной дозой от внешнего облучения за этот же период[5].

Эффективная и эквивалентная дозы — это нормируемые величины, то есть, величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым.
Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).

Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, то есть амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение.
Единица амбиентного эквивалента дозы — зиверт (Зв).

Групповые дозы[править | править код]

Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе — сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т. д. Её получают путём умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица — человеко-бэр (чел.-бэр). Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.

Кроме того, выделяют следующие дозы:

  • пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
  • предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
  • удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску.
  • минимально летальная — минимальная доза излучения, вызывающая гибель всех облучённых объектов.

Допустимые и смертельные дозы для человека[править | править код]

Миллизиверт (мЗв) часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).

Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апреля 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации».

Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв[6].

Облучение от других техногенных источников значительно меньше:

  • 0,005 мЗв от радионуклидов, оставшихся от атмосферных ядерных испытаний,
  • 0,002 мЗв от аварии на Чернобыльской АЭС,
  • 0,001 мЗв от аварии на АЭС Фукусима
  • 0,0002 мЗв от ядерной энергетики.

Среднемировая доза облучения от естественных источников, накопленная на душу населения за год, равна 2,4 мЗв, с разбросом от 1 до 10 мЗв[6]. Основные компоненты:

  • 0,4 мЗв от космических лучей (от 0,3 до 1,0 мЗв, в зависимости от высоты над уровнем моря);
  • 0,5 мЗв от внешнего гамма-излучения (от 0,3 до 0,6 мЗв, в зависимости от радионуклидного состава окружения — почвы, стройматериалов и т. п.);
  • 1,2 мЗв внутреннего облучения от ингалируемых атмосферных радионуклидов, главным образом радона (от 0,2 до 10 мЗв, в зависимости от местной концентрации радона в воздухе);
  • 0,3 мЗв внутреннего облучения от инкорпорированных радионуклидов (от 0,2 до 0,8 мЗв, в зависимости от радионуклидного состава пищевых продуктов и воды).

Дозы получаемые персоналом в промышленности[править | править код]

  • 5-10 мЗв/год — средняя доза, получаемая персоналом на АЭС с реакторами ВВЭР-1000, работающие с источниками ионизирующих излучений.
  • 20 мЗв/год — допустимая доза ежегодного облучения персонала российских АЭС, не нарушающая требования НРБ-99
  • 50 мЗв/ год — допустимая доза ежегодного облучения персонала АЭС в СССР, США и Японии.
  • 200 мЗв — разовая доза, которую можно получить при выполнении радиационноопасных работ с последующим отстранением работника от работы с ионизирующим излучениями.
  • 266 мЗв/год — доза, получаемая космонавтами на борту МКС.
  • 511 мЗв/год — доза, которую будут получать космонавты на поверхности Луны.

Смертельные и опасные дозы[править | править код]

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть в результате острой лучевой болезни наступает в 50 % случаев[7]:

  • при дозе порядка 3—5 Гр из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Гр из-за повреждения желудочно-кишечного тракта и лёгких в течение 10—20 суток;
  • > 15 Гр из-за повреждения нервной системы в течение 1—5 суток.

Мощность дозы[править | править код]

Мощность дозы (интенсивность облучения) — приращение соответствующей дозы под воздействием данного излучения за единицу времени. Имеет размерность соответствующей дозы (поглощённой, экспозиционной и т. п.), делённую на единицу времени. Допускается использование различных специальных единиц (например: Зв/час, бэр/мин, мЗв/год и др.).

Сводная таблица единиц измерения[править | править код]

Физическая величина Внесистемная единица Единица СИ Переход от внесистемной единицы к единице СИ
Активность нуклида в радиоактивном источнике Кюри (Ки) Беккерель (Бк) 1 Ки = 3.7⋅1010 Бк
Экспозиционная доза Рентген (Р) Кулон/килограмм (Кл/кг) 1 Р = 2,58⋅10−4 Кл/кг
Поглощенная доза Рад (рад) Грей (Дж/кг) 1 рад = 0,01 Гр
Эквивалентная доза Бэр (бэр) Зиверт (Зв) 1 бэр = 0,01 Зв
Мощность экспозиционной дозы Рентген/секунда (Р/c) Кулон/килограмм (в) секунду (Кл/кг·с) 1 Р/c = 2.58⋅10−4 Кл/кг·с
Мощность поглощённой дозы Рад/секунда (Рад/с) Грей/секунда (Гр/с) 1 рад/с = 0.01 Гр/c
Мощность эквивалентной дозы Бэр/секунда (бэр/с) Зиверт/секунда (Зв/с) 1 бэр/c = 0.01 Зв/с
Интегральная доза Рад-грамм (Рад·г) Грей-килограмм (Гр·кг) 1 рад·г = 10−5 Гр·кг

См. также[править | править код]

  • Дозиметр
  • Малые дозы излучения
  • Радиоактивность
  • Порог дозы
  • Керма воздуха
  • Флюенс частиц

Примечания[править | править код]

Источники
  1. Кеирим-Маркус, 1980, с. 3,4.
  2. Санитарные правила и нормативы СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» — 2009. — С. 48. — 51 с.
  3. МКРЗ 103, 2009, с. 22.
  4. МКРЗ 103, 2009, с. 77.
  5. МКРЗ 103, 2009, с. 258.
  6. 1 2 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly. Дата обращения: 8 января 2018. Архивировано из оригинала 5 февраля 2009 года.
  7. Кутьков В. А., Ткаченко В. В., Романцов В. П. Радиационная безопасность персонала атомных станций. — Москва—Обнинск: Атомтехэнерго, ИАТЭ, 2003. — С. 85. — 344 с.

Литература[править | править код]

  • Публикация 103 Международной комиссии по радиационной защите (МКРЗ): Рекомендации Международной комиссии по радиационной защите от 2007 года = ICRP publication 103 : The 2007 Recommendations of the International Commission on Radiological Protection / Под ред. Л.-Э. Холма. Пер. с англ. под общей ред. М. Ф. Киселёва и Н. К. Шандалы. — М.: Изд. ООО ПКФ «Алана», 2009. — 344 с. — 1000 экз. — ISBN 978-5-9900350-6-5.
  • И.Б. Кеирим-Маркус. Эквидозиметрия. — М. : Атомиздат, 1980. — 191 с.

Радиационное излучение постоянно воздействует на людей – на улице в городе, на работе, в квартире и любом другом помещении. Естественный радиационный фон, который создается солнцем и космическими лучами, безопасен для человеческого здоровья. Но есть ли нормальный уровень радиации для человека в быту, с которым он может жить, не подвергая свой организм фатальным изменениям?

Виды радиационного фона

Ионизирующее излучение (ИИ), взаимодействуя с веществом, становится причиной ионизации атомов и молекул (атом возбуждается и открывается от отдельных электронов из атомных оболочек). Основные виды радиации:

  • Альфа-излучение. Корпускулярное, представленное в виде потока тяжелых положительно заряженных α-частиц. Они тяжелые, их пробег в веществе короткий, поэтому их может задержать бумажный лист и слой омертвевшей кожи.
  • Бета-излучение. Также корпускулярное, представлено в виде потока электронов или позитронов, которые испускаются при радиоактивном β-распаде ядер атомов.
  • Нейтронное. Корпускулярное, представляет собой поток нейтронов, не оказывающий ионизирующего воздействия, но серьезный ионизирующий эффект наблюдается из-за упругого и неупругого рассеяния на ядрах вещества.
  • Гамма- и рентгеновское излучение. Электромагнитные, различаются механизмом возникновения. Рентгеновское способно проникает во все вещества, представлено в виде электромагнитного излучения с длиной волы от 10-12 до 10-7. Гамма-излучение обладает внутриядерным происхождением, возникающим в процессе распада радиоактивных ядер, при взаимодействии быстрых заряженных частиц с веществом и при других обстоятельствах. Обладает высокой проникающей способностью.

Популярные дозиметры

Единицы измерения радиации

Допустимый радиационный фон для человека и нормы радиации измеряются с помощью доз излучения. Это величины, которые применяются, чтобы оценить уровень воздействия ионизирующего излучения на различные вещества, организмы, ткани. Единица измерения зависит от типа дозы:

  • экспозиционная (рентген или кулон/килограмм);
  • поглощенная (рад или Грей);
  • эквивалентная (бэр или Зиверт);
  • мощность экспозиционной (рентген/сек);
  • мощность поглощенной (рад/сек);
  • мощность эквивалентной (бэр/сек);
  • интегральная (рад-грамм);
  • активность нуклида в радиоактивном источнике (кюри).

Существует ли вообще безопасная доза?

Норма радиации – размытое понятие. В 1950 г. скандинавский ученый Рольф Зиверт установил, что у облучения нет порогового уровня – определенного значения, при котором у человека гарантированно не будет наблюдаться заметных или незаметных повреждений.

Любая существующая норма радиации способна теоретически вызывать изменения в организме людей соматические и генетические изменения. Многие из которых не проявляются сразу, а остаются скрытыми в течение длительного временного промежутка. Поэтому сложно говорить о нормах радиации – существуют только допустимые ее пределы.

Допустимые дозы радиации

Российские и международные стандарты предусматривают определенные нормы радиации. Считается, что при воздействии на организм человека они не смогут нанести вреда. Норма радиации в микрорентген в час – 50 (0,5 микрозиверт в час).

При этом также отмечается, что не более 0,2 мкЗв в час (20 микрорентген в час) – это максимально безопасный уровень облучения человеческого организма при условии, что радиационный фон входит в диапазон нормальных показателей, поэтому норму радиации даже в этом случае можно назвать условной. При воздействии в течение нескольких часов считается безопасным излучение на уровне не более 10 микрозиверт в час (1 миллирентген). Кратковременно допускается облучение в несколько миллизивертов в час (например, во время рентгена или флюорографии).

Поглощенная доза

Под понятием «поглощенная доза» определяется величина энергии радиации, которая была передана веществу. Выражена в качестве отношения энергии излучения, которая поглощена в данном объеме, к массе вещества в этом объеме.

Является основной дозиметрической величиной. Согласно международной системе единиц, ее измерение происходит в джоулях на кг (Дж/кг). Называется – «грей» (Гр, Gy). Не способна отразить биологический эффект облучения.

Оценка действия радиации на неживые объекты

Для определения нормы радиации при ее воздействии на неживые объекты используются показатели поглощенной дозы (количество поглощенной энергии веществом). При этом более информативной величиной считается экспозиционная доза, с помощью которой возможно определение степени воздействия на вещество разных типов радиации. Сложно говорить о нормах радиации на неживые объекты.

Оценка действия радиации на живые организмы

Если биологические ткани облучать различными типами радиации, обладающими одной и той же энергией, то последствия для организма будут отличаться. Иными словами, если при поглощении одной нормы радиации последствия будут серьезно разниться при альфа-излучении и гамма-излучении. Поэтому, чтобы оценить воздействие ионизирующего излучения на живые организмы, не хватает понятий экспозиционной и поглощенной дозы, также используется эквивалентная.

Это доза радиации, которая была поглощена живым организмом, помноженная на коэффициент k, который учитывает уровень опасности разных типов радиации. Измерение происходит с использованием Зиверт (Зв).

Нормы радиации согласно СанПин

В соответствии с СанПиНом 2.6.1.2523-09, эффективная доза облучения естественными источниками излучения любых работников, в т. ч. медперсонала, не должна составлять более 5 мЗв в год в производственных условиях (любые типы профессий и производств).

Если говорить о конкретных нормах радиации, то усредненные показатели радиационных факторов в течение 12 месяцев, которые соответствуют при монофактором воздействии дозе в 5 мЗв при длительности рабочего процесса 2000 часов/год, примерной скорости дыхания 1,2 кубометра/час, условии радиоактивного равновесия радионуклидов ториевого и уранового рядов в пыли, составляют:

  • удельная активность на производстве тория 232 (пребывающего в радиоактивном равновесии с членами ряда) – 27/f, кБк/кг.;
  • ЭРОАtn в воздухе – 68 Бк/кубометр;
  • мощность эффективной дозы γ-излучения – 2,5 мкЗв/час;
  • ЭРОАFn в воздухе – 310 Бк/кубометр;
  • удельная активность на производстве урана 238 (пребывающего в радиоактивном равновесии с членами ряда) – 27/f, кБк/кг.

Данные нормы радиации весьма условны, потому что многое будет зависеть от конкретных производственных условий, специфики сферы деятельности и других факторов.

Смертельная доза

В любых нормах радиации обычно всегда прописывается доза, которая быстро приводит к летальному исходу. Опасность ее получения чаще всего наблюдается при возникновении техногенных аварий, несоблюдении условий хранения радиоактивных отходов (вне зависимости от того, какой тип облучения воздействует на человека).

Согласно нормам радиации, смертельная доза составляет от 6-7 Зв/час и больше. При этом даже в незначительной степени постоянно высокий радиационный фон с высокой долей вероятности будет причиной развития мутации клеток живого организма. Нормы радиации на рабочем месте или в домашних условиях можно отслеживать с помощью бытовых дозиметров.

Содержание

  • Основные понятия клинической дозиметрии
  • Классификация доз излучения
  • Способы дозиметрии ионизирующих излучений
  • Цель проведения регулярных дозиметрических измерений

В любом медицинском учреждении, где проводятся рентгенодиагностика и лучевая терапия, обязательны к неукоснительному соблюдению все нормативы радиационной безопасности. В их числе осуществление во время облучения корректного учёта поглощаемой пациентами и медперсоналом энергии излучения. Для этого проводится измерение радиации.

Дозиметрия ионизирующих излучений предполагает проведение регулярных замеров мощности дозы радиационного фона используемых в учреждении рентген-аппаратов, а также: стен и перекрытий здания, воздуха в помещении и за его пределами, почвы и воды в ближайших окрестностях.

Основные понятия клинической дозиметрии

Для точного определения количественных показателей ионизирующего излучения в научный обиход было введено такое понятие, как «доза». Оно подразумевает соотношение объёма или массы облучаемого вещества и энергии излучения.

Комментарии специалиста:

Количественный процесс распада атомов в течение одной временной единицы определяется активностью радиоактивного вещества. При обозначении уровня активности в интернациональной системе используется общепринятая единица – Беккерель. Его характеристика – 1 распад в течение 1-й секунды. Внесистемный аналог Беккереля – Кюри. Предполагает 3,7.1010 распадов за идентичную единицу времени.

Классификация доз излучения

Существует несколько разновидностей доз излучения. Для каждой из них характерны особые условия замера и свои сферы применения. Основные разновидности:

  1. Экспозиционная. Её измерение осуществляется в сухом воздушном пространстве. Важное условие для получения корректных данных – отсутствие рассеивающих тел. Доза наиболее ярко выражает стабильность основных параметров и мощность источника излучения. Возможно применение дозы исключительно по отношению к ионизирующему излучению при максимальной энергии до 3-х МэВ. Внесистемная единица измерения – Рентген, системная – Кулон;
  2. Поглощенная. Применяется в качестве количественного показателя влияния ИИ на подвергшиеся облучению части тела. Определяющий фактор доли – величина энергии, принятой во время облучения одной единицей массы облучаемой ткани. Область применения – все типы ионизирующих излучений. Системная единица измерения – Грей, внесистемная – Рад;
  3. Эквивалентная. Понятие введено для сопоставления оказанных биологических действий на облучаемую часть тела разными типами ионизирующих излучений с равной поглощенной дозой. За основу при сравнении принято считать эффект фотонного излучения с базовым уровнем энергии в 200 кэВ. Применяется главным образом с целью определения степени радиационной опасности. Внесистемная единица измерения – Бэр, системная – Зиверт.

В современной медицине при проведении дозиметрического замера мощности ионизирующего излучения принято использовать системные единицы измерения. Но поскольку внесистемные единицы измерения активно применялись на протяжении достаточно долгого времени, с их использованием было выпущено большое количество тематической литературы и дозиметрических приборов. Поэтому актуальным остаётся навык соотношения обеих типов единиц.

Способы дозиметрии ионизирующих излучений

Ионизирующее излучение невозможно определить по запаху, на вкус или благодаря иным человеческим рецепторам. Для фиксации наличия излучения, а также определения его качественных и количественных характеристик, необходимо обеспечить плотное взаимодействия ИИ с облучаемым веществом. Фиксация полученных эффектов достигается с помощью дозиметра во время измерение радиации.

Дозиметры позволяют определить мощность дозы ионизирующего излучения, а также инициализировать химические, фотографические, сцинтилляционные, ионизационные и другие эффекты, возникающие вследствие взаимодействия ионизирующего излучения с облучаемым веществом. Они бывают трёх типов:

  1. Индивидуальные. Предназначены для проведения регулярного мониторинга сотрудниками медицинских учреждений мощности поглощаемой ими дозы ионизирующего излучения;
  2. Клинические. Позволяют осуществить измерение уровня ионизирующего излучения в рабочем пучке. Применяются во время подготовки и проведения лучевой терапии;
  3. Дозиметры контроля защиты. Предназначены для оценки мощности дозы рассеянных лучей источника ионизирующего излучения. Мониторинг производится на постоянных рабочих местах медперсонала.

Применяемые в международной практике способы дозиметрии ионизирующих излучений бывают следующих типов:

  1. Биологический. В его основе лежит оценка получаемой реакции ткани во время облучения. Имеет три ориентировочных дозы: эпиляционную, эритемную и летальную. Основное применение способа дозиметрии – экспериментальная радиобиология;
  2. Физический. Во время ионизирующего излучения происходит ионизация облучаемого вещества, вследствие чего наблюдается образование электропроводящей среды из электрического нейтрального газа;
  3. Химический. При облучении определённых веществ происходит фиксация необратимой химической реакции. Подразделяется на две разновидности: фотографическую и радиохимическую.

Цель проведения регулярных дозиметрических измерений

Плановые дозиметрические мероприятия проводятся для предотвращения возможности получения сотрудниками медицинского учреждения критической дозы облучения. В первую очередь регулярный мониторинг поглощенной дозы облучения распространяется на медперсонал группы А, представители которой осуществляют ежедневный контакт с источником радиационного излучения.

Также осуществление дозиметрического контроля за радиационным фоном в основных рабочих помещениях медицинского учреждения и смежных с ним территориях позволяет защитить пациентов клиники и обитающих в её окрестностях жителей от необоснованного радиационного облучения. При выявлении повышенных рисков возникновения внештатных ситуаций – дает возможность принять превентивные меры по их устранению.

Дозиметрия ионизирующих излучений
Эксплуатация ПРТО в Москве
Мощность экспозиционной дозы гамма излучения
Порядок получения санитарно-эпидемиологического заключения на деятельность
Проект рентгеновского кабинета в стоматологии

Добавить комментарий