Как найти время по формуле высоты


1. Формулы максимальной высоты и времени за которое тело поднялось на максимальную высоту

Формулы высоты, скорости, времени тела брошенного вверх

h max
– максимальная высота достигнутая телом за время t

Vк – конечная скорость тела на пике, равная нулю

Vн – начальная скорость тела

t – время подъема тела на максимальную высоту h

g ≈ 9,8 м/с2 – ускорение свободного падения

Формула максимальной высоты (h max):

Формула времени за которое тело достигло максимальную высоту (t):

2. Формулы скорости, высоты и времени тела брошенного вертикально вверх под воздействием силы тяжести

Формулы  при свободном падении

h – расстояние пройденное телом за время t

Vн – начальная скорость тела

V – скорость тела в момент времени t

t – время подъема за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 – ускорение свободного падения

Формула скорости тела в момент времени t (V):

Формула начальной скорости тела (Vн):

Формулы высоты тела в момент времени t (h):

Формулы времени, за которое тело достигло высоту h (t):

Подробности

Опубликовано: 04 августа 2015

Обновлено: 13 августа 2021

Как найти время?)Известна скорость и высота!

Люба Родичкина



Знаток

(438),
на голосовании



11 лет назад

Дополнен 11 лет назад

Ага высота падения) Спасибоо)) Мне нужно написать уравнение движения скорости!

Дополнен 11 лет назад

h=25м
скорость=20м/с
написать ур-е движения скорости; через сколько времени мячик поднимется на макс. высоту; через сколько секунд упадёт на землю?
Мячик бросили с высоты 25 метров вверх!
y=0

Голосование за лучший ответ

Димка

Мастер

(1679)


11 лет назад

Если высота падения то

t = корень (2*S/a) где S – высота, a = 10м/c^2 ускорение свободного падения

Наташа Лебедева

Ученик

(129)


11 лет назад

Напиши условие задачи а то не понятно само учловие

Источник: вики

Похожие вопросы

Как найти время падения тела

Если пренебречь сопротивлением воздуха, время падения тела не зависит от его массы. Оно определяется только высотой и ускорением свободного падения. Если сбросить с одинаковой высоты два тела разной массы, упадут они одновременно.

Как найти время падения тела

Вам понадобится

  • – калькулятор.

Инструкция

Высоту, с которой падает тело, переведите в единицы системы СИ – метры. Ускорение свободного падение дано в справочнике уже переведенным в единицы этой системы – метры, деленные на секунды в квадрате. Для Земли на средней полосе оно составляет 9,81 м/с2. В условиях некоторых задач указаны другие планеты, например, Луна (1,62 м/с2), Марс (3,86 м/с2). Когда обе исходные величины заданы в единицах системы СИ, результат получится в единицах той же системы – секундах. А если в условии указана масса тела, игнорируйте ее. Это информация здесь лишняя, ее могут привести для того, чтобы проверить, насколько хорошо вы знаете физику.

Для вычисления времени падения тела умножьте высоту на два, поделите на ускорение свободного падения, а затем из результата извлеките квадратный корень:

t=√(2h/g), где t – время, с; h – высота, м; g – ускорение свободного падения, м/с2.

Задача может требовать найти дополнительные данные, например, о том, какова была скорость тела в момент касания земли или на определенной высоте от нее. В общем случае скорость вычисляйте так:

v=√(2g(h-y))

Здесь введены новые переменные: v – скорость, м/с и y – высота, где требуется узнать скорость падения тела, м. Понятно, что при h=y (то есть, в начальный момент падения) скорость равна нулю, а при y=0 (в момент касания земли, перед самой остановкой тела) формулу можно упростить:

v=√(2gh)

После того, как касание земли уже произошло, и тело остановилось, скорость его падения снова равна нулю (если, конечно, оно не спружинило и не подпрыгнуло снова).

Для уменьшения силы удара после окончания свободного падения применяют парашюты. Вначале падение является свободным и происходит в соответствии с приведенными выше уравнениями. Затем парашют раскрывается, и происходит плавное замедление за счет сопротивления воздуха, которым теперь пренебрегать нельзя. Закономерности, описываемые приведенными выше уравнениями, больше не действуют, и дальнейшее уменьшение высоты происходит медленно.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Определение

Свободное падение — это движение тела только под действием силы тяжести.

В действительности при падении на тело действует не только сила тяжести, но и сила сопротивления воздуха. Но в ряде задач сопротивлением воздуха можно пренебречь. Воздух не оказывает значимого сопротивления падающему мячу или тяжелому грузу. Но падение пера или листа бумаги можно рассматривать только с учетом двух сил: небольшая масса тела в сочетании с большой площадью его поверхности препятствует свободному падению вниз.

Внимание!

В вакууме все тела падают с одинаковым ускорением, так как в нем отсутствует среда, которая могла бы дать сопротивление. Так, брошенные в условиях вакуума с одинаковой высоты перо и молоток приземлятся в одно и то же время!

Ускорение свободного падения

Ускорение свободного падения — векторная физическая величина. Вектор ускорения свободного падения всегда направлен вниз к центру Земли. Обозначается как g.

Единица измерения ускорения свободного падения — 1 м/с2.

Модуль ускорения свободного падения — скалярная величина. Обозначается как g. Численно равна 9,8 м/с2. При решении задач это значение округляется до целых: g = 10 м/с2.

Свободное падение

Свободное падение — частный случай равноускоренного прямолинейного движения. Если тело отпустить с некоторой высоты, оно будет падать с ускорением свободного падения без начальной скорости. Тогда его кинематические величины можно определить по следующим формулам:

Скорость

v = gt

v — скорость, g — ускорение свободного падения, t — время, в течение которого падало тело

Пример №1. Тело упало без начальной скорости с некоторой высоты. Найти его скорость в конечный момент времени t, равный 3 с.

Подставляем данные в формулу и вычисляем:

v = gt = 10∙3 = 30 (м/с).

Перемещение при свободном падении тела равно высоте, с которой оно начало падать. Высота обозначается буквой h.

Внимание! Перемещение равно высоте, с которой падало тело, только в том случае, если t — полное время падения.

Высота падения

Если известна скорость падения тела в момент времени t, перемещение (высота) определяется по следующей формуле.

Если скорость тела в момент времени t неизвестна, но для нахождения перемещения (высоты) используется формула:

Если неизвестно время, в течение которого падало тело, но известна его конечная скорость, перемещение (высота) вычисляется по формуле:

Пример №2. Тело упало с высоты 5 м. Найти его скорость в конечный момент времени.

Так как нам известна только высота, и найти нужно скорость, используем для вычислений последнюю формулу. Выразим из нее скорость:

Формула определения перемещения тела в n-ную секунду свободного падения:

s(n) — перемещение за секунду n.

Пример №3. Определить перемещение свободно падающего тела за 3-ую секунду движения.

Движение тела, брошенного вертикально вверх

Движение тела, брошенного вертикально вверх, описывается в два этапа

Два этапа движения тела, брошенного вертикально вверхЭтап №1 — равнозамедленное движение. Тело поднимается вверх на некоторую высоту h за время t с начальной скоростью v0 и на мгновение останавливается в верхней точке, достигнув скорости v = 0 м/с. На этом участке пути векторы скорости и ускорения свободного падения направлены во взаимно противоположных направлениях (v↑↓g).

Этап №2 — равноускоренное движение. Когда тело достигает верхней точки, и его скорость равна 0, начинается свободное падение с начальной скоростью до тех пор, пока тело не упадет или не будет поймано на некоторой высоте. На этом участке пути векторы скорости и ускорения свободного падения направлены в одну сторону (v↑↑g).
Формулы для расчета параметров движения тела, брошенного вертикально вверхПеремещение тела, брошенного вертикально вверх, определяется по формуле:

Если известна скорость в момент времени t, для определения перемещения используется следующая формула:

Если время движения неизвестно, для определения перемещения используется следующая формула:

Формула определения скорости:

Какой знак выбрать — «+» или «–» — вам помогут правила:

  • Если движение равнозамедленное (тело поднимается вверх), перед ускорением свободного падения в формуле нужно ставить знак «–», так как векторы скорости и ускорения противоположно направлены.
  • Если движение равноускоренное (тело падает вниз), перед ускорением свободного падения в формуле нужно ставить знак «+», так как векторы скорости и ускорения сонаправлены.

Обычно тело бросают вертикально вверх с некоторой высоты. Поэтому если тело упадет на землю, высота падения будет больше высоты подъема (h2 > h1). По этой же причине время второго этапов движения тоже будет больше (t2 > t1). Если бы тело приземлилось на той же высоте, то начальная скорость движения на 1 этапе была бы равно конечной скорости движения на втором этапе. Но так как точка приземления лежит ниже высоты броска, модуль конечной скорости 2 этапа будет выше модуля начальной скорости, с которой тело было брошено вверх (v2 > v01).

Пример №4. Тело подкинули вверх на некотором расстоянии 2 м от земли, придав начальную скорость 10 м/с. Найти высоту тела относительно земли в момент, когда оно достигнет верхней точки движения.

Конечная скорость в верхней точке равна 0 м/с. Но неизвестно время. Поэтому для вычисления перемещения тела с точки броска до верхней точки найдем по этой формуле:

Согласно условию задачи, тело бросили на высоте 2 м от земли. Чтобы найти высоту, на которую поднялось тело относительно земли, нужно сложить эту высоту и найденное перемещение: 5 + 2 = 7 (м).

Уравнение координаты и скорости при свободном падении

Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает вид:

Уравнение скорости при свободном падении:

vy = v0y + gyt

Полезные факты

  • В момент падения тела на землю y = 0.
  • В момент броска тела от земли y0 = 0.
  • Когда тело падает без начальной скорости (свободно) v0 = 0.
  • Когда тело достигает наибольшей высоты v = 0.

Построение чертежа

Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.

План построения чертежа

  • Чертится ось ОУ. Начало координат должно совпадать с уровнем земли или с самой нижней точки траектории.
  • Отмечаются начальная и конечная координаты тела (y и y0).
  • Указываются направления векторов. Нужно указать направление ускорения свободного падения, начальной и конечной скоростей.

Свободное падение на землю с некоторой высоты

Чертеж:

Уравнение скорости:

–v = v0 – gtпад

Уравнение координаты:

Тело подбросили от земли и поймали на некоторой высоте

Чертеж:

Уравнение скорости:

–v = v0 – gt

Уравнение координаты:

Тело подбросили от земли, на одной и той же высоте оно побывало дважды

Чертеж:

Интервал времени между моментами прохождения высоты h:

∆t = t2 – t1

Уравнение координаты для первого прохождения h:

Уравнение координаты для второго прохождения h:

Важно! Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ.

Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?

Из условия задачи начальная скорость равна 0, а начальная координата — 50.

Поэтому:

Через 3 с после падения тело окажется на высоте 5 м.

Задание EF17519

С аэростата, зависшего над Землёй, упал груз. Через 10 с он достиг поверхности Земли. На какой высоте находился аэростат? Сопротивление воздуха пренебрежимо мало.


Алгоритм решения

  1. Записать исходные данные.
  2. Сделать чертеж, иллюстрирующий ситуацию.
  3. Записать формулу для определения искомой величины в векторном виде.
  4. Записать формулу для определения искомой величины в векторном виде.
  5. Подставить известные данные и вычислить скорость.

Решение

Записываем исходные данные:

  • Начальная скорость v0 = 0 м/с.
  • Время падения t = 10 c.

Делаем чертеж:

Перемещение (высота) свободно падающего тела, определяется по формуле:

В скалярном виде эта формула примет вид:

Учтем, что начальная скорость равна нулю, а ускорение свободного падения противоположно направлено оси ОУ:

Относительно оси ОУ груз совершил отрицательное перемещение. Но высота — величина положительная. Поэтому она будет равна модулю перемещения:

Вычисляем высоту, подставив известные данные:

Ответ: 500

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17483

Тело брошено вертикально вверх с начальной скоростью 10 м/с. Если сопротивление воздуха пренебрежимо мало, то через одну секунду после броска скорость тела будет равна…


Алгоритм решения

  1. Записать исходные данные.
  2. Сделать чертеж, иллюстрирующий ситуацию.
  3. Записать формулу для определения скорости тела в векторном виде.
  4. Записать формулу для определения скорости тела в скалярном виде.
  5. Подставить известные данные и вычислить скорость.

Решение

Записываем исходные данные:

  • Начальная скорость v0 = 10 м/с.
  • Время движения t = 1 c.

Делаем чертеж:

Записываем формулу для определения скорости тела в векторном виде:

v = v0 + gt

Теперь запишем эту формулу в скалярном виде. Учтем, что согласно чертежу, вектор скорости сонаправлен с осью ОУ, а вектор ускорения свободного падения направлен в противоположную сторону:

v = v0 – gt

Подставим известные данные и вычислим скорость:

v = 10 –10∙1 = 0 (м/с)

Ответ: 0

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 20.6k

Движение горизонтально брошенного тела:

Рассмотрим движение шара, движущегося прямолинейно по поверхности стола с высотой Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

При достаточно малом сопротивлении воздуха, которым можно пренебречь, тело будет двигаться в горизонтальном направлении равномерно со скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами. Поэтому перемещение
в горизонтальном направлении в любой момент времени Движение горизонтально брошенного тела в физике - формулы и определение с примерами, или длина полета, определяется следующей формулой: 

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Проекции скорости тела на оси Движение горизонтально брошенного тела в физике - формулы и определение с примерами и Движение горизонтально брошенного тела в физике - формулы и определение с примерами определятся следующими соотношениями:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

В вертикальном же направлении, двигаясь равноускоренно без начальной скорости, тело будет свободно падать с высоты Движение горизонтально брошенного тела в физике - формулы и определение с примерами. Следовательно, положение тела в вертикальном направлении после произвольного времени Движение горизонтально брошенного тела в физике - формулы и определение с примерами будет определяться формулой:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Из соотношений (1.21) и (1.22) уравнение траектории движения горизонтально брошенного тела на плоскости Движение горизонтально брошенного тела в физике - формулы и определение с примерами будет иметь следующий вид:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Выражение (1.24) является уравнением параболы. Значит, горизонтально брошенное тело будет двигаться по параболической линии. Время полета тела, брошенного горизонтально с высоты Движение горизонтально брошенного тела в физике - формулы и определение с примерами, определяется выражением:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

В этом случае формула для расчета длины полета тела будет иметь вид:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Горизонтально брошенное тело, одновременно двигаясь в горизонтальном направлении равномерно и в вертикальном направлении равноускоренно, свободно падает. К концу движения (после истечения времени Движение горизонтально брошенного тела в физике - формулы и определение с примерами) скорости в горизонтальном и вертикальном направлении будут Движение горизонтально брошенного тела в физике - формулы и определение с примерами и Движение горизонтально брошенного тела в физике - формулы и определение с примерами соответственно. Таким образом, скорость тела при падении на землю определяется выражением:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

или

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Перемещение и траектория тела при криволинейном движении неравны между собой. Модуль вектора и направление движения горизонтально брошенного тела на протяжении движения меняются непрерывно.

Образец решения задачи:

Тело брошено горизонтально на высоте 35 м со скоростью 30м/с. Найти скорость тела при падении на землю.
Дано:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Найти:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Формула:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Решение:

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Ответ: 40 м/c.

Движение тела, брошенного горизонтально и под углом к горизонту

Если материальная точка участвует одновременно в нескольких движениях, то такое движение называют сложным.

Примером сложного движения является движение под действием силы тяжести в том случае, если падающему телу сообщена начальная скорость, непараллельная вектору ускорения свободного падения.

Рассмотрим движение тела, брошенного горизонтально со скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами Выберем систему координат так, что ее начало находится на поверхности Земли, направив ось Ох горизонтально, а ось Оу — вертикально (рис. 23).

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Это сложное движение можно представить в виде суммы двух независимых движений — равномерного с постоянной скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами вдоль горизонта (оси Ох) и свободного падения в вертикальном направлении с ускорением Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение тела в горизонтальном направлении будет описываться уравнением

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
а в вертикальном — уравнением

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Здесь Движение горизонтально брошенного тела в физике - формулы и определение с примерами — координата тела по оси Оу в начальный момент времени Движение горизонтально брошенного тела в физике - формулы и определение с примерами Если тело брошено с высоты Движение горизонтально брошенного тела в физике - формулы и определение с примерами то время падения Движение горизонтально брошенного тела в физике - формулы и определение с примерами определяется из

условия Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Для получения уравнения траектории движения у(х) необходимо исключить время из уравнений движения (1) и (2). Из уравнения (1) выражаем время t и подставляем в уравнение (2). Получаем Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Это уравнение параболы, ветви которой направлены вниз, так как коэффициент перед множителем Движение горизонтально брошенного тела в физике - формулы и определение с примерами отрицательный.

Скорость вдоль направления оси Ох остается неизменной и равной Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Вдоль оси Оу движение равноускоренное. В начальный момент времени вертикальная составляющая скорости равна нулю Движение горизонтально брошенного тела в физике - формулы и определение с примерами поэтому мгновенная скорость вдоль оси Оу находится из соотношения Движение горизонтально брошенного тела в физике - формулы и определение с примерами Модуль мгновенной скорости определяется по теореме Пифагора (см. рис. 23):

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Угол между начальной скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами и мгновенной скоростью и в момент времени t можно найти из соотношения

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
В приведенных формулах сопротивление воздуха не учитывается.

Рассмотрим теперь движение тела, брошенного со скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами под некоторым углом Движение горизонтально брошенного тела в физике - формулы и определение с примерами к горизонту (рис. 24).

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Это сложное движение можно представить в виде суммы двух независимых движений — равномерного в горизонтальном направлении со скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

и равноускоренного в вертикальном направлении с ускорением Движение горизонтально брошенного тела в физике - формулы и определение с примерами и начальной
скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
В том случае, если система координат выбрана так, что начальные координаты Движение горизонтально брошенного тела в физике - формулы и определение с примерами уравнение траектории движения имеет вид
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Как и при движении тела, брошенного горизонтально, траектория представляет собой параболу, ветви которой направлены вниз, поскольку коэффициент перед Движение горизонтально брошенного тела в физике - формулы и определение с примерами отрицателен. Вершина параболы при этом имеет координаты Движение горизонтально брошенного тела в физике - формулы и определение с примерами

где l — дальность полета тела, Движение горизонтально брошенного тела в физике - формулы и определение с примерами — максимальная высота его подъема в процессе полета.

Модули горизонтальной Движение горизонтально брошенного тела в физике - формулы и определение с примерами и вертикальной Движение горизонтально брошенного тела в физике - формулы и определение с примерами составляющих мгновенной скорости Движение горизонтально брошенного тела в физике - формулы и определение с примерами движения определяются из следующих соотношений:
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Мгновенную скорость Движение горизонтально брошенного тела в физике - формулы и определение с примерами и движения тела в произвольной точке Л траектории можно найти как векторную сумму горизонтальной Движение горизонтально брошенного тела в физике - формулы и определение с примерами и вертикальной Движение горизонтально брошенного тела в физике - формулы и определение с примерамимгновенных скоростей движения (см. рис. 24).

Время подъема тела можно найти из условия Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Если сопротивление воздуха при движении не учитывается, то время подъема равно времени падения: Движение горизонтально брошенного тела в физике - формулы и определение с примерами (докажите это самостоятельно).

Таким образом, время полета тела можно найти как
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Определив вертикальную составляющую скорости Движение горизонтально брошенного тела в физике - формулы и определение с примерами в искомый момент времeни, по формуле Движение горизонтально брошенного тела в физике - формулы и определение с примерами можно найти высоту, на которой находится тело.

Максимальная высота подъема тела Движение горизонтально брошенного тела в физике - формулы и определение с примерами легко определяется из условия, что вертикальная составляющая скорости в этой точке равна пулю Движение горизонтально брошенного тела в физике - формулы и определение с примерами Тогда
Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Дальность полета l — расстояние, пройденное телом за время полета Движение горизонтально брошенного тела в физике - формулы и определение с примерами вдоль оси Ох с постоянной скоростью Движение горизонтально брошенного тела в физике - формулы и определение с примерами (см. рис. 24). Она определяется по формуле

Движение горизонтально брошенного тела в физике - формулы и определение с примерами
Таким образом, дальность полета определяется модулем начальной скорости Движение горизонтально брошенного тела в физике - формулы и определение с примерамитела и углом его бросания Движение горизонтально брошенного тела в физике - формулы и определение с примерами

Заметим, что согласно формуле (9) при неизменном модуле начальной скорости тела максимальная дальность Движение горизонтально брошенного тела в физике - формулы и определение с примерами полета достигается при Движение горизонтально брошенного тела в физике - формулы и определение с примерами т. е. при угле бросания Движение горизонтально брошенного тела в физике - формулы и определение с примерами = 45°.

  • Движение тела, брошенного под углом к горизонту
  • Принцип относительности Галилея
  • Движение в гравитационном поле
  • Зависимость веса тела от вида движения
  • Вертикальное движение тел в физик
  • Неравномерное движение по окружности
  • Равномерное движение по окружности
  • Взаимная передача вращательного и поступательного движения

Добавить комментарий