Как найти время затухания колебаний

1.21.
3АТУХАЮЩИЕ, ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ

Дифференциальное
уравнение затухающих колебаний и его
решение. Коэффициент затухания.
Логарифмический дек
ремент
затухания.
Добротность
колеба
тельной
системы.
Апериодический
процесс. Дифференциальное уравнение
вынужденных колебаний и его решение.
Амплитуда
и фаза вынужденных колебаний. Процесс
установления колебаний. Случай резонанса.
Автоколебания.

Затуханием
колебаний называется постепенное
уменьшение амплитуды колебаний с
течением времени, обусловленное потерей
энергии колебательной системой.

Собственные
колебания без затухания – это идеализация.
Причины затухания могут быть разные. В
механической системе к затуханию
колебаний приводит наличие трения.
Когда израсходуется вся энергия,
запасенная в колебательной системе,
колебания прекратятся. Поэтому амплитуда
затухающих
колебаний

уменьшается,
пока не станет равной нулю.

Затухающие колебания,
как и собственные, в системах, разных
по своей природе, можно рассматривать
с единой точки зрения – общих признаков.
Однако, такие характеристики, как
амплитуда и период, требуют переопределения,
а другие – дополнения и уточнения по
сравнению с такими же признаками для
собственных незатухающих колебаний.
Общие признаки и понятия затухающих
колебаний следующие:

  • Дифференциальное
    уравнение должно быть получено с учетом
    убывания в процессе колебаний
    колебательной энергии.

  • Уравнение колебаний
    – решение дифференциального уравнения.

  • Амплитуда затухающих
    колебаний зависит от времени.

  • Частота и период
    зависят от степени затухания колебаний.

  • Фаза и начальная
    фаза имеют тот же смысл, что и для
    незатухающих колебаний.

Механические
затухающие колебания.

Механическая
система
:
пружинный маятник с учетом сил трения.

Силы,
действующие на маятник
:

Упругая
сила.

,
где k
– коэффициент жесткости пружины, х –
смещение маятника от положения равновесия.

Сила
сопротивления
.
Рассмотрим силу сопротивления,
пропорциональную скорости v
движения (такая зависимость характерна
для большого класса сил сопротивления):

.
Знак “минус” показывает, что направление
силы сопротивления противоположно
направлению скорости движения тела.
Коэффициент сопротивления r
численно равен силе сопротивления,
возникающей при единичной скорости
движения тела:

Закон
движения

пружинного
маятника – это второй закон Ньютона:

ma
= Fупр.
+ Fсопр.

Учитывая,
что
и

,
запишем второй закон Ньютона в виде:

. (21.1)

Разделив
все члены уравнения на m,
перенеся их все в правую часть, получим
дифференциальное
уравнение

затухающих колебаний:

Обозначим

,
где β
коэффициент
затухания
,

,
где ω0
– частота незатухающих свободных
колебаний в отсутствии потерь энергии
в колебательной системе.

В новых обозначениях
дифференциальное уравнение затухающих
колебаний имеет вид:

.

(21.2)

Это линейное
дифференциальное уравнение второго
порядка.

Это
линейное дифференциальное уравнение
решается заменой переменных. Представим
функцию х, зависящую от времени t,
в виде:

.

Найдем
первую и вторую производную этой функции
от времени, учитывая, что функция z
также является функцией времени:

,

.

Подставим выражения
в дифференциальное уравнение:

.

Приведем
подобные члены в уравнении и сократим
каждый член на
,
получим уравнение:

.

Обозначим
величину
.

Решением
уравнения
являются
функции
,

.

Возвращаясь к
переменной х, получим формулы уравнений
затухающих колебаний:

.

Таким
образом,
уравнение затухающих колебаний
есть
решение дифференциального уравнения
(21.2):


(21.3)

Частота
затухающих колебаний
:

(физический
смысл имеет только вещественный корень,
поэтому
).

Период
затухающих колебаний
:

(21.5)

Смысл,
который вкладывался в понятие периода
для незатухающих колебаний, не подходит
для затухающих колебаний, так как
колебательная система никогда не
возвращается в исходное состояние из-за
потерь колебательной энергии. При
наличии трения колебания идут медленнее:

.

Периодом
затухающих колебаний

называется минимальный промежуток
времени, за который система проходит
дважды положение равновесия в одном
направлении.

Для механической
системы пружинного маятника имеем:

,

.

Амплитуда
затухающих колебаний
:

,
для пружинного маятника
.

Амплитуда
затухающих колебаний – величина не
постоянная, а изменяющаяся со временем
тем быстрее, чем больше коэффициент β.
Поэтому определение для амплитуды,
данное ранее для незатухающих свободных
колебаний, для затухающих колебаний
надо изменить.

При
небольших затуханиях амплитудой
затухающих колебаний

называется
наибольшее отклонение от положения
равновесия за период.

Графики
зависимости
смещения от времени
и
амплитуды от времени
представлены
на Рисунках 21.1 и 21.2.

Рисунок
21.1 – Зависимость смещения от времени
для затухающих колебаний.

Рисунок
21.2 – Зависимости амплитуды от времени
для затухающих колебаний

Характеристики
затухающих колебаний.

1.
Коэффициент затухания

β.

Изменение амплитуды
затухающих колебаний происходит по
экспоненциальному закону:

.

Пусть за
время τ
амплитуда колебаний уменьшится в “e
” раз (“е” – основание натурального
логарифма, е ≈ 2,718). Тогда, с одной стороны,

,
а с другой стороны, расписав амплитуды
Азат.(t)
и Азат.(t+τ),
имеем
.
Из этих соотношений следует βτ
= 1, отсюда
.

Промежуток
времени
τ,
за который амплитуда уменьшается в “е”
раз, называется временем релаксации.

Коэффициент
затухания
β
– величина, обратно пропорциональная
времени релаксации.

2.
Логарифмический
декремент затухания
δ

физическая величина, численно равная
натуральному логарифму отношения двух
последовательных амплитуд, отстоящих
по времени на период .

Если
затухание невелико, т.е. величина β
мала, то амплитуда незначительно
изменяется за период, и логарифмический
декремент можно определить так:

,

где
Азат.(t)
и Азат.(t+NT)
– амплитуды колебаний в момент времени
е и через N
периодов, т.е.в момент времени (t
+ NT).

3.
Добротность
Q
колебательной системы

– безразмерная физическая величина,
равная произведению величины (2π)
νа
отношение энергии W(t)
системы в произвольный момент времени
к убыли энергии за один период затухающих
колебаний:

.

Так как энергия
пропорциональна квадрату амплитуды,
то

.

При малых
значениях логарифмического декремента
δ
добротность колебательной системы
равна

,

где Ne
– число колебаний, за которое амплитуда
уменьшается в “е” раз.

Так,
добротность пружинного маятника –
.Чем
больше добротность колебательной
системы, тем меньше затухание, тем дольше
будет длиться периодический процесс в
такой системе. Добротность
колебательной системы –
безразмерная
величина, которая характеризует
диссипацию энергии во времени.

4. При
увеличении коэффициента β,
частота затухающих колебаний уменьшается,
а период увеличивается. При ω0
= β
частота затухающих колебаний становится
равной нулю ωзат.
= 0, а Тзат.
=
∞. При этом колебания теряют периодический
характер и называются апериодическими.

При ω0
= β
параметры системы, ответственные за
убывание колебательной энергии, принимают
значения, называемые критическими.
Для пружинного маятника условие ω0
= β
запишется так:,
откуда найдем величину критического
коэффициента сопротивления:

.

Рис. 21.3.
Зависимсть амплитуды апериодических
колебаний от времени

Вынужденные
колебания.

Все реальные колебания
являются затухающими. Чтобы реальные
колебания происходили достаточно долго
нужно периодически пополнять энергию
колебательной системы, действуя на нее
внешней периодически изменяющейся
силой

Рассмотрим
явление колебаний, если внешняя
(вынуждающая)
сила изменяется в зависимости от времени
по гармоническому закону. При этом в
системах возникнут колебания, характер
которых в той или иной мере повторит
характер вынуждающей силы. Такие
колебания называются вынужденными.

Общие признаки
вынужденных механических колебаний.

1. Рассмотрим
вынужденные механические колебаний
пружинного маятника, на который действует
внешняя (вынуждающая)
периодическая сила
.
Силы, которые действуют на маятник,
однажды выведенный из положения
равновесия, развиваются в самой
колебательной системе. Это сила упругости

и
сила сопротивления
.

Закон
движения

(второй закон Ньютона) запишется следующим
образом:

(21.6)

Разделим
обе части уравнения на m,
учтем, что
,
и получим дифференциальное
уравнение

вынужденных
колебаний:

Обозначим

(β
коэффициент
затухания
),

0
– частота незатухающих свободных
колебаний),
сила,
действующая на единицу массы. В этих
обозначениях дифференциальное
уравнение

вынужденных колебаний примет вид:

(21.7)

Это дифференциальное
уравнение второго порядка с правой
частью, отличной от нуля. Решение такого
уравнения есть сумма двух решений

.


общее
решение однородного дифференциального
уравнения, т.е. дифференциального
уравнения без правой части, когда она
равна нулю. Такое решение нам известно
– это уравнение затухающих колебаний,
записанное с точностью до постоянной,
значение которой определяется начальными
условиями колебательной системы:

,
где
.

Мы обсуждали ранее,
что решение может быть записано через
функции синуса.

Если
рассматривать процесс колебаний маятника
через достаточно большой промежуток
времени Δt
после включения вынуждающей силы
(Рисунок 21.2), то затухающие колебания в
системе практически прекратятся. И
тогда решением дифференциального
уравнения с правой частью будет решение

.

Решение


это частное решение неоднородного
дифференциального уравнения, т.е.
уравнения с правой частью. Из теории
дифференциальных уравнений известно,
что при правой части, изменяющейся по
гармоническому закону, решение
будет
гармонической функцией (sin
или cos)
с частотой изменения, соответствующей
частоте Ω
изменения правой части:

, (21.8)

где Аампл.
– амплитуда вынужденных колебаний, φ0
сдвиг
фаз
,
т.е. разность фаз между фазой вынуждающей
силы и фазой вынужденных колебаний. И
амплитуда Аампл.,
и сдвиг фаз φ0
зависят от параметров системы (β,
ω0)
и от частоты вынуждающей силы Ω.

Период
вынужденных колебаний
равен

(21.9)

График вынужденных
колебаний на Рисунке 4.1.

Рис.21.3. График
вынужденных колебаний

Установившиеся
вынужденные колебания являются так же
гармоническими.

Зависимости
амплитуды вынужденных колебаний и
сдвига фаз от частоты внешнего воздействия.
Резонанс.

1. Вернемся к
механической системе пружинного
маятника, на который действует внешняя
сила, изменяющаяся по гармоническому
закону. Для такой системы дифференциальное
уравнение и его решение соответственно
имеют вид:

,

.

Проанализируем
зависимость амплитуды колебаний и
сдвига фаз от частоты внешней вынуждающей
силы, для этого найдем первую и вторую
производную от х и подставим в
дифференциальное уравнение.

,

,

Воспользуемся
методом векторной диаграммы. Из уравнения
видно, что сумма трех колебаний в левой
части уравнения (Рисунок 4.1) должна быть
равна колебанию в правой части. Векторная
диаграмма выполнена для произвольного
момента времени t.
Из нее можно определить
.

Рисунок
21.4.

, (21.10)

. (21.11)

Учитывая
значение
,

,,
получим формулы для φ0
и Аампл.
механической системы:

,

.

2. Исследуем
зависимость амплитуды вынужденных
колебаний от частоты вынуждающей силы
и величины силы сопротивления в
колеблющейся механической системе, по
этим данным построим график
.
Результаты исследования отражены в
Рисунке 21.5, по ним видно, что при некоторой
частоте вынуждающей силы
амплитуда
колебаний резко возрастает. И это
возрастание тем больше, чем меньше
коэффициент затухания β.
При
амплитуда
колебаний становится бесконечно большой

.

Явление
резкого возрастания амплитуды

вынужденных
колебаний при частоте вынуждающей силы,
равной

,
называется резонансом.

(21.12)

Кривые
на Рисунке 21.5 отражают зависимость
и
называются амплитудными
резонансными кривыми
.

Рисунок
21.5 – Графики зависимости амплитуды
вынужденных колебаний от частоты
вынуждающей силы.

Амплитуда резогансных
колебаний примет вид:

(21.13)

Вынужденные
колебания – это незатухающие
колебания. Неизбежные потери энергии
на трение компенсируются подводом
энергии от внешнего источника периодически
действующей силы. Существуют системы,
в которых незатухающие колебания
возникают не за счет периодического
внешнего воздействия, а в результате
имеющейся у таких систем способности
самой регулировать поступление энергии
от постоянного источника. Такие системы
называются автоколебательными,
а процесс незатухающих колебаний в
таких системах – автоколебаниями.

В автоколебательной
системе можно выделить три характерных
элемента – колебательная система,
источник энергии и устройство обратной
связи между колебательной системой и
источником. В качестве колебательной
системы может быть использована любая
механическая система, способная совершать
собственные затухающие колебания
(например, маятник настенных часов).

Источником
энергии может служить энергия деформация
пружины или потенциальная энергия груза
в поле тяжести. Устройство обратной
связи представляет собой некоторый
механизм, с помощью которого
автоколебательная система регулирует
поступление энергии от источника. На
рис. 21.6 изображена схема взаимодействия
различных элементов автоколебательной
системы.

3

Рисунок
21.6. Функциональная схема автоколебательной
системы.

Примером
механической автоколебательной системы
может служить часовой механизм с анкерным
ходом (рис. 21.7.). Ходовое колесо с косыми
зубьями жестко скреплено с зубчатым
барабаном, через который перекинута
цепочка с гирей. На верхнем конце маятника
закреплен анкер (якорек) с двумя
пластинками из твердого материала,
изогнутыми по дуге окружности с центром
на оси маятника. В ручных часах гиря
заменяется пружиной, а маятник –
балансиром – маховичком, скрепленным
со спиральной пружиной.

Рисунок
21.7. Часовой механизм с маятником.

Балансир совершает
крутильные колебания вокруг своей оси.
Колебательной системой в часах является
маятник или балансир. Источником энергии
– поднятая вверх гиря или заведенная
пружина. Устройством, с помощью которого
осуществляется обратная связь, является
анкер, позволяющий ходовому колесу
повернуться на один зубец за один
полупериод.

Обратная связь
осуществляется взаимодействием анкера
с ходовым колесом. При каждом колебании
маятника зубец ходового колеса толкает
анкерную вилку в направлении движения
маятника, передавая ему некоторую порцию
энергии, которая компенсирует потери
энергии на трение. Таким образом,
потенциальная энергия гири (или
закрученной пружины) постепенно,
отдельными порциями передается маятнику.

Механические
автоколебательные системы широко
распространены в окружающей нас жизни
и в технике. Автоколебания совершают
паровые машины, двигатели внутреннего
сгорания, электрические звонки, струны
смычковых музыкальных инструментов,
воздушные столбы в трубах духовых
инструментов, голосовые связки при
разговоре или пении и т. д.

13

Соседние файлы в папке физика лекцыи

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
Затухающие колебания

Для школьников.

Во всех колебательных системах, при выводе их из положения равновесия, кроме возвращающей силы присутствуют силы трения или силы сопротивления, препятствующие их колебательным движениям. Поэтому полная энергия колебательной системы, расходуемая на работу против сил трения (сопротивления), уменьшается, колебания затухают и прекращаются.

Затухающие колебания

На рисунке слева показан график зависимости смещения колеблющейся точки от положения равновесия от времени для затухающего колебания. Пунктирной линией изображено изменение амплитуды затухающего колебания.

Быстрота затухания определяется величиной силы сопротивления. Если сила сопротивления очень большая, то колебания прекращаются после первого прохождения через положение равновесия (нижняя кривая рисунка справа) или даже до первого перехода через положение равновесия (верхняя кривая рисунка справа). Такое движение колеблющегося тела называется апериодическим.

Уравнение, описывающее затухающее колебание, имеет вид:

Затухающие колебания

Здесь

Затухающие колебания

– коэффициент затухания, зависящий от силы сопротивления, которая при малых скоростях пропорциональна скорости.

Выражение для амплитуды затухающих колебаний имеет вид:

Затухающие колебания

где А (с индексом ноль) – амплитуда в начальный момент времени.

Строго затухающее колебание не является периодическим, но если затухание невелико, то можно говорить о периоде.

Период затухающих колебаний зависит от силы сопротивления и определяется формулой:

Затухающие колебания

Здесь буквой “омега”

Затухающие колебания

обозначена круговая частота затухающего колебания, а буквой

круговая частота гармонического колебания.

Чем больше сила сопротивления, тем больше коэффициент затухания, тем быстрее уменьшается амплитуда А и тем больше период затухания Т.

При очень малом трении, когда коэффициент затухания очень мал, период затухающего колебания близок к периоду незатухающего свободного колебания.

На практике быстроту затухания часто характеризуют логарифмическим декрементом затухания, обозначаемым буквой “лямбда”

Логарифмический декремент затухания равен натуральному логарифму отношения двух последовательных амплитуд, отстоящих друг от друга за период времени Т:

Затухающие колебания

Коэффициент затухания и логарифмический декремент затухания связаны между собой зависимостью:

Затухающие колебания

Задача.

Логарифмический декремент затухания маятника равен 0,02. Во сколько раз k уменьшится амплитуда маятника после n = 50 полных колебаний? Считать, что период затухающих колебаний близок к периоду свободных незатухающих колебаний.

Решение. Амплитуда затухающего колебания изменяется по закону:

Затухающие колебания
Затухающие колебания

По условию задачи время 50 колебаний:

Затухающие колебания

Подставив два последних уравнения в уравнение амплитуды затухающего колебания, получим

Затухающие колебания

Тогда амплитуда после n = 50 колебаний уменьшится в k раз:

Затухающие колебания

Здесь е – основание натурального логарифма (е = 2,71828).

Ответ: после совершения 50 колебаний амплитуда уменьшилась в е раз. (Время, в течение которого амплитуда колебаний уменьшается в е раз, называется временем затухания).

На практике в одних случаях надо уменьшать затухание колебаний (например, при работе балансира механических часов), в других случаях, наоборот, увеличивать (например, надо чтобы стрелка электроизмерительных приборов быстро останавливалась).

Для этого в электроизмерительном приборе используется металлическая пластинка, соединённая со стрелкой прибора, в которой при её движении между полюсами электромагнита возникают вихревые токи, тормозящие движение пластинки.

Затухающие колебания

Приведём задачу на затухающие колебания, на переход энергии колеблющейся системы в работу по преодолению сил трения.

Затухающие колебания

Интересен тот факт, что небольшие силы трения мало влияют на период колебаний, тогда как на амплитуду колебаний они влияют гораздо больше. Этот факт используется в работе маятниковых часов.

Ещё Галилеем было сказано о возможности использования маятника в часах. Первые часы с маятником были созданы в 1673 году Гюйгенсом.

Таким образом, все реальные свободные колебания являются затухающими. Но при малых силах трения (сопротивления) колебания в течение достаточно долгого промежутка времени остаются близкими к гармоническим и тогда период затухающих колебаний можно считать равным периоду свободных незатухающих колебаний.

Быстрота затухания характеризуется коэффициентом затухания, логарифмическим декрементом затухания. Коэффициент затухания – это величина, обратная времени, в течении которого амплитуда колебаний уменьшается в е раз.

https://yandex.ru/video/preview/?text=%D0%B4%D0%B5%D0%BC%D0%BE%D0%BD%D1%81%D1%82%D1%80%D0%B0%D1%86%D0%B8%D1%8F%20%D0%B7%D0%B0%D1%82%D1%83%D1%85%D0%B0%D1%8E%D1%89%D0%B8%D0%B5%20%D0%BA%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F&path=wizard&parent-reqid=1638616551229540-1048262997957332495-sas3-0841-245-sas-l7-balancer-8080-BAL-1765&wiz_type=vital&filmId=7663491726844988663

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Спасибо.

Предыдущая запись: Сложение гармонических колебаний.

Следующая запись: Вынужденные колебания. Резонанс.

Ссылки на занятия до электростатики даны в Занятии 1 .

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 5 8.

Ссылки на занятия, начиная с переменного тока, даны в конце Занятия 70 .

готово

Если на колеблющееся тело действует сила трения, то энергия системы, амплитуда смещения и амплитуда скорости не остаются постоянными, а убывают, энергия расходуется на преодоление сил трения и превращается в тепло. Происходит затухание колебаний. Такие колебания не являются гармоническими, и дифференциальное уравнение движения, как это было показано в начале раздела, имеет вид:

,

где b = r/2mкоэффициент затухания,  – собственная частота (угловая) колебаний системы при отсутствии затухания и m – масса колеблющейся системы. При условии, что затухание мало β << ω0, этому уравнению в качестве решения удовлетворяет функция (рис. 48):

,

где е = 2,71 – основание натуральных логарифмов; A0 и a0 постоянные  величины, зависящие от начальных условий;  – угловая частота затухающих колебаний, которая всегда меньше собственной частоты ω0.

 Периодом затухающих колебаний принято называть время T, за которое система дважды проходит через среднее положение в одном и том же направлении, или время, за которое отклонение в одну и ту же сторону дважды достигает максимального значения. Силы трения замедляют движение системы. Поэтому период затухающих колебаний всегда несколько больше, чем период тех собственных колеба­ний, которые совершала бы система, если бы трение отсутствовало. При малом трении β << w0 можно считать, что период затухающих колебаний Т = 2p/w практически равен периоду колебаний в отсутствии трения Т0 = 2p/w0, и угловая частота затухающих колебаний w = 2p/T совпадает с угловой частотой в отсутствии трения w0 = 2p/Т0.

Роль  амплитуды  колебаний в условно периодическом движении играет величина, которая убывает с течением времени по экспоненциальному закону:

.

Коэффициентом затухания β определяется быстрота (скорость), с которой убывает амплитуда. Величина τс, обратная β, называется временем затухания или временем релаксации τс = 1/β. Время релаксации – это то время, в течение которого амплитуда уменьшается в е = 2,71 раз. В самом деле, при t = tc имеем

A(0)/A(tc) = A0/(A0e–1) = e.

Отношение амплитуд, соответствующих различным моментам времени, отличающимся на период, называется декрементом затухания:

D = A(t)/A(t + T) = A0 eb t /A0 eb (t + T ) = e b T

Натуральный логарифм этого отношения называется логарифмическим декрементом затухания:

J = ln D = ln e b T = b T =  T / tc .

Показатель затухания β характеризует затухание колебаний за единицу времени, а логарифмический декремент – за период. Величина, обратная логарифмическому декременту затухания, равна числу колебаний Ne, совершающихся за время релаксации: J–1 = tc / T = Ne , причем за это время tc амплитуда уменьшается в е раз. Для характеристики колебательной системы часто употребляется также величина

Q = π /J = π Ne ,

называемая добротностью колебательной системы. Добротность пропорцио­нальна числу колебаний Ne , совершаемых системой за время релаксации.

Параметры затухания b, tс, J и Q связаны между собой взаимно-однозначными соотношениями, а именно:

J = p / Q = b Т = Т / tс , b = 1 /tс = J / Т = p / Q Т,

tс = 1 / b = Т / J =  Q Т / p   и  Q = p / J = p /b Т = ptс / Т.

54    55

                          Рис. 48                                                         Рис. 49

Чем медленнее затухают колебания Т << tс, тем выше добротность контура. Добротность – это характеристика качества колеблющейся системы. Для справки, добротность электрического колебательного контура обычно не превышает значения 103, камертона составляет примерно 104, кристалла кварца может достигать значения 108, и наивысшей добротностью обладает резонатор лазера (1012 и выше).

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 11 января 2023 года; проверки требуют 13 правок.

Затухающие колебания пружинного маятника

Затухающие колебания — колебания, энергия которых уменьшается с течением времени.
Бесконечно длящийся процесс вида {displaystyle u(t)=Acos(omega t+q)} в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний {displaystyle scriptstyle u'_{t}} или её квадрата.

В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.

Пример — затухающие колебания пружинного маятника[править | править код]

Пусть имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Тогда второй закон Ньютона для рассматриваемой системы запишется как

{displaystyle m{vec {a}}={vec {F}}_{c}+{vec {F}}_{y},}

где {displaystyle F_{c}=-cv} — сила сопротивления, а {displaystyle F_{y}=-kx} — сила упругости. Получается

{displaystyle ma+cv+kx=0,}

или в дифференциальной форме

{displaystyle {ddot {x}}+{c over m}{dot {x}}+{k over m}x=0,}

где k — коэффициент упругости в законе Гука, c — коэффициент сопротивления, устанавливающий соотношение между скоростью движения грузика и возникающей при этом силой сопротивления.

Для упрощения вводятся следующие обозначения:

{displaystyle omega _{0}={sqrt {k over m}},qquad zeta ={c over 2{sqrt {km}}}.}

Величину omega_0 называют собственной частотой системы, zeta  — коэффициентом затухания. С такими обозначениями дифференциальное уравнение принимает вид

{displaystyle {ddot {x}}+2zeta omega _{0}{dot {x}}+omega _{0}^{2}x=0.}

Уравнение затухающих колебаний. Возможные решения[править | править код]

Последнее уравнение предыдущего раздела является общим уравнением затухающих колебаний величины x (которая, вообще говоря, не обязательно должна быть координатой). Если абстрагироваться от того, как были получены параметры omega_0 и zeta в конкретном примере, такое уравнение применимо для описания широкого класса систем с затуханием.

Сделав замену {displaystyle x=e^{lambda t}}, получают характеристическое уравнение

{displaystyle lambda ^{2}+2zeta omega _{0}lambda +omega _{0}^{2}=0,}

корни которого вычисляются по формуле

{displaystyle lambda _{pm }=omega _{0}(-zeta pm {sqrt {zeta ^{2}-1}}).}

Зависимость графиков колебаний от значения zeta .

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если {displaystyle zeta >1}, то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

{displaystyle x(t)=c_{1}e^{lambda _{-},t}+c_{2}e^{lambda _{+},t}}

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если zeta =1, два действительных корня совпадают {displaystyle lambda =-omega _{0}}, и решением уравнения является:

{displaystyle x(t)=(c_{1}t+c_{2})e^{-omega _{o}t}}

В данном случае может иметь место вре́менный рост, но потом — экспоненциальное затухание.

  • Слабое затухание

Если {displaystyle zeta <1}, то решением характеристического уравнения являются два комплексно сопряжённых корня

{displaystyle lambda _{pm }=-omega _{0}zeta pm iomega _{0}{sqrt {1-zeta ^{2}}}}

Тогда решением исходного дифференциального уравнения является

{displaystyle x(t)=e^{-zeta omega _{0}t}(c_{1}cos(omega _{mathrm {d} }t)+c_{2}sin(omega _{mathrm {d} }t)),}

где {displaystyle omega _{d}=omega _{0}{sqrt {1-zeta ^{2}}}} — собственная частота затухающих колебаний.

Константы  c_1 и  c_2 в каждом из случаев определяются из начальных условий:
{displaystyle left{{begin{array}{ccc}x(0)&=&a\{dot {x}}(0)&=&bend{array}}right.}

См. также[править | править код]

  • Сейсмоосциллятор
  • Логарифмический декремент колебаний

Литература[править | править код]

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.

Уравнение затухающих колебаний время релаксации

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Добротность

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

где r — коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

где β — коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

— дифференциальное уравнение затухающих колебаний.

— у равнение затухающих колебаний.

ω – частота затухающих колебаний:

Период затухающих колебаний:

Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово­рить, когда β мало.

Если затухания выражены слабо (β→0), то . Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

В уравнении (1) А0 и φ0 — произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

τ — время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Логарифмический декремент затухания равен логарифму D :

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень­шилась в е раз. Логарифмический декремент затухания — постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

(1)

— дифференциальное уравнение вынуж­денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

(2)

Частное решение этого уравнения будем искать в виде:

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Это комплексное число удобно представить в виде

где А определяется по формуле (3 ниже), а φ — по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Его вещественная часть, являвшаяся решением уравнения (1) равна:

(3)

(4)

Слагаемое Хо.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи­ческой системы, называется резонансом.

Частота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ωрез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой. Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

При ω→0 все кривые приходят к значению — статическое отклонение.

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие «солнышко» за счет изменения положения центра тяжести система.(То же в «лодочках».) См. §61 .т. 1 Савельев И.В.

Затухающие колебания в контуре и их уравнение

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, — затухающие.

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:

m a = — k x — y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,

Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e — период времени уменьшения амплитуды в e раз.

Для R L C контура применима формула с ω частотой.

При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C — собственная частота, отсюда ω ≈ ω 0 .

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q = 1 R L C = ω 0 L R , где R , L и C — сопротивление, индуктивность, емкость, а ω 0 — частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q = R L C = R ω 0 L .

R является входным сопротивлением параллельного контура.

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.

Уравнения затухающих колебаний

Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.

Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .

Функция изображается аналогично рисунку 2 .

Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту — ω 0 .

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C — контуре:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение

Для нахождения I ( t ) :

I ( t ) = — ω 0 q 0 e ( — 2 β t ) sin ( ω t + α ) , где t g α = β ω .

Очевидно, что электрическая энергия W q запишется как:

W q = q 2 2 C = q 0 2 2 C e ( — 2 β t ) cos 2 ( ω t ) = W 0 e ( — 2 β t ) cos 2 ( ω t ) .

Тогда значение магнитной энергии контура W m равняется:

W m = L 2 ω 0 2 q 0 2 e ( — 2 β t ) sin 2 ω t + a = W 0 e — 2 β t sin 2 ω t + a .

Запись полной энергии будет иметь вид:

W = W q + W m = W 0 e ( — 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .

Где sin α = β ω 0 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( — 2 β t ) .

Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) . Энергия в контуре убывает по экспоненте.

Затухающие колебания

4.2 Затухающие колебания

4.2.1 Дифференциальное уравнение затухающих колебаний

Если кроме возвращающей силы на систему действует ещё и сила сопротивления (например, сила трения в механической системе или сопротивление проводника в контуре), то энергия колебательной системы будет расходоваться на преодоление этого сопротивления. Вследствие этого амплитуда колебаний будет уменьшаться и колебания будут затухать. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Рассмотрим затухание на примере пружинного маятника с коэффициентом упругости k, массой m, колеблющегося в среде, например, в жидкости, с коэффициентом сопротивления r. Предположим, что колебания малы и что маятник испытывает вязкое трение. В этом случае можно считать, что сила сопротивления пропорциональна скорости:

Знак минус указывает на противоположные напра­вления силы трения и скорости. Закон движения маятника при данных условиях будет иметь вид:

Преобразуем это выражение:

(51)

Обозначим: w02 = = d, где w0 — циклическая частота собственных колебаний пружинного маятника при отсутствии сил сопротивления, d — коэффициент затухания. Дифференциальное уравнение затухающих коле­баний маятника примет вид:

(52)

Получили однородное дифференциальное уравнение, второго порядка, описывающее малые затухающие колебания в системе с вязким трением. Его решение имеет вид:

где ω — частота затухающих колебаний:

w = . (54)

Уравнение (52) справедливо для любой системы, как механической, так и немеханической, например, для электромагнитного контура. Действительно, для колебательного контура с сопротивлением R второе правило Кирхгофа имеет вид уравнения (29), которое после преобразований принимает вид:

.

Из сравнения с уравнением (52) следует:

Таким образом, дифференциальное уравнение затухающих колебаний

любой линейной системы в общем виде задается уравнением:

+ 2d+w02S = 0. (55)

где S — колеблющаяся величина, описывающая тот или иной физический процесс, d = const – коэффициент затухания, w0 — собственная циклическая частота колебательной системы, т. е. частота свободных незатуха­ющих колебаний той же колебательной системы (при отсутствии потерь энергии) Решение уравнения (55) имеет вид:

амплитуда затухающих колебаний; A0 — начальная амплитуда.

Таким образом, затухающие колебания описываются функцией с экспоненциально убывающей амплитудой, т. е. затухающие колебания не являются гармоническими.

Зависимость (56) показана на рисунке 10 сплошной линией, а зависимость (57) — штриховыми линиями. Если пропорциональность силы трения и скорости не выполняются, то и закон убывания амплитуды будет другим. Например при сухом трении Fтр ≠ ƒ(t), Fтр = const и амплитуда убывает согласно геометрической прогрессии. Во многих измерительных приборах наряду с вязким трением (наличие смазки) присутствует и сухое трение (напр. в подшипниках). Пока амплитуды колебаний велики, в затухании доминирует вязкое трение. При малых амплитудах преобладает влияние сухого трения.

4.2.2 Параметры затухающих колебаний

1) Период затухающих колебаний:

Т = (58)

При δ β2 , согласно формуле (58) Т → 2π/ ωo. Такой режим затухания называют периодическим или колебательным (рисунок 10). В этом случае для характеристики процессов в системе можно использовать параметры гармонических колебаний.

2) При ωo2 ≈ β2 наступает критический режим колебаний. В формуле (58) ω → 0, Т → ∞. Наличие большого затухания в системе приводит к большим потерям энергии, поэтому, перейдя положение равновесия, система не в состоянии отойти от него на сколь-нибудь заметное расстояние и возвращается к равновесию (рисунок 11). Условие наблюдения критического режима можно получить из соотношений:

а) для механической системы

rk = 2 (67)

в) по аналоги для электрической системы

. (68)

3) При ωo2 wо2) выражение для резонансной частоты становится мнимым. Это означает, что при этих условиях резонанс не наблюдается — с увеличением частоты амплитуда вынужденных колебаний монотонно убывает. Изображенная на рисунке 13 совокупность графиков функции (79), соответствующих различным значениям параметра d, называется резонансными кривыми.

По поводу резонансных кривых можно сделать еще следующие замечания. При стремлении wо к нулю все кривые приходят к одному и тому же, отличному от нуля, предельному значению, равному fо/wо2, т. е. Fo/k. Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы величины Fo. При w → ∞ все кривые асимптотически стремятся к нулю, так как при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместиться из положения равновесия. Наконец, отметим, что чем меньше d, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» по­лучается максимум. Из формулы (79) вытекает, что при малом зату­хании (т. е. при d > w 0, tgj = -2δ/ω и сдвиг фаз становится равным p. Зависимость j от w при разных значениях d показана графически на рисунке 14.

При слабом затухании wрез» w0, и значение j при резонансе можно считать равным p/2.Сдвиг фаз на p/2 при резонансе означает, что вынуждающая сила опережает смещение на Т/4. При этом условии работа вынуждающей силы всегда положительна и приток энергии к колебательной системе максимален.

С явлением резонанса приходится считаться при конструировании машин и различного рода сооружений. Собственная частота колебаний этих устройств ни в коем случае не должна быть близка к частоте возможных внешних воздействий. В противном случае возникают вибра­ции, которые могут вызвать катастрофу. Известны слу­чаи, когда обрушивались мосты при прохождении по ним марширующих колонн солдат. Это происходило потому, что собственная частота колебаний моста оказывалась близкой к частоте, с которой шагала колонна.

Вместе с тем явление резонанса часто оказывается весьма полезным, особенно в акустике, радиотехнике и т. д.

4.4 Автоколебания

Огромный интерес для техники представляет возможность поддерживать колебания незатухающими. Для этого необходимо восполнять потери энергии реальной колебательной системы. Особенно важны и широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.

Автоколебания принципиально отличаются от свободных незатухающих колебаний, происходящих без действия сил, а также от вынужденных колебаний, происходящих под действием периодической силы. Автоколебательная система сама управляет внешними воздействиями, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени (в такт с ее колебаниями).

Примером автоколебательной системы могут служить часы. Храповой механизм подталкивает маятник в такт с его колебаниями. Энергия, передаваемая при этом маятнику, берется либо за счет раскручивающейся пружины, либо за счет опускающегося груза. Колебания воздуха в духовых инструментах и органных трубах также возникают вследствие автоколебаний, поддерживаемых воздушной струёй.

Автоколебательными системами являются также двигатели внутреннего сгорания, паровые турбины, ламповый генератор и т. д.

4.5 Переменный ток

4.5.1 Вынужденные электромагнитные колебания. Закон Ома для переменного тока.

Переменный ток можно рассматривать как установившиеся вынужденные электромагнитные колебания в цепи, содержащей резистор, катушку индуктивности и конденсатор. Мы будем рассматривать квазистационарные токи, для которых мгновенные значения силы тока во всех сечениях цепи практически одинаковы. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытекающие из него правила Кирхгофа.

Рассмотрим процессы, происходящие в цепи, содержащей последовательно включённые резистор, катушку индуктивности, конденсатор и источник переменной Э. Д.С., изменяющейся по гармоническому закону:

где εo — амплитуда электродвижущей силы.

В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL, UC . Будем считать, что внутреннее сопротивление источника э. д.с. пренебрежимо мало по сравнению с R. По закону Ома для участка цепи 1- LR-2 имеем:

где φ2 — φ1 = q/C — мгновенное значение разности потенциалов обкладок

конденсатора, q — его заряд в этот же момент времени, — L(dI/dt) — э. д.с. самоиндукции в контуре. Возьмём производную по времени от обеих частей равенства (145). Учитывая, что dq/dt = I — ток в контуре, получим:

Учитывая, что R/L = 2δ, 1/ (ωC) = ωo2 и введя обозначение — εoω/L = еo уравнение (84) запишем в виде:

Решение уравнения (85) аналогично решению ранее рассмотренного уравнения (71). Ищем решение уравнения (84) для установившегося режима в виде:

где Iо — амплитуда переменного тока в контуре, j сдвиг фаз между э. д.с. источника тока и силой тока. По аналогии с определением формул (74) и (75) найдём выражения для Iо и j :

(86)

(87)

Соотношение (86) называется законом Ома для переменного тока. Величина

(88)

называется полным сопротивлением цепи.

RL = ωL — индуктивное сопротивление;

RC = 1/ (ωC) — ёмкостное сопротивление;

реактивное сопротивление. Реактивное сопротивление не вызывает тепловых потерь в цепи переменного тока. Оно создаёт сдвиг фаз между током и вынуждающей э. д.с.

R — активное сопротивление; за счёт него возникают тепловые потери в контуре.

Падение напряжения на отдельных участках цепи, представленной на рис. 15, можно получить, используя выражение (85):

UC = q/ С = U0C cos(ωt — φ — π/2);

По второму правилу Кирхгофа:

На рисунке 16 представлена векторная диаграмма амплитуд колебаний на всех элементах рассматриваемой цепи (см. рис. 15).

Из выражения (86) следует, что амплитуда тока зависит от частоты вынуждающей э. д.с. (рисунок 18). Максимального значения I0 достигает при частоте ωрез, равной:

(89)

Явление достижения током максимального значения I0рез при ω = ωрез называется резонансом напряжений. Это вызвано тем, что при ω = ωрез падения напряжений на индуктивном и ёмкостном сопротивлениях достигают максимальных значений равных по модулю и противоположных по фазе, поэтому суммарное падение напряжение на реактивном сопротивлении равно нулю. Падение напряжения на активном сопротивлении максимально, его амплитудное значение

Векторная диаграмма для резонанса напряжений при­ведена на рис.17.

Подставив в формулу (91) значения резонансной частоты и амплитуды напряжений на катушке индуктивности и конденсаторе, получим:

( UL )рез= ( UС )рез= I0 = U0 = Q U0, (92)

где Q добротность контура.

Так как доброт­ность обычных колебательных контуров больше единицы, то напряжение как на катушке индуктивности, так и на конденсаторе превышает напряжение, приложенное к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты. Например, в случае резонан­са на конденсаторе, можно получить напряжение с амплитудой QUm ( в данном случае Q — добротность контура, которая может быть значительно больше Um. Это усиление напряжения возможно только для узкого интервала частот вблизи резонанс­ной частоты контура, что позволяет выделить из многих сигналов одно колебание определенной частоты, т. е. на радиоприемнике настроиться на нужную длину волны. Явление резонанса напряжений необходимо учитывать при расчете изоляции элект­рических линий, содержащих конденсаторы и катушки индуктивности, так как иначе может наблюдаться их пробой.

4.5.2 Мощность, выделяемая в цепи переменного тока

Полное мгновенное значение мощности переменного тока равно произведению мгновенных значений э. д.с. и силы тока. P(t) = ε(t) I(t), где

Практический интерес представляет не мгновенное значение мощности, а ее среднее значение за период колебания. Учитывая, что =1/2, sinw t.cosw t = 0, получим

= I0 ε0 cosj (93)

Из векторной диаграммы (см. рис. 16) следует, что ε0 cosj = RI0. Поэтому

.

Такую же мощность развивает постоянный ток . Величины Iэф = I0 /, Uэф = U0 / называются соответственно действующими (или эффективными) значениями тока и на­пряжения. Все амперметры и вольтметры градуируются по действующим значениям тока и напряжения. Учитывая действующие значения тока и напряжения, выражение средней мощности можно записать в виде:

(94)

где множитель cosj называется коэффициентом мощности,

Формула (94) показывает, что мощность, выделяемая в цепи переменного тока, в общем случае зависит не только от силы тока и напряжения, но и от сдвига фаз между ними. Если в цепи реактивное сопротивление отсутствует, то cosj =1 и P = Iэф εэф. Если цепь содержит только реактивное сопротивление (R=0), то cosj = 0 и средняя мощ­ность равна нулю, какими бы большими ни были ток и напряжение. Если cosj имеет значения, существенно меньшие единицы, то для передачи заданной мощности при данном напряжении генератора нужно увеличивать силу тока I, что приведет либо к выделению джоулевой теплоты, либо потребует увеличения сечения проводов, что повышает стоимость линий электропередачи. Поэтому на практике всегда стремятся увеличить cosj, наименьшее допустимое значение которого для промышленных уста­новок составляет примерно 0,85.

источники:

http://zaochnik.com/spravochnik/fizika/elektromagnitnye-kolebanija-volny/zatuhajuschie-kolebanija-v-konture/

http://pandia.ru/text/80/291/34244.php

Добавить комментарий