Как найти время сколько плыла лодка

Задачи на движение по реке

Рассмотрим задачи, в которых речь идёт о движении объекта по реке. Скорость любого объекта в стоячей воде называют собственной скоростью этого объекта.

Чтобы узнать скорость объекта, который движется против течения реки, надо из собственной скорости объекта вычесть скорость течения реки.

Задача 1. Катер движется против течения реки. За сколько часов он преодолеет расстояние  112  км, если его собственная скорость  30  км/ч, а скорость течения реки  2  км/ч?

Решение: Сначала узнаем скорость движения катера против течения реки, для этого от его собственной скорости отнимем скорость течения:

30 – 2 = 28 (км/ч)  — скорость движения катера против течения.

Теперь можно узнать за сколько часов катер преодолеет  112  км, разделив расстояние на скорость:

112 : 28 = 4 (ч).

Решение задачи по действиям можно записать так:

1) 30 – 2 = 28 (км/ч)  — скорость движения катера против течения,

2) 112 : 28 = 4 (ч).

Ответ: За  4  часа катер преодолеет расстояние  112  км.

Чтобы узнать скорость объекта, который движется по течению реки, надо к собственной скорости объекта прибавить скорость течения реки.

Задача 2. Расстояние от пункта  A  до пункта  B  по реке равно  120  км. Сколько времени потратит моторная лодка на путь от пункта  A  до  B,  если её собственная скорость  27  км/ч, а скорость течения реки  3 км/ч?

Рассмотрите два варианта:

1) лодка движется по течению реки;

2) лодка движется против течения реки.

Решение: Если моторная лодка будет двигаться по течению реки, то её скорость будет равна сумме собственной скорости со скоростью течения реки:

27 + 3 = 30 (км/ч).

Значит расстояние между пунктами лодка преодолеет за:

120 : 30 = 4 (ч).

Если лодка будет двигаться против течения реки, то её скорость будет равна разности собственной скорости и скорости течения реки:

27 – 3 = 24 (км/ч).

Значит, чтобы узнать сколько времени потратит лодка на путь от пункта  A  до пункта  B,  надо расстояние разделить на скорость:

120 : 24 = 5 (ч).

Решение задачи по действиям для движения по течению реки можно записать так:

1) 27 + 3 = 30 (км/ч)  — скорость лодки,

2) 120 : 30 = 4 (ч).

Для движения против течения реки решение задачи по действиям можно записать так:

1) 27 – 3 = 24 (км/ч)  — скорость лодки,

2) 120 : 24 = 5 (ч).

Ответ:

1) При движении по течению реки моторная лодка потратит  4  часа на путь от пункта  A  до пункта  B.

2) При движении против течения реки моторная лодка потратит  5  часов на путь от пункта  A  до пункта  B.

а) Лодка проплыла некоторое расстояние от пристани по течению реки и вернулась обратно, затратив на весь путь 8 ч. Собственная скорость лодки 8 км/ч, а скорость течения реки 2 км/ч. Определите, сколько времени плыла лодка по течению реки и все расстояние, которое она проплыла.
б) Пловец плыл 10 мин по течению реки и 15 мин против течения и проплыл всего 2100 м. Определите собственную скорость пловца (в м/мин), если скорость течения реки 30 м/мин.

reshalka.com

ГДЗ учебник по алгебре 7 класс Дорофеев. 7.6 Решение задач с помощью уравнений. Номер №763

Решение а

Пусть x (ч) − плыла лодка по течению реки, тогда:
8 − x (ч) − плыла лодка против течения реки;
82 = 6 (км/ч) − скорость лодки против течения;
8 + 2 = 10 (км/ч) − скорость лодки по течению;
10x (км) − проплыла лодка по течению;
6(8 − x) (км) − проплыла лодка против течения.
Так как, по течению и против течения лодка проплыла одинаковое расстояние, составим уравнение:
10x = 6(8 − x)
10x = 486x
10x + 6x = 48
16x = 48

x =
3 (ч) − плыла лодка по течению реки;
10x + 6(8 − x) = 10 * 3 + 6(83) = 30 + 6 * 5 = 30 + 30 = 60 (км) − всего проплыла лодка.
Ответ: 3 ч; 60 км.

Решение б

Пусть x (м/мин) − собственная скорость пловца;

x +
30 (м/мин) − скорость пловца по течению;

x −
30 (м/мин) − скорость пловца против течения;
10(x + 30) (м) − проплыл пловец по течению;
15(x − 30) (м) − проплыл пловец против течения.
Так как, всего пловец проплыл 2100 м, составим уравнение:
10(x + 30) + 15(x − 30) = 2100
10x + 300 + 15x − 450 = 2100
25x − 150 = 2100
25x = 2100 + 150
25x = 2250

x =
90 (м/мин) − собственная скорость пловца.
Ответ: 90 м/мин

Данный материал представляет собой систему
задач по теме “Движение”.

Цель: помочь учащимся более полно овладеть
технологиями решения задач по данной теме.

Задачи на движение по воде.

Очень часто человеку приходится совершать
движения по воде: реке, озеру, морю.

Сначала он это делал сам, потом появились плоты,
лодки, парусные корабли. С развитием техники
пароходы, теплоходы, атомоходы пришли на помощь
человеку. И всегда его интересовали длина пути и
время, затраченное на его преодоление.

Представим себе, что на улице весна. Солнце
растопило снег. Появились лужицы и побежали
ручьи. Сделаем два бумажных кораблика и пустим
один из них в лужу, а второй – в ручей. Что же
произойдет с каждым из корабликов?

В луже кораблик будет стоять на месте, а в
ручейке – поплывет, так как вода в нем “бежит”
к более низкому месту и несет его с собой. То же
самое будет происходить с плотом или лодкой.

В озере они будут стоять на месте, а в реке –
плыть.

Рассмотрим первый вариант: лужа и озеро. Вода в
них не движется и называется стоячей.

Кораблик поплывет по луже только в том случае,
если мы его подтолкнем или если подует ветер. А
лодка начнет двигаться в озере при помощи весел
или если она оснащена мотором, то есть за счет
своей скорости. Такое движение называют движением
в стоячей воде
.

Отличается ли оно от движения по дороге? Ответ:
нет. А это значит, что мы с вами знаем как
действовать в этом случае.

Задача 1. Скорость катера по озеру равна 16 км/ч.

Какой путь пройдет катер за 3 часа?

Ответ: 48 км.

Следует запомнить, что скорость катера в
стоячей воде называют собственной скоростью.

Задача 2. Моторная лодка за 4 часа проплыла по
озеру 60 км.

Найдите собственную скорость моторной лодки.

img1.jpg (7802 bytes)

Ответ: 15 км/ч.

Задача 3. Сколько времени потребуется лодке,
собственная скорость которой

равна 28 км/ч, чтобы проплыть по озеру 84 км?

Ответ: 3 часа.

Итак, чтобы найти длину пройденного пути,
необходимо скорость умножить на время.

Чтобы найти скорость, необходимо длину пути
разделить на время.

Чтобы найти время, необходимо длину пути
разделить на скорость.

Чем же отличается движение по озеру от
движения по реке?

Вспомним бумажный кораблик в ручье. Он плыл,
потому что вода в нем движется.

Такое движение называют движением по течению.
А в обратную сторону –  движением против
течения
.

Итак, вода в реке движется, а значит имеет свою
скорость. И называют ее скоростью течения реки.
( Как ее измерить?)

Задача 4. Скорость течения реки равна 2 км/ч. На
сколько километров река относит

любой предмет (щепку, плот, лодку) за 1час, за 4
часа?

Ответ: 2 км/ч, 8 км/ч.

Каждый из вас плавал в реке и помнит, что по
течению плыть гораздо легче, чем против течения.
Почему? Потому, что в одну сторону река
“помогает” плыть, а в другую – “мешает”.

Рис.1

Те же, кто не умеет плавать, могут представить
себе ситуацию, когда дует сильный ветер.
Рассмотрим два случая:

1) ветер дует в спину,

2) ветер дует в лицо.

И в том и в другом случае идти сложно. Ветер в
спину заставляет бежать, а значит, скорость
нашего движения увеличивается. Ветер в лицо
сбивает нас, притормаживает. Скорость при этом
уменьшается.

Остановимся на движении по течению реки. Мы уже
говорили о бумажном кораблике в весеннем ручье.
Вода понесет его вместе с собой. И лодка,
спущенная на воду, поплывет со скоростью течения.
Но если у нее есть собственная скорость, то она
поплывет еще быстрее.

Следовательно, чтобы найти скорость движения
по течению реки, необходимо сложить собственную
скорость лодки и скорость течения.

Задача 5. Собственная скорость катера равна 21
км/ч, а скорость течения реки 4 км/ч. Найдите
скорость катера по течению реки.

Ответ: 25км/ч.

Теперь представим себе, что лодка должна плыть
против течения реки. Без мотора или хотя бы весел,
течение отнесет ее в обратную сторону. Но, если
придать лодке собственную скорость ( завести
мотор или посадить гребца), течение будет
продолжать отталкивать ее назад и мешать
двигаться вперед со своей скоростью.

Поэтому, чтобы найти скорость лодки против
течения, необходимо из собственной скорости
вычесть скорость течения.

Задача 6. Скорость течения реки равна 3 км/ч, а
собственная скорость катера 17 км/ч.

Найдите скорость катера против течения.

Ответ: 14 км/ч.

Задача 7. Собственная скорость теплохода равна
47,2 км/ч, а скорость течения реки 4,7 км/ч. Найдите
скорость теплохода по течению и против течения.

Ответ: 51,9 км/ч; 42,5 км/ч.

Задача 8. Скорость моторной лодки по течению
равна12,4 км/ч. Найдите  собственную скорость
лодки, если скорость течения реки 2,8 км/ч.

Ответ: 9,6 км/ч.

Задача 9. Скорость катера против течения равна
10,6 км/ч. Найдите собственную скорость катера и
скорость по течению, если скорость течения реки
2,7 км/ч.

Ответ: 13,3 км/ч; 16 км/ч.

Связь между скоростью по течению и
скоростью против течения.

Введем следующие обозначения:

Vс. – собственная скорость,

Vтеч. – скорость течения,

V по теч. – скорость по течению,

V пр.теч. – скорость против течения.

Тогда можно записать следующие формулы:

V no теч = Vc + Vтеч ;

V np. теч = Vc – V теч.;

Попытаемся изобразить это графически:

img2.jpg (10913 bytes)

Рис. 2

Вывод: разность скоростей по течению
и против течения  равна удвоенной скорости
течения.

Vno теч — Vnp. теч = 2 Vтеч.

Vтеч = (V по теч – Vnp. теч ): 2

Задача.

1) Скорость катера против течения равна 23 км/ч, а
скорость течения 4 км/ч.

Найдите скорость катера по течению.

Ответ: 31 км/ч.

2) Скорость моторной лодки по течению реки равна
14 км/ч/ а скорость течения 3 км/ч. Найдите скорость
лодки против течения

Ответ: 8 км/ч.

Задача 10. Определите скорости и заполните
таблицу:

 

V С.

Vтеч.

Vпо теч.

Vпр.теч.

1

12 км/ч

3 км/ч

2

23 км/ч

25 км/ч

3

24 км/ч

20 км/ч

4

4 км/ч

17 км/ч:

5

5 км/ч

18 км/ч

6

42 км/ч

34 км/ч

* – при решении п.6 смотри рис.2.

Ответ: 1) 15 и 9; 2) 2 и 21; 3) 4 и 28; 4) 13 и 9; 5)23 и 28; 6) 38 и 4.

Через уравнение.

S – пройденный путь, растояние, которое прошла, например, лодка. (км)

t – время, за которое она прошла расстояние S. (часов, минут)

V – собственная её скорость (км/ч, м/ч)

Такие задачи решаются далее: если известны: (под формулы подставляем числа)

t и V, то перемножаем – t * V, получаем S.

t и S, то расстояние делим время – S : t, получаем V

S и V, также – S : V, получаем t

Также если в задаче указана V (её ищем)

по течению, то V собственная + V по течению

против течения, то V собств. – V прот. теч.

Тогда формулы звучат так: если известны:

t и V, то t * (V с. +/- V) = S

t и S, то S : t = V с. +/- V

V и S, то S : (V c. +/- V) = t

Теперь ещё раз:

V c. – собственная скорость

V c. + V – скорость + скорость по теч.

V c. – V – скорость + скорость прот. теч.

Ну так чтоли… Плохой из меня учитель(((

Задача 5. Собственная скорость катера равна 21 км/ч, а скорость течения реки 4 км/ч. Найдите скорость катера по течению реки.

Теперь представим себе, что лодка должна плыть против течения реки. Без мотора или хотя бы весел, течение отнесет ее в обратную сторону. Но, если придать лодке собственную скорость ( завести мотор или посадить гребца), течение будет продолжать отталкивать ее назад и мешать двигаться вперед со своей скоростью.

Поэтому, чтобы найти скорость лодки против течения, необходимо из собственной скорости вычесть скорость течения.

Vс. — собственная скорость,

Vтеч. — скорость течения,

V по теч. — скорость по течению,

V пр.теч. — скорость против течения.

Вывод: разность скоростей по течению и против течения равна удвоенной скорости течения.

Vno теч — Vnp. теч = 2 Vтеч.

Vтеч = (V по теч — Vnp. теч ): 2

1) Скорость катера против течения равна 23 км/ч, а скорость течения 4 км/ч.

Найдите скорость катера по течению.

2) Скорость моторной лодки по течению реки равна 14 км/ч/ а скорость течения 3 км/ч. Найдите скорость лодки против течения

Задача 10. Определите скорости и заполните таблицу:

Источник

Какая скорость у моторной лодки: как правильно измерить и рассчитать?

Если лодка используется для водных прогулок, служебных нужд или для того, чтобы быстро добираться до места рыбалки, ключевым моментом при выборе моторки становится её скорость. В отношении того, какая скорость моторной лодки, точной цифры никто не скажет, потому что лодки отличаются друг от друга по конструкции, весу и т.п.. Поэтому мы расскажем вам, от чего зависит этот показатель, как он измеряется, приведём таблицы, в которых математические гении сделали некоторые расчеты и дадим формулы для самостоятельного расчёта.

Что влияет на скорость лодки?

Интересный факт! Spirit of Australia признан самым быстрым катером. Кен Варби спроектировал этот катер и показал на нем в 1978 году скорость 511 кмчас!

Факторы, от которых зависит скорость лодки:

  1. Мощность двигателя. У каждого мотора свои характеристики, но мощность ограничивается конструктивными особенностями лодочного корпуса. Производители лодок указывают максимальную мощность и вес мотора, который допустимо ставить на конкретное судно. Превышать эти параметры крайне не рекомендуется, если вы не хотите пожертвовать своей безопасностью ради увеличения скорости. Кстати, от мощности установленного на вашу лодки мотора и от её веса зависит, нужно ли регистрировать судно в ГИМС или нет.
  2. Гребной винт. Если правильно подобрать винт, это хорошо скажется на скорости. Во многих лодочных моторах установлены трёхлопастные винты. Винтовой диаметр зависит и от модели двигателя. Важная характеристика, которую нужно учитывать при выборе винта — шаг, измеряемый в миллиметрах и указывающий угол наклона лопастей.
  3. Корпус лодки. Одна лодка может легко рассекать по воде, а другую нужно будет “заставлять” это делать. Многое зависит от корпусных обводов, материалов. Имеет значение и вес лодки. Например, если судно тяжело держит курс, на большую скорость рассчитывать не приходится. Стоит учитывать и загрузку лодки.
  4. Погода. Если бушует ветер, и волны становятся всё активнее, скорость моторной лодки будет значительно ниже, чем на стоячей воде. Нельзя не учитывать направление течения реки или другого водоёма, которое тормозит или ускоряет судно.

Именно поэтому скорость движка не бывает одинаковой. Но, учитывая эти факторы, всегда можно рассчитывать на определённые показатели скорости. И, конечно, будьте внимательны, когда покупаете мотор. Смотрите на все параметры!

В нашем магазине вы найдёте отличные моторы с разными характеристиками. У нас есть движок, который даст нужную вам скорость!

Чем и как измеряется скорость лодки?

Скорость морских судов издавна принято измерять в узлах. Связано это с тем, что древние моряки узнавали скорость корабля с помощью устройства под названием “лаг” (название пошло от голландского слова log, означающего “расстояние”). Это было простое бревно, к которому привязывали верёвку. По её длине располагались завязанные узлы на равном друг от друга расстоянии. Второй конец такого каната закрепляли на борту корабля.

Чтобы измерять скорость, моряки бросали бревно в воду и считали, сколько узлов проходит через руки за конкретный промежуток времени. По числу таких узлов и определяли скорость корабля. Слово “узел” применяется до сих пор. В современном понимании под узлом понимается скорость (V), с которой судно проплывает одну морскую милю (1852 метра). Такой стандарт используется в разных странах как 1852 мчас или 1,852 кмчас. Значит, чтобы передать V в узлах в километрах, нужно умножить её на 1,852.

Приборы для измерения скорости

Конечно, сейчас бревна и веревки никто не используют. Современные судна требуют современных навигационных приборов! И такие есть. Разработаны вполне удобные спидометры, благодаря которым можно измерить скорость судна. Вот пара примеров устройств:

  1. Манометрический спидометр. Аппарат со шкалой показывает V в км или милях в час. Есть модели, которые определяют скорость до 90 кмчас и выше. Выбирайте прибор, который подходит для вашей лодки. К примеру, зачем переплачивать за манометр со шкалой до 90 кмчас, если наибольшая скорость вашего судна 30 кмчас?
  2. GPS-спидометр. Сигналы ему передают навигационные спутники. На плавсредстве крепится датчик рядом с самим прибором. Такое устройство отличается высокой точностью, но стоит дороже «обычных» моделей.

Интересный факт! Самой быстрой понтонной лодкой считается Brad Rowland’s South Bay 925CR, которая развила скорость 184 кмчас.

Есть такое понятие как «крейсерская скорость» моторки. Определение простое — это V при минимальных топливных затратах. Практически всегда это значение ниже максимального, зато расход топлива значительно меньше. Указывая характеристики моторок, часто указывают километры пути на 1 л топлива. В случае с парусными яхтами говорят о “средней скорости”, потому что парусник часто ходит галсами (галс — курс судна относительно ветра).

Полезные таблицы скоростей в зависимости от л.с

Некоторые любители математических расчётов провели исследования и показали, какая скорость моторной лодки в обычных условиях в зависимости от мощности. Мы нашли и привели эти расчеты ниже. Помните, что эти расчёты не претендуют на истину в последней инстанции, но помогают увидеть примерную картину.

Средние и малопопулярные моторы свыше 5 и до 10 л.с:

Скорость самых популярных лодочных моторов 9,9 л.с.:

Лодочные моторы 15 л.с.:

Скорость движков, мощность которых превышает 15 л.с.:

Как рассчитать скорость своей моторной ПВХ лодки?

Находить V собственной лодки можно по простым формулам, как в школьных задачах.

Предположим, что V судна по течению воды составляет 30 кмчас, а против течения – 18 кмчас. Определяться со скоростью своей моторки можно с помощью такой формулы:

Vс=(Vпо теч.+Vпр теч.)/2 и Vтеч.=(Vпо теч. — Vпр. теч)/2.

Vтеч.= (30-18)/2 = 6 кмчас

Vс= (30+18) /2 = 24 кмчас

Ещё один легкий способ для самостоятельного расчёта предельной V судна основан на применении формулы, которая учитывает параметры мотора: V = NK/R, где R – сопротивление движению (есть в технической документации), K – коэффициент полезной деятельности винта (зависит от типа лодки), N – мощность работы двигателя (есть в технической документации). Для вычисления предела скорости судна нужно взять максимально допустимую мощность. Так можно высчитать предел максимальной скорости.

И, конечно, не забываем о старом добром способе измерения скорости в зависимости от времени и расстояния:

Теперь вы знаете, как понять, какая скорость моторной лодки. В нашем магазине вы можете купить не только отличные моторы, но и классные ПВХ-лодки.

Желаем вам хорошей и безопасной скорости и богатого улова!

Вопрос — ответ

Вопрос: Какая максимальная скорость у моторной лодки?

Имя: Камиль

Ответ: Всё зависит от нескольких факторов, главным образом, от мощности мотора. Производитель плавсредств указывает максимальную мощность и вес движка, который можно ставить на конкретную лодку. На скорость влияет ее корпус, гребной винт и погода.

Вопрос: Как и чем можно определить скорость своей лодки?

Имя: Рамиль

Ответ: Для этого используются спидометры, которые делятся на несколько видов. Наиболее точными считаются GPS-спидометры, которые связаны с навигационными спутниками. Могут помочь и готовые расчеты скорости для разных лодок и моторов.

Вопрос: С какой скоростью сейчас плывет моя моторная лодка?

Имя: Илья

Ответ: Кроме спидометра определить скорость своей лодки можно с помощью формул. Самая простая основана на использовании значений расстояния и времени (первое поделить на второе).

Источник

Как найти собственную скорость лодки

  • Как найти собственную скорость лодки
  • Как решить задачу на скорость реки
  • Как решать задачи на движение

Первое, что необходимо выучить и знать «на зубок» — формулы. Запишите и запомните:

Vпр. теч=Vпо теч. — 2Vтеч.

Vпо теч.=Vпр. теч+2Vтеч.

Vтеч.=(Vпо теч. — Vпр. теч)/2

Vс=(Vпо теч.+Vпр теч.)/2 или Vс=Vпо теч.+Vтеч.

На примере разберем, как находить собственную скорость и решать задачи такого типа.

Пример 1.Скорость лодки по течению 21,8км/ч, а против течения 17,2 км/ч. Найти собственную скорость лодки и скорость течения реки.

Решение: Согласно формулам: Vс=(Vпо теч.+Vпр теч.)/2 и Vтеч.=(Vпо теч. — Vпр. теч)/2, найдем:

Vтеч = (21,8 — 17,2)/2=4,62=2,3 (км/ч)

Vс = Vпр теч.+Vтеч=17,2+2,3=19,5 (км/ч)

Ответ: Vc=19,5 (км/ч), Vтеч=2,3 (км/ч).

Пример 2. Пароход прошел против течения 24 км и вернулся обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите его собственную скорость в неподвижной воде, если скорость течения равна 3 км/ч.

За Х примем собственную скорость парохода. Составим таблицу, куда занесем все данные.

Против теч. По течению

Расстояние 24 24

время 24/ (Х-3) 24/ (Х+3)

Зная, что на обратный путь пароход затратил на 20 минут времени меньше, чем на путь по течению, составим и решим уравнение.

24/ (Х-3) – 24/ (Х+3) = 1/3

Х=21(км/ч) – собственная скорость парохода.

Источник

Как найти скорость в стоячей воде

  • Как найти собственную скорость лодки
  • Как найти скорость, время, расстояние
  • Как решать задачи на движение

Первое, что необходимо выучить и знать «на зубок» – формулы. Запишите и запомните:

Vпр. теч=Vпо теч. – 2Vтеч.

Vпо теч.=Vпр. теч+2Vтеч.

Vтеч.=(Vпо теч. – Vпр. теч)/2

Vс=(Vпо теч.+Vпр теч.)/2 или Vс=Vпо теч.+Vтеч.

На примере разберем, как находить собственную скорость и решать задачи такого типа.

Пример 1.Скорость лодки по течению 21,8км/ч, а против течения 17,2 км/ч. Найти собственную скорость лодки и скорость течения реки.

Решение: Согласно формулам: Vс=(Vпо теч.+Vпр теч.)/2 и Vтеч.=(Vпо теч. – Vпр. теч)/2, найдем:

Vтеч = (21,8 – 17,2)/2=4,62=2,3 (км/ч)

Vс = Vпр теч.+Vтеч=17,2+2,3=19,5 (км/ч)

Ответ: Vc=19,5 (км/ч), Vтеч=2,3 (км/ч).

Пример 2. Пароход прошел против течения 24 км и вернулся обратно, затратив на обратный путь на 20 мин меньше, чем при движении против течения. Найдите его собственную скорость в неподвижной воде, если скорость течения равна 3 км/ч.

За Х примем собственную скорость парохода. Составим таблицу, куда занесем все данные.

Против теч. По течению

Расстояние 24 24

время 24/ (Х-3) 24/ (Х+3)

Зная, что на обратный путь пароход затратил на 20 минут времени меньше, чем на путь по течению, составим и решим уравнение.

24/ (Х-3) – 24/ (Х+3) = 1/3

Х=21(км/ч) – собственная скорость парохода.

Ответ или решение 1

Скорость лодки плывущей по течению реки, будет больше скорости лодки плывущей в стоячей воде, на скорость этого самого течения. Потому что, течение помогает лодке плыть. Следовательно чтобы узнать скорость лодки в стоячей воде, необходимо от скорости лодки плывущей по течению вычесть скорость течения реки. Узнаем собственную скорость лодки, если, нам известно что ее скорость по течению 19,2 км в час, а скорость течения 2,6 км в час.

19,2 – 2,6 = 16,6 км в час.

Ответ: Скорость лодки в стоячей воде составляет 16,6 км в час.

Разделы: Математика

Данный материал представляет собой систему задач по теме “Движение”.

Цель: помочь учащимся более полно овладеть технологиями решения задач по данной теме.

Задачи на движение по воде.

Очень часто человеку приходится совершать движения по воде: реке, озеру, морю.

Сначала он это делал сам, потом появились плоты, лодки, парусные корабли. С развитием техники пароходы, теплоходы, атомоходы пришли на помощь человеку. И всегда его интересовали длина пути и время, затраченное на его преодоление.

Представим себе, что на улице весна. Солнце растопило снег. Появились лужицы и побежали ручьи. Сделаем два бумажных кораблика и пустим один из них в лужу, а второй – в ручей. Что же произойдет с каждым из корабликов?

В луже кораблик будет стоять на месте, а в ручейке – поплывет, так как вода в нем «бежит» к более низкому месту и несет его с собой. То же самое будет происходить с плотом или лодкой.

В озере они будут стоять на месте, а в реке – плыть.

Рассмотрим первый вариант: лужа и озеро. Вода в них не движется и называется стоячей.

Кораблик поплывет по луже только в том случае, если мы его подтолкнем или если подует ветер. А лодка начнет двигаться в озере при помощи весел или если она оснащена мотором, то есть за счет своей скорости. Такое движение называют движением в стоячей воде.

Отличается ли оно от движения по дороге? Ответ: нет. А это значит, что мы с вами знаем как действовать в этом случае.

Задача 1. Скорость катера по озеру равна 16 км/ч.

Какой путь пройдет катер за 3 часа?

Следует запомнить, что скорость катера в стоячей воде называют собственной скоростью.

Задача 2. Моторная лодка за 4 часа проплыла по озеру 60 км.

Найдите собственную скорость моторной лодки.

Задача 3. Сколько времени потребуется лодке, собственная скорость которой

равна 28 км/ч, чтобы проплыть по озеру 84 км?

Итак, чтобы найти длину пройденного пути, необходимо скорость умножить на время.

Чтобы найти скорость, необходимо длину пути разделить на время.

Чтобы найти время, необходимо длину пути разделить на скорость.

Чем же отличается движение по озеру от движения по реке?

Вспомним бумажный кораблик в ручье. Он плыл, потому что вода в нем движется.

Такое движение называют движением по течению. А в обратную сторону – движением против течения.

Итак, вода в реке движется, а значит имеет свою скорость. И называют ее скоростью течения реки. ( Как ее измерить?)

Задача 4. Скорость течения реки равна 2 км/ч. На сколько километров река относит

любой предмет (щепку, плот, лодку) за 1час, за 4 часа?

Ответ: 2 км/ч, 8 км/ч.

Каждый из вас плавал в реке и помнит, что по течению плыть гораздо легче, чем против течения. Почему? Потому, что в одну сторону река «помогает» плыть, а в другую – «мешает».

Те же, кто не умеет плавать, могут представить себе ситуацию, когда дует сильный ветер. Рассмотрим два случая:

1) ветер дует в спину,

2) ветер дует в лицо.

И в том и в другом случае идти сложно. Ветер в спину заставляет бежать, а значит, скорость нашего движения увеличивается. Ветер в лицо сбивает нас, притормаживает. Скорость при этом уменьшается.

Остановимся на движении по течению реки. Мы уже говорили о бумажном кораблике в весеннем ручье. Вода понесет его вместе с собой. И лодка, спущенная на воду, поплывет со скоростью течения. Но если у нее есть собственная скорость, то она поплывет еще быстрее.

Следовательно, чтобы найти скорость движения по течению реки, необходимо сложить собственную скорость лодки и скорость течения.

Задача 5. Собственная скорость катера равна 21 км/ч, а скорость течения реки 4 км/ч. Найдите скорость катера по течению реки.

Теперь представим себе, что лодка должна плыть против течения реки. Без мотора или хотя бы весел, течение отнесет ее в обратную сторону. Но, если придать лодке собственную скорость ( завести мотор или посадить гребца), течение будет продолжать отталкивать ее назад и мешать двигаться вперед со своей скоростью.

Поэтому, чтобы найти скорость лодки против течения, необходимо из собственной скорости вычесть скорость течения.

Задача 6. Скорость течения реки равна 3 км/ч, а собственная скорость катера 17 км/ч.

Найдите скорость катера против течения.

Задача 7. Собственная скорость теплохода равна 47,2 км/ч, а скорость течения реки 4,7 км/ч. Найдите скорость теплохода по течению и против течения.

Ответ: 51,9 км/ч; 42,5 км/ч.

Задача 8. Скорость моторной лодки по течению равна12,4 км/ч. Найдите собственную скорость лодки, если скорость течения реки 2,8 км/ч.

Задача 9. Скорость катера против течения равна 10,6 км/ч. Найдите собственную скорость катера и скорость по течению, если скорость течения реки 2,7 км/ч.

Ответ: 13,3 км/ч; 16 км/ч.

Связь между скоростью по течению и скоростью против течения.

Введем следующие обозначения:

Vс. – собственная скорость,

Vтеч. – скорость течения,

V по теч. – скорость по течению,

V пр.теч. – скорость против течения.

Тогда можно записать следующие формулы:

Попытаемся изобразить это графически:

Вывод: разность скоростей по течению и против течения равна удвоенной скорости течения.

Vno теч — Vnp. теч = 2 Vтеч.

Vтеч = (V по теч – Vnp. теч ): 2

1) Скорость катера против течения равна 23 км/ч, а скорость течения 4 км/ч.

Найдите скорость катера по течению.

2) Скорость моторной лодки по течению реки равна 14 км/ч/ а скорость течения 3 км/ч. Найдите скорость лодки против течения

Задача 10. Определите скорости и заполните таблицу:

Источник

Добавить комментарий