Как найти все значения аргумента комплексного числа

Автор статьи

Щебетун Виктор

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение 1

Длина радиус-вектора, который изображает заданное комплексное число $z=a+bi$, называется модулем данного комплексного числа.

Модуль заданного комплексного числа вычисляется по следующей формуле:

[r=|z|=|a+bi|=sqrt{a^{2} +b^{2} } .]

Пример 1

Вычислить модуль заданных комплексных чисел $z_{1} =13,, , z_{2} =4i,, , , z_{3} =4+3i$.

Решение:

Модуль комплексного числа $z=a+bi$ вычислим по формуле: $r=sqrt{a^{2} +b^{2} } $.

Для исходного комплексного числа $z_{1} =13$ получим $r_{1} =|z_{1} |=|13+0i|=sqrt{13^{2} +0^{2} } =sqrt{169} =13$

Для исходного комплексного числа $, z_{2} =4i$ получим $r_{2} =|z_{2} |=|0+4i|=sqrt{0^{2} +4^{2} } =sqrt{16} =4$

Для исходного комплексного числа $, z_{3} =4+3i$ получим $r_{3} =|z_{3} |=|4+3i|=sqrt{4^{2} +3^{2} } =sqrt{16+9} =sqrt{25} =5$

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Определение 2

Угол $varphi $, образованный положительным направлением вещественной оси и радиус-вектором $overrightarrow{OM} $, который соответствует заданному комплексному числу $z=a+bi$, называется аргументом данного числа и обозначается $arg z$.

Примечание 1

Модуль и аргумент заданного комплексного числа в явном виде используются при представлении комплексного числа в тригонометрической или показательной форме:

  • $z=rcdot (cos varphi +isin varphi )$ – тригонометрическая форма;
  • $z=rcdot e^{ivarphi } $ – показательная форма.

Пример 2

Записать комплексное число в тригонометрической и показательной формах, заданное следующими данными: 1) $r=3;varphi =pi $; 2) $r=13;varphi =frac{3pi }{4} $.

«Модуль и аргумент комплексного числа» 👇

Решение:

1) Подставим данные $r=3;varphi =pi $ в соответствующие формулы и получим:

$z=3cdot (cos pi +isin pi )$ – тригонометрическая форма

$z=3cdot e^{ipi } $ – показательная форма.

2) Подставим данные $r=13;varphi =frac{3pi }{4} $ в соответствующие формулы и получим:

$z=13cdot (cos frac{3pi }{4} +isin frac{3pi }{4} )$ – тригонометрическая форма

$z=13cdot e^{ifrac{3pi }{4} } $ – показательная форма.

Пример 3

Определить модуль и аргумент заданных комплексных чисел:

1) $z=sqrt{2} cdot (cos 2pi +isin 2pi )$; 2) $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$; 3) $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $; 4) $z=13cdot e^{ipi } $.

Решение:

Модуль и аргумент найдем, используя формулы записи заданного комплексного числа в тригонометрической и показательной формах соответственно

[z=rcdot (cos varphi +isin varphi );] [z=rcdot e^{ivarphi } .]

1) Для исходного комплексного числа $z=sqrt{2} cdot (cos 2pi +isin 2pi )$ получим $r=sqrt{2} ;varphi =2pi $.

2) Для исходного комплексного числа $z=frac{5}{3} cdot (cos frac{2pi }{3} +isin frac{2pi }{3} )$ получим $r=frac{5}{3} ;varphi =frac{2pi }{3} $.

3) Для исходного комплексного числа $z=sqrt{13} cdot e^{ifrac{3pi }{4} } $ получим $r=sqrt{13} ;varphi =frac{3pi }{4} $.

4) Для исходного комплексного числа $z=13cdot e^{ipi } $ получим $r=13;varphi =pi $.

Аргумент $varphi $ заданного комплексного числа $z=a+bi$ можно вычислить, используя следующие формулы:

[varphi =tgfrac{b}{a} ;cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } ;sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } .]

На практике для вычисления значения аргумента заданного комплексного числа $z=a+bi$ обычно пользуются формулой:

$varphi =arg z=left{begin{array}{c} {arctgfrac{b}{a} ,age 0} \ {arctgfrac{b}{a} +pi ,a

или решают систему уравнений

$left{begin{array}{c} {cos varphi =frac{a}{sqrt{a^{2} +b^{2} } } } \ {sin varphi =frac{b}{sqrt{a^{2} +b^{2} } } } end{array}right. $. (**)

Пример 4

Вычислить аргумент заданных комплексных чисел: 1) $z=3$; 2) $z=4i$; 3) $z=1+i$; 4) $z=-5$; 5) $z=-2i$.

Решение:

1) $z=3$

Так как $z=3$, то $a=3,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):

[varphi =arg z=arctgfrac{0}{3} =arctg0=0.]

2) $z=4i$

Так как $z=4i$, то $a=0,b=4$. Вычислим аргумент исходного комплексного числа, используя формулу (*):

[varphi =arg z=arctgfrac{4}{0} =arctg(infty )=frac{pi }{2} .]

3) $z=1+i$.

Так как $z=1+i$, то $a=1,b=1$. Вычислим аргумент исходного комплексного числа, решая систему (**):

[left{begin{array}{c} {cos varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } \ {sin varphi =frac{1}{sqrt{1^{2} +1^{2} } } =frac{1}{sqrt{2} } =frac{sqrt{2} }{2} } end{array}right. .]

Из курса тригонометрии известно, что $cos varphi =sin varphi =frac{sqrt{2} }{2} $ для угла, соответствующего первой координатной четверти и равного $varphi =frac{pi }{4} $.

4) $z=-5$

Так как $z=-5$, то $a=-5,b=0$. Вычислим аргумент исходного комплексного числа, используя формулу (*):

[varphi =arg z=arctgfrac{0}{-5} +pi =arctg0+pi =0+pi =pi .]

5) $z=-2i$

Так как $z=-2i$, то $a=0,b=-2$. Вычислим аргумент исходного комплексного числа, используя формулу (*):

[varphi =arg z=arctgfrac{-2}{0} =arctg(-infty )=frac{3pi }{2} .]

Примечание 3

Аргумент чисто мнимых чисел равен соответственно:

  • $frac{pi }{2} $ с положительной мнимой частью;
  • $frac{3pi }{2} $ с отрицательной мнимой частью.

Решение:

Число $z_{1} $ изображено точкой $(3;0)$, следовательно, длина радиус-вектора равна 3, т.е. $r=3$, а аргумент $varphi =0$ по примечанию 2.

Число $z_{2} $ изображено точкой $(-2;0)$, следовательно, длина соответствующего радиус-вектора равна 2, т.е. $r=2$, а аргумент $varphi =pi $ по примечанию 2.

Число $z_{3} $ изображено точкой $(0;1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{pi }{2} $ по примечанию 3.

Число $z_{4} $ изображено точкой $(0;-1)$, следовательно, длина соответствующего радиус-вектора равна 1, т.е. $r=1$, а аргумент $varphi =frac{3pi }{2} $ по примечанию 3.

Число $z_{5} $ изображено точкой $(2;2)$, следовательно, длина соответствующего радиус-вектора равна $sqrt{2^{2} +2^{2} } =sqrt{4+4} =sqrt{8} =2sqrt{2} $, т.е. $r=2sqrt{2} $, а аргумент $varphi =frac{pi }{4} $ по свойству прямоугольного треугольника.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Модуль и аргумент комплексного числа

Пусть задано комплексное число $ z = a+bi $.

Формула
Модуль комплексного числа равен корню квадратному из суммы квадратов мнимой и действительной части и находится по формуле: $$ |z| = sqrt{a^2 + b^2} $$

Если комплексное число состоит только из действительной части $ z = a $, то его модуль равен $ |z| = |a| $.

Стоит заметить, что модуль комплексных чисел всегда неотрицательный $ |z| ge 0 $ и равен нулю $ |z| = 0 $, только в случае $ z = 0 $.

Формула
Аргумент комплексного числа обозначается $ varphi = arg z $ и зависит от полуплоскости, в которой лежат числа $a,b$:

  1. $ a > 0 $, тогда $ varphi = arctg frac{b}{a} $
  2. $ a < 0, b ge 0 $, тогда $ varphi = pi + arctg frac{b}{a} $
  3. $ a < 0, b < 0 $, тогда $ varphi = -pi + arctg frac{b}{a} $
  4. $ a = 0, b > 0 $, тогда $varphi = frac{pi}{2}$
  5. $ a = 0, b < 0 $, тогда $varphi = -frac{pi}{2}$ 

Введите комплексное число

Пример 1 Пример 2 Правила ввода

Пример 1
Найти модуль и аргумент комплексного числа $ z = 3 – 4i $.
Решение

Комплексное число состоит из действительной и мнимой части:

$$ a = Re z = 3 $$ $$ b = Im z = -4 $$

Применяя формулу вычисления модуля получаем:

$$ |z| = sqrt{a^2 + b^2} = sqrt{3^2 + (-4)^2} = sqrt{9+16} = 5 $$

Теперь вычисляем аргумент. Так как $a = 3 > 0$, то получаем аргумент:

$$varphi = arctg frac{b}{a} = arctg frac{-4}{3} = -arctg frac{4}{3}.$$

Ответ
$$ |z| = 5, varphi = -arctg frac{4}{3} $$
Пример 2
Найти модуль и аргумент комплексного числа $ z = 3i $
Решение

В данном случае отсутствует действительная часть, а вернее она равна нулю:

$$ a = Re z = 0 $$

Мнимая часть комплексного числа равна: $$ b = Im z = 3 $$

Вычисляем модуль по уже известной формуле:

$$ |z| = sqrt{a^2 + b^2} = sqrt{0^2 + 3^2} = sqrt{9} = 3 $$

А вот аргумент здесь попадает под правило при $a = 0, b>0$ и значит равен $$varphi = frac{pi}{2}.$$

Ответ
$$ |z| = 3, varphi = frac{pi}{2} $$
Пример 3
Найти модуль и аргумент комплексного числа $$ z = 1+sqrt{3}i $$
Решение

Выписываем действительную и мнимую часть:

$$ a = 1 $$ $$ b = sqrt{3} $$

Так как $ a > 0 $, то аргумент равен

$$ varphi = arctg frac{sqrt{3}}{1} = arctg sqrt{3} = frac{pi}{3} $$

Находим модуль извлекая квадратный корень из суммы квадратов действительной и мнимой части: $$|z| = sqrt{1^2 + (sqrt{3})^2} = sqrt{1+3}=2.$$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ varphi = frac{pi}{3}, |z| = 2 $$
Пример 4
Найти аргумент комплексного числа $$ z = -1 + sqrt{3}i $$
Решение

Действительная часть $$ a = Re z = -1 $$

Мнимая часть $$ b = Im z = sqrt{3} $$

Так как $ a < 0 $ и $ b > 0 $, то пользуемся второй формулой:

$$ varphi = arg z = pi + arctg frac{sqrt{3}}{-1} = pi + arctg (-sqrt{3}) = $$

$$ = pi – arctg(sqrt{3}) = pi – frac{pi}{3} = frac{2pi}{3}. $$

Ответ
$$ varphi = frac{2pi}{3} $$

Запросы «Re», «Im» и «Мнимая величина» перенаправляются сюда; см. также другие значения терминов Re, Im и Мнимая величина.

Ко́мпле́ксные чи́сла (от лат. complexus — связь, сочетание[1]; о двойном ударении см. примечание[K 1]) — числа вида {displaystyle a+bi,} где a,b — вещественные числа, i — мнимая единица[2], то есть число, для которого выполняется равенство: {displaystyle i^{2}=-1.} Множество комплексных чисел обычно обозначается символом {displaystyle mathbb {C} .} Вещественные числа можно рассматривать как частный случай комплексных, они имеют вид {displaystyle a+0i.} Главное свойство mathbb {C}  — в нём выполняется основная теорема алгебры, то есть любой многочлен n-й степени (ngeqslant 1) имеет n корней. Доказано[⇨], что система комплексных чисел логически непротиворечива[K 2].

Так же как и для вещественных чисел, для комплексных чисел определены операции сложения, вычитания[⇨], умножения[⇨] и деления[⇨]. Однако многие свойства комплексных чисел отличаются от свойств вещественных чисел; например, нельзя указать, какое из двух комплексных чисел больше или меньше[⇨]. Удобно представлять комплексные числа a+bi точками на комплексной плоскости[⇨]; например, для изображения сопряжённых чисел используется операция отражения относительно горизонтальной оси[⇨]. Альтернативное представление комплексного числа в тригонометрической записи оказалось полезным для вычисления степеней и корней[⇨]. Функции комплексного аргумента изучаются в комплексном анализе[⇨].

Первоначально идея о необходимости использования комплексных чисел возникла в результате формального решения кубических уравнений, при котором в формуле Кардано под знаком квадратного корня получалось отрицательное число[3]. Большой вклад в исследование комплексных чисел внесли такие математики как Эйлер, который ввёл общепризнанное обозначение i для мнимой единицы, Декарт, Гаусс[⇨]. Сам термин «комплексное число» ввёл в науку Гаусс в 1831 году[4].

Уникальные свойства комплексных чисел и функций нашли широкое применение для решения многих практических задач в различных областях математики, физики и техники: в обработке сигналов, теории управления, электромагнетизме, теории колебаний, теории упругости и многих других[5][⇨]. Преобразования комплексной плоскости оказались полезны в картографии и гидродинамике. Современная физика полагается на описание мира с помощью квантовой механики, которая опирается на систему комплексных чисел.

Известно также несколько обобщений комплексных чисел — например, кватернионы[⇨].

Комплексная арифметика[править | править код]

Связанные определения[править | править код]

Всякое комплексное число z=a+bi состоит из двух компонентов[6]:

Противоположным для комплексного числа z=a+bi является число {displaystyle -z=-a-bi.} Например, для числа {displaystyle 1-2i} противоположным будет число {displaystyle -1+2i.}

В отличие от вещественных, комплексные числа нельзя сравнивать на больше/меньше; доказано, что нет способа распространить порядок, заданный для вещественных чисел, на все комплексные так, чтобы порядок был согласован с арифметическими операциями (чтобы из a<b вытекало {displaystyle a+c<b+c}, а из {displaystyle 0<a} и {displaystyle 0<b} вытекало {displaystyle 0<ab}). Однако, комплексные числа можно сравнивать на равно/не равно[6]:

Четыре арифметические операции для комплексных чисел (определённые ниже) имеют те же свойства, что и аналогичные операции с вещественными числами.

Сложение и вычитание[править | править код]

Определение сложения и вычитания комплексных чисел[6]:

{displaystyle left(a+biright)+left(c+diright)=left(a+cright)+left(b+dright)i,}
{displaystyle left(a+biright)-left(c+diright)=left(a-cright)+left(b-dright)i.}

Следующая таблица[6] показывает основные свойства сложения для любых комплексных {displaystyle u,v,w.}

Свойство Алгебраическая запись
Коммутативность (переместительность) {displaystyle u+v=v+u}
Ассоциативность (сочетательность) {displaystyle u+left(v+wright)=left(u+vright)+w}
Свойство нуля {displaystyle u+0=u}
Свойство противоположного элемента {displaystyle u+left(-uright)=0}
Выполнение вычитания через сложение {displaystyle u-v=u+left(-vright)}

Умножение[править | править код]

Определение произведения[6] комплексных чисел a+bi и {displaystyle c+dicolon }

{displaystyle left(a+biright)cdot left(c+diright)=ac+bci+adi+bdi^{2}=left(ac+bdi^{2}right)+left(bc+adright)i=left(ac-bdright)+left(bc+adright)i.}

Следующая таблица[6] показывает основные свойства умножения для любых комплексных {displaystyle u,v,w.}

Свойство Алгебраическая запись
Коммутативность (переместительность) {displaystyle ucdot v=vcdot u}
Ассоциативность (сочетательность) {displaystyle ucdot left(vcdot wright)=left(ucdot vright)cdot w}
Свойство единицы {displaystyle ucdot 1=u}
Свойство нуля {displaystyle ucdot 0=0}
Дистрибутивность (распределительность) умножения относительно сложения {displaystyle ucdot left(v+wright)=ucdot v+ucdot w}

Правила для степеней мнимой единицы:

{displaystyle i^{2}=-1;;i^{3}=-i;;i^{4}=1;;i^{5}=i} и т. д.

То есть для любого целого числа n верна формула {displaystyle i^{n}=i^{n{bmod {4}}}}, где выражение {displaystyle n{bmod {4}}} означает получение остатка от деления n на 4.

После определения операций с комплексными числами выражение a+bi можно воспринимать не как формальную запись, а как выражение, составленное по приведённым выше правилам сложения и умножения. Чтобы это показать, раскроем все входящие в него переменные, следуя вышеприведённым соглашениям и определению сложения и умножения:

{displaystyle left(a+0iright)+left(b+0iright)cdot left(0+1iright)=left(a+0iright)+left(0+biright)=a+bi.}

Деление[править | править код]

Комплексное число {bar  z}=x-iy называется сопряжённым к комплексному числу z=x+iy (подробнее ниже).

Для каждого комплексного числа {displaystyle a+bi,} кроме нуля, можно найти обратное к нему[10] комплексное число {displaystyle {frac {1}{a+bi}}.} Для этого умножим числитель и знаменатель дроби на число {displaystyle a-bi,} комплексно сопряжённое знаменателю

{displaystyle {frac {1}{a+bi}}={frac {a-bi}{left(a+biright)left(a-biright)}}={frac {a-bi}{a^{2}+b^{2}}}={frac {a}{a^{2}+b^{2}}}-{frac {b}{a^{2}+b^{2}}}i.}

Определим результат деления[6] комплексного числа a+bi на ненулевое число {displaystyle c+dicolon }

{displaystyle {frac {a+bi}{c+di}}={frac {left(a+biright)left(c-diright)}{left(c+diright)left(c-diright)}}={frac {ac+bd}{c^{2}+d^{2}}}+{frac {bc-ad}{c^{2}+d^{2}}}i.}

Как и для вещественных чисел, деление можно заменить умножением делимого на число, обратное к делителю.

Другие операции[править | править код]

Для комплексных чисел определены также извлечение корня, возведение в степень и логарифмирование.

Основные отличия комплексных чисел от вещественных[править | править код]

Уже упоминалось, что комплексные числа нельзя сравнивать на больше-меньше (иными словами, на множестве комплексных чисел не задано отношение порядка). Другое отличие: любой многочлен степени n>0 с комплексными (в частности, вещественными) коэффициентами имеет, с учётом кратности, ровно n комплексных корней (основная теорема алгебры)[11].

В системе вещественных чисел из отрицательного числа нельзя извлечь корень чётной степени. Для комплексных чисел возможно извлечение корня из любого числа любой степени, однако результат неоднозначен — комплексный корень n-й степени из ненулевого числа имеет n различных комплексных значений[12]. См., например, корни из единицы.

Дополнительные отличия имеют функции комплексного переменного[⇨].

Замечания[править | править код]

Число i не является единственным числом, квадрат которого равен -1. Число -i также обладает этим свойством.

Выражение {sqrt  {-1}}, ранее часто использовавшееся вместо i, в современных учебниках считается некорректным, и под знаком радикала стали допускаться только неотрицательные выражения (см. «Арифметический корень»). Во избежание ошибок, выражение с квадратными корнями из отрицательных величин в настоящее время принято записывать как {displaystyle 5+i{sqrt {3}},} а не {displaystyle 5+{sqrt {-3}},} несмотря на то, что даже в XIX веке второй вариант записи считался допустимым[13][14].

Пример возможной ошибки при неосторожном использовании устаревшей записи:

{displaystyle {sqrt {-3}}cdot {sqrt {-3}}={sqrt {left(-3right)cdot left(-3right)}}={sqrt {left(-3right)^{2}}}={sqrt {9}}=3.}

Эта ошибка связана с тем, что квадратный корень из -3 определён неоднозначно (см. ниже #Формула Муавра и извлечение корней). При использовании современной записи такой ошибки не возникло бы[14]:

{displaystyle left(i{sqrt {3}}right)cdot left(i{sqrt {3}}right)=left(icdot {sqrt {3}}right)^{2}=i^{2}cdot left({sqrt {3}}right)^{2}=-3.}

Геометрическое представление[править | править код]

Комплексная плоскость[править | править код]

Геометрическое представление комплексного числа

Комплексные числа можно представить на плоскости с прямоугольной системой координат: числу z=x+iy соответствует точка плоскости с координатами {displaystyle left{x,yright}} (а также радиус-вектор, соединяющий начало координат с этой точкой). Такая плоскость называется комплексной. Вещественные числа на ней расположены на горизонтальной оси, мнимая единица изображается единицей на вертикальной оси; по этой причине горизонтальная и вертикальная оси называются соответственно вещественной и мнимой осями[15].

Модуль r и аргумент varphi комплексного числа

Бывает удобно рассматривать на комплексной плоскости также полярную систему координат (см. рисунок справа), в которой координатами точки являются расстояние r до начала координат (модуль[⇨]) и угол varphi радиус-вектора точки с горизонтальной осью (аргумент[⇨]).

В этом представлении сумма комплексных чисел соответствует векторной сумме соответствующих радиус-векторов, а вычитанию чисел соответствует вычитание радиус-векторов. При перемножении комплексных чисел их модули перемножаются, а аргументы складываются (последнее несложно вывести из формулы Эйлера или из тригонометрических формул суммы). Если модуль второго сомножителя равен 1, то умножение на него соответствует повороту радиус-вектора первого числа на угол, равный аргументу второго числа[16]. Этот факт объясняет широкое использование комплексного представления в теории колебаний, где вместо терминов «модуль» и «аргумент» используются термины «амплитуда» и «фаза»[17].

Пример: умножение на i поворачивает радиус-вектор числа на прямой угол в положительном направлении, а после умножения на -i радиус-вектор поворачивается на прямой угол в отрицательном направлении.

Модуль[править | править код]

Модулем (абсолютной величиной) комплексного числа называется длина радиус-вектора соответствующей точки комплексной плоскости (или, что то же самое, расстояние от точки комплексной плоскости до начала координат). Модуль комплексного числа z=x+iy обозначается {displaystyle left|zright|} (иногда r или rho ) и определяется выражением[16]

{displaystyle left|zright|={sqrt {x^{2}+y^{2}}}.}

Если z является вещественным числом, то {displaystyle left|zright|} совпадает с абсолютной величиной этого числа в вещественном понимании термина.

Для любых комплексных {displaystyle z,z_{1},z_{2}} имеют место следующие свойства модуля[16][18]:

1) {displaystyle left|zright|geqslant 0}, причём {displaystyle left|zright|=0} только при {displaystyle z=0;}
2) {displaystyle left|z_{1}+z_{2}right|leqslant left|z_{1}right|+left|z_{2}right|} (неравенство треугольника);
3) {displaystyle left|z_{1}cdot z_{2}right|=left|z_{1}right|cdot left|z_{2}right|;}
4) {displaystyle left|{frac {z_{1}}{z_{2}}}right|={frac {left|z_{1}right|}{left|z_{2}right|}};}
5) для пары комплексных чисел z_{1} и z_{2} модуль их разности {displaystyle left|z_{1}-z_{2}right|} равен расстоянию между соответствующими точками комплексной плоскости;
6) модуль числа z связан с вещественной и мнимой частями этого числа соотношениями:

{displaystyle -left|zright|leqslant operatorname {Re} (z)leqslant left|zright|;quad -left|zright|leqslant operatorname {Im} (z)leqslant left|zright|;quad left|zright|leqslant left|operatorname {Re} left(zright)right|+left|operatorname {Im} left(zright)right|.}

Аргумент[править | править код]

Аргументом ненулевого комплексного числа называется угол varphi между радиус-вектором соответствующей точки и положительной вещественной полуосью. Аргумент числа z измеряется в радианах и обозначается {displaystyle operatorname {Arg} left(zright)}. Из этого определения следует, что[16]

{displaystyle operatorname {tg}  varphi ={frac {y}{x}};quad cos varphi ={frac {x}{left|zright|}};quad sin varphi ={frac {y}{left|zright|}}.}

Для комплексного нуля значение аргумента не определено, для ненулевого числа z аргумент определяется с точностью до {displaystyle 2pi k}, где k — любое целое число. Главным значением аргумента называется такое значение varphi , что {displaystyle -pi <varphi leqslant pi .} Главное значение может обозначаться {displaystyle operatorname {arg} left(zright)}[19].

Некоторые свойства аргумента[18]:

1) аргумент обратного числа отличается знаком от аргумента исходного:

{displaystyle operatorname {Arg} left({frac {1}{z}}right)=-operatorname {Arg} left(zright);}
2) аргумент произведения равен сумме аргументов сомножителей:

{displaystyle operatorname {Arg} (z_{1}z_{2})=operatorname {Arg} (z_{1})+operatorname {Arg} (z_{2});}
3) аргумент частного от деления равен разности аргументов делимого и делителя:

{displaystyle operatorname {Arg} {frac {z_{1}}{z_{2}}}=operatorname {Arg} (z_{1})-operatorname {Arg} (z_{2}).}

Сопряжённые числа[править | править код]

Геометрическое представление сопряжённых чисел

Если комплексное число z равно {displaystyle x+iy,} то число {bar  z}=x-iy называется сопряжённым (или комплексно-сопряжённым) к z (обозначается также z^{*}). На комплексной плоскости сопряжённые числа получаются друг из друга зеркальным отражением относительно вещественной оси. Модуль сопряжённого числа такой же, как исходного, а их аргументы различаются знаком[20]:

  • {displaystyle left|{bar {z}}right|=left|zright|;quad operatorname {Arg} ({bar {z}})=-operatorname {Arg} (z).}

Переход к сопряжённому числу можно рассматривать как одноместную операцию, которая сохраняет все арифметические и алгебраические свойства. Эта операция имеет следующие свойства[20]:

Произведение комплексно-сопряжённых чисел — неотрицательное вещественное число, равное нулю только для нулевого z[18]:

  • {displaystyle zcdot {bar {z}}=left|zright|^{2}=x^{2}+y^{2}.}

Сумма комплексно-сопряжённых чисел — вещественное число[18]:

  • {displaystyle z+{bar {z}}=2operatorname {Re} left(zright)=2x.}

Другие соотношения[18]:

  • {displaystyle operatorname {Re} ,z={frac {z+{bar {z}}}{2}};quad operatorname {Im} ,z={frac {z-{bar {z}}}{2i}}.}
  • {displaystyle {overline {z_{1}+z_{2}}}={bar {z}}_{1}+{bar {z}}_{2};}
  • {displaystyle {overline {z_{1}-z_{2}}}={bar {z}}_{1}-{bar {z}}_{2};}
  • {displaystyle {overline {z_{1}cdot z_{2}}}={bar {z}}_{1}cdot {bar {z}}_{2};}
  • {displaystyle {overline {z_{1}/z_{2}}}={bar {z}}_{1}/{bar {z}}_{2};}

Или, в общем виде: {displaystyle {overline {pleft(zright)}}=pleft({bar {z}}right),} где {displaystyle pleft(zright)} — произвольный многочлен с вещественными коэффициентами. В частности, если комплексное число z является корнем многочлена с вещественными коэффициентами, то сопряжённое число overline{z} тоже является его корнем. Из этого следует, что существенно комплексные корни такого многочлена (то есть корни, не являющиеся вещественными) разбиваются на комплексно-сопряжённые пары[18].

Пример[править | править код]

Тот факт, что произведение {displaystyle z{bar {z}}} есть вещественное число, можно использовать, чтобы выразить комплексную дробь в канонической форме, то есть избавиться от мнимости в знаменателе. Для этого надо умножить числитель и знаменатель на сопряжённое к знаменателю выражение[21], например:

{displaystyle {frac {2+5i}{3-4i}}={frac {(2+5i)(3+4i)}{(3-4i)(3+4i)}}={frac {-14+23i}{25}}=-{frac {14}{25}}+{frac {23}{25}}i.}

Формы представления комплексного числа[править | править код]

Алгебраическая форма[править | править код]

Выше использовалась запись комплексного числа z в виде {displaystyle x+iy;} такая запись называется алгебраической формой комплексного числа. Две другие основные формы записи связаны с представлением комплексного числа в полярной системе координат.

Тригонометрическая форма[править | править код]

Тригонометрическое представление

Если вещественную x и мнимую y части комплексного числа выразить через модуль {displaystyle r=left|zright|} и аргумент varphi (то есть x=rcos varphi , y=rsin varphi ), то всякое комплексное число z, кроме нуля, можно записать в тригонометрической форме[16]:

{displaystyle z=rleft(cos varphi +isin varphi right)}

Как уже сказано выше, для нуля аргумент varphi не определён; для ненулевого числа varphi определяется с точностью до целого кратного 2pi .

Показательная форма[править | править код]

Фундаментальное значение в комплексном анализе имеет формула Эйлера[21]:

{displaystyle e^{ivarphi }=cos varphi +isin varphi ,}

где e — число Эйлера, cos, sin — косинус и синус, e^{{ivarphi }} — комплексная экспонента, продолжающая вещественную на случай общего комплексного показателя степени.

Применяя эту формулу к тригонометрической форме, получим показательную форму комплексного числа[21]:

{displaystyle z=re^{ivarphi }.}

Следствия

(1) Модуль выражения {displaystyle e^{ivarphi },} где число varphi вещественно, равен 1.
(2) {displaystyle cos varphi ={frac {e^{ivarphi }+e^{-ivarphi }}{2}};quad sin varphi ={frac {e^{ivarphi }-e^{-ivarphi }}{2i}}} — при существенно комплексном аргументе varphi эти равенства могут служить определением (комплексного) косинуса и синуса.

Пример[22]. Представим в тригонометрической и показательной форме число {displaystyle z=-1-{sqrt {3}}icolon }

{displaystyle |z|={sqrt {(-1)^{2}+(-{sqrt {3}})^{2}}}={sqrt {1+3}}=2;}
{displaystyle varphi =-pi +operatorname {arctg} {Bigl (}{frac {-{sqrt {3}}}{-1}}{Bigr )}=-pi +operatorname {arctg} ({sqrt {3}})=-{frac {2pi }{3}}} (поскольку z находится в III координатной четверти).

Отсюда:

{displaystyle z=2left(cos {frac {-2pi }{3}}+isin {frac {-2pi }{3}}right)=2e^{i{frac {-2pi }{3}}}.}

Формула Муавра и извлечение корней[править | править код]

Эта формула помогает возводить в целую степень ненулевое комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид[12]:

{displaystyle z^{n}=left[rleft(cos varphi +isin varphi right)right]^{n}=r^{n}left(cos nvarphi +isin nvarphi right),}

где r — модуль, а varphi  — аргумент комплексного числа. В современной символике она опубликована Эйлером в 1722 году. Приведённая формула справедлива при любом целом n, не обязательно положительном.

Аналогичная формула применима также и при вычислении корней n-й степени из ненулевого комплексного числа[21]:

{displaystyle {begin{alignedat}{2}z^{1/n}&=left[rleft(cos left(varphi +2pi kright)+isin left(varphi +2pi kright)right)right]^{1/n}=\&={sqrt[{n}]{r}}left(cos {frac {varphi +2pi k}{n}}+isin {frac {varphi +2pi k}{n}}right),\end{alignedat}}}

где k принимает все целые значения от k=0 до {displaystyle k=n-1}. Это значит, что корни n-й степени из ненулевого комплексного числа существуют для любого натурального n, и их количество равно n. На комплексной плоскости, как видно из формулы, все эти корни являются вершинами правильного n-угольника, вписанного в окружность радиуса {sqrt[ {n}]{r}} с центром в начале координат (см. рисунок).

Главное значение корня[править | править код]

Если в формуле Муавра в качестве аргумента varphi выбрано его главное значение, то значение корня при k=0 называется главным значением корня[23]. Например, главное значение числа {displaystyle {sqrt[{3}]{2+11i}}} равно {displaystyle 2+i.}

Квадратный корень[править | править код]

Для извлечения квадратного корня из комплексного числа можно преобразовать это число в тригонометрическую форму и воспользоваться формулой Муавра для {displaystyle n=2.} Но существует и чисто алгебраическое представление для двух значений корня. При bneq 0 корнями из числа a+bi является пара чисел: {displaystyle pm (c+di),} где[24]:

{displaystyle c={sqrt {frac {a+{sqrt {a^{2}+b^{2}}}}{2}}},}
{displaystyle d=operatorname {sgn}(b){sqrt {frac {-a+{sqrt {a^{2}+b^{2}}}}{2}}}.}

Здесь operatorname{sgn}  — функция «знак», а радикалы обозначают обычный арифметический корень из неотрицательного вещественного числа. Формула легко проверяется возведением {displaystyle c+di} в квадрат. Число {displaystyle c+di} является главным значением квадратного корня.

Пример: для квадратного корня из {displaystyle 3+4i} формулы дают два значения: {displaystyle 2+i;;-2-i.}

История[править | править код]

Впервые, по-видимому, мнимые величины были упомянуты в труде Кардано «Великое искусство, или об алгебраических правилах» (1545), в рамках формального решения задачи по вычислению двух чисел, сумма которых равна 10, а произведение равно 40. Он получил для этой задачи квадратное уравнение, корни которого: 5+{sqrt  {-15}} и {displaystyle 5-{sqrt {-15}}.} В комментарии к решению он написал: «эти сложнейшие величины бесполезны, хотя и весьма хитроумны», и «арифметические соображения становятся всё более неуловимыми, достигая предела столь же утончённого, сколь и бесполезного»[25].

Возможность использования мнимых величин при решении кубического уравнения впервые описал Бомбелли (1572), он же дал правила сложения, вычитания, умножения и деления комплексных чисел. Уравнение x^{3}=15x+4 имеет вещественный корень {displaystyle x=4,} однако по формулам Кардано получаем: {displaystyle x={sqrt[{3}]{2+11i}}+{sqrt[{3}]{2-11i}}.} Бомбелли обнаружил, что {displaystyle {sqrt[{3}]{2pm 11i}}=2pm i,} так что сумма этих величин даёт нужный вещественный корень. Он отметил, что в подобных (неприводимых) случаях комплексные корни уравнения всегда сопряжены, поэтому в сумме и получается вещественное значение. Разъяснения Бомбелли положили начало успешному применению в математике комплексных чисел[26][25].

Выражения, представимые в виде {displaystyle a+b{sqrt {-1}},} появляющиеся при решении квадратных и кубических уравнений, где {displaystyle bneq 0,} стали называть «мнимыми» в XVI—XVII веках с подачи Декарта, который называл их так, отвергая их реальность. Для многих других крупных учёных XVII века природа и право на существование мнимых величин тоже представлялись весьма сомнительными. Лейбниц, например, в 1702 году писал: «Дух божий нашёл тончайшую отдушину в этом чуде анализа, уроде из мира идей, двойственной сущности, находящейся между бытием и небытием, которую мы называем мнимым корнем из отрицательной единицы». Несмотря на эти сомнения, математики уверенно применяли к «мнимым» числам привычные для вещественных величин алгебраические правила и получали корректные результаты[25].

Долгое время было неясно, все ли операции над комплексными числами приводят к комплексным результатам или же, например, извлечение корня может привести к открытию ещё какого-то нового типа чисел. Задача о выражении корней степени n из данного числа была решена в работах Муавра (1707) и Котса (1722)[27].

Символ i для обозначения мнимой единицы предложил Эйлер (1777, опубл. 1794), взявший для этого первую букву латинского слова imaginarius — «мнимый». Он же распространил все стандартные функции, включая логарифм, на комплексную область. Эйлер также высказал в 1751 году мысль, что в системе комплексных чисел любой многочлен имеет корень (основная теорема алгебры, до Эйлера сходные предположения высказывали Альбер Жирар и Рене Декарт)[28]. К такому же выводу пришёл д’Аламбер (1747), но первое строгое доказательство этого факта принадлежит Гауссу (1799)[26]. Гаусс и ввёл в широкое употребление термин «комплексное число» в 1831 году (ранее термин использовал в том же смысле французский математик Лазар Карно в 1803 году, но тогда он не получил распространения)[29].

Геометрическое представление комплексных чисел, немало способствовавшее их легализации, предложили в конце XVIII — начале XIX веков сначала Вессель и Арган (их работы не привлекли внимания), а затем Гаусс[30]. Арифметическая (стандартная) модель комплексных чисел как пар вещественных чисел была построена Гамильтоном («Теория алгебраических пар», 1837); это доказало непротиворечивость их свойств. Термины «модуль», «аргумент» и «сопряжённое число» ввёл в начале XIX века Коши, значительно продвинувший комплексный анализ. С XIX века началось бурное и чрезвычайно плодотворное развитие исследований функций комплексного переменного[2][31].

С учётом этого успешного подхода начались поиски способа представления векторов в трёхмерном пространстве, аналогичное комплексной плоскости. В результате пятнадцатилетних поисков Гамильтон предложил в 1843 году обобщение комплексных чисел — кватернионы, которые он был вынужден сделать не трёхмерными, а четырёхмерными (трёхмерные векторы изображала мнимая часть кватернионов); также Гамильтону пришлось отказаться от коммутативности операции умножения[2].

В 1893 году Чарлз Штейнмец предложил использовать комплексные числа для расчётов электрических цепей переменного тока (см. ниже).

Комплексные функции[править | править код]

Аналитические функции[править | править код]

Комплексная функция одной переменной — это функция w=f(z), которая определена на некоторой области комплексной плоскости и ставит в соответствие точкам z этой области комплексные значения w[32]. Примеры:

{displaystyle w=z^{2}+z+1;quad w=z+{frac {1}{z}}.}

Каждая комплексная функция w=f(z)=f(x+iy) может рассматриваться как пара вещественных функций от двух переменных: {displaystyle f(z)=u(x,;y)+iv(x,;y),} определяющих её вещественную и мнимую часть соответственно. Функции u, v называются компонентами комплексной функции {displaystyle f(z).} Аналогично определяется функция нескольких комплексных переменных[32].

Наглядное представление комплексной функции графиком затруднительно, так как даже для функции одной комплексной переменной график требует четырёх измерений (два на область определения и ещё два для области значений). Если вместо значения функции рассматривать её модуль {displaystyle |w|=|f(z)|,} то полученный рельеф функции размещается в трёх измерениях и даёт некоторое представление о поведении функции[33].

Все стандартные функции анализа — многочлен, дробно-линейная функция, степенная функция, экспонента, тригонометрические функции, обратные тригонометрические функции, логарифм — могут быть распространены на комплексную плоскость. При этом для них будут иметь место те же алгебраические, дифференциальные и другие тождества, что и для вещественного оригинала[32], например:

{displaystyle sin ^{2}z+cos ^{2}z=1;qquad e^{u}cdot e^{v}=e^{u+v}.}

Для комплексных функций определяются понятия предела, непрерывности и производной так же, как в вещественном анализе, с заменой абсолютной величины на комплексный модуль[32].

Дифференцируемые комплексные функции (то есть функции, имеющие производную) обладают рядом особенностей по сравнению с вещественными[34].

  • Вещественная и мнимая часть дифференцируемой функции — гармонические функции, связанные условиями Коши — Римана.
  • Всякая дифференцируемая в некоторой окрестности точки z комплексная функция дифференцируема неограниченное число раз в этой точке (то есть аналитична, или голоморфна).

Определённый интеграл для функций одной комплексной переменной, вообще говоря, зависит от пути интегрирования (то есть выбора кривой от начальной до конечной точки в комплексной плоскости). Однако если интегрируемая функция аналитична в односвязной области, то её интеграл внутри этой области не зависит от пути[35].

Преобразования комплексной плоскости[править | править код]

Всякая комплексная функция может рассматриваться как преобразование комплексной плоскости (или как преобразование одной комплексной плоскости в другую). Примеры:

Поскольку любое движение на плоскости есть комбинация перечисленных трёх преобразований, функции {displaystyle w=uz+c} и {displaystyle w=u{bar {z}}+c} дают общее выражение для движения на комплексной плоскости[36].

Другие линейные преобразования[36]:

Важную роль в комплексном анализе играют дробно-линейные преобразования[37]:

{displaystyle w={frac {az+b}{cz+d}}.}

При этом {displaystyle adneq bc} (иначе функция w(z) вырождается в константу). Характеристическое свойство дробно-линейного преобразования: оно переводит окружности и прямые в окружности и прямые (то есть в так называемые обобщённые окружности[38][39], в число которых входят «окружности бесконечного радиуса» — прямые). При этом образом окружности может оказаться прямая, и наоборот[37].

Среди других практически полезных функций преобразования: инверсия {displaystyle w=1/{bar {z}},} функция Жуковского. Инверсия, как и дробно-линейное преобразование, переводит обобщённые окружности в обобщённые окружности.

Аналитическая геометрия на комплексной плоскости[править | править код]

Исследование плоских фигур нередко облегчается, если перенести их на комплексную плоскость. Многие теоремы планиметрии допускают наглядную и компактную запись с помощью комплексных чисел, например[40]:

  • Три (различные) точки {displaystyle z_{1},z_{2},z_{3}} лежат на одной прямой тогда и только тогда, когда выполняется условие:
{displaystyle {frac {z_{1}-z_{3}}{z_{2}-z_{3}}}} является вещественным числом.
  • Четыре (различные) точки {displaystyle z_{1},z_{2},z_{3},z_{4}} лежат на одной обобщённой окружности (окружности или прямой) тогда и только тогда, когда выполняется условие:
отношение {displaystyle {frac {z_{1}-z_{3}}{z_{2}-z_{3}}}:{frac {z_{1}-z_{4}}{z_{2}-z_{4}}}} является вещественным числом.

Параметрическое уравнение прямой на комплексной плоскости имеет вид[42]:

{displaystyle z=ut+v,} где u,v — комплексные числа, {displaystyle uneq 0,t} — произвольный вещественный параметр.

Угол между двумя прямыми {displaystyle z=ut+v} и {displaystyle z=u't+v'} равен {displaystyle operatorname {arg} (u'/u).} В частности, прямые перпендикулярны, только когда {displaystyle u'/u} — чисто мнимое число. Две прямые параллельны тогда и только тогда, когда {displaystyle u'/u} есть вещественное число; если при этом {displaystyle (v'-v)/u} также вещественно, то обе прямые совпадают. Каждая прямая {displaystyle z=ut+v} рассекает комплексную плоскость на две полуплоскости: на одной из них выражение {displaystyle t=operatorname {Im} {frac {z-v}{u}}} положительно, на другой — отрицательно[42].

Уравнение окружности с центром c и радиусом r имеет чрезвычайно простой вид: {displaystyle |z-c|=r.} Неравенство {displaystyle |z-c|<r} описывает внутренность окружности (открытый круг)[42]. Часто удобна параметрическая форма уравнения окружности[43]: {displaystyle z=c+e^{ivarphi }.}

Место в общей алгебре, топологии и теории множеств[править | править код]

Множество комплексных чисел mathbb {C} образует поле, которое является конечным расширением степени 2 поля вещественных чисел mathbb{R}. Основное алгебраическое свойство mathbb {C}  — оно алгебраически замкнуто, то есть в нём любой многочлен имеет (комплексные) корни и, следовательно, распадается на линейные множители. Говорят также, что mathbb {C} есть алгебраическое замыкание[44] поля mathbb{R}.

Характеристика комплексного поля равна нулю, мощность mathbb {C} как множества та же, что и у поля вещественных чисел, то есть континуум. Теорема Фробениуса установила, что существуют только два тела, являющиеся конечными расширениями mathbb {R}  — поле комплексных чисел и тело кватернионов[45].

Превратить поле комплексных чисел в упорядоченное поле невозможно, потому что в упорядоченном поле квадрат любого элемента неотрицателен, и мнимая единица в нём не может существовать.

Из свойств модуля следует, что комплексные числа образуют структуру двумерного нормированного пространства над полем mathbb{R}.

Поле mathbb {C} допускает бесконечно много автоморфизмов, но только один из них (не считая тождественного) оставляет вещественные числа на месте[46].

Поля mathbb {R} и mathbb {C}  — единственные связные локально компактные топологические поля[47].

Некоторые практические применения[править | править код]

Те особенности комплексных чисел и функций, которые отличают их от вещественных, оказались полезными, а часто и незаменимыми в математике, в естественных науках и технике.

Математика[править | править код]

Приложения комплексных чисел сами по себе занимают видное место в математике — в частности, понятия алгебраических чисел, нахождение корней многочленов, теория Галуа, комплексный анализ и т. д.

Перенеся геометрическую задачу с обычной плоскости на комплексную, мы нередко получаем возможность значительно упростить её решение[48][49].

Многие сложные задачи теории чисел (например, теория биквадратичных вычетов) и вещественного математического анализа (например, вычисление сложных или несобственных интегралов) удалось решить только с помощью средств комплексного анализа. Мощным инструментом для открытий в теории чисел оказались, например, гауссовы числа вида {displaystyle a+bi,} где a,b — целые числа[50]. Для исследования распределения простых чисел понадобилась комплексная дзета-функция Римана[51].

Нередко проблемы вещественного анализа проясняются при их комплексном обобщении. Классический пример — разложение в ряд Тейлора

{frac  {1}{1+x^{2}}}=1-x^{2}+x^{4}-x^{6}+ldots

Этот ряд сходится только в интервале (-1;;1), хотя точки pm 1 не являются какими-то особенными для приведённой функции. Положение проясняется при переходе к функции комплексного переменного {displaystyle f(z)={frac {1}{1+z^{2}}},} у которой обнаруживаются две особые точки: полюса {displaystyle pm i.} Соответственно, эту функцию можно разложить в ряд только в круге единичного радиуса[52].

При решении линейных дифференциальных уравнений важно сначала найти все комплексные корни характеристического многочлена, а затем попытаться решить систему в терминах базовых экспонент[53]. В разностных уравнениях используются для аналогичной цели комплексные корни характеристического уравнения системы разностных уравнений[54]. С помощью теории вычетов, являющейся частью комплексного анализа, вычисляются многие сложные интегралы по замкнутым контурам[55]..

Исследование функции часто связано с анализом её частотного спектра с помощью комплексного преобразования Фурье или Лапласа[56].

О представлении комплексных чисел в информатике и компьютерной поддержке комплексной арифметики изложено в статье Комплексный тип данных.

Конформное отображение[править | править код]

Как уже отмечалось выше, всякая комплексная функция может рассматриваться как преобразование одной комплексной плоскости в другую. Гладкая (аналитическая) функция обладает двумя особенностями: если в заданной точке производная не равна нулю, то коэффициент растяжения/сжатия при этом преобразовании одинаков по всем направлениям, угол поворота также постоянен (конформное отображение)[57]. С этим фактом связано широкое применение комплексных функций в картографии[58][59] и гидродинамике[60].

Квантовая механика[править | править код]

Основой квантовой механики является понятие комплексной волновой функции, Для описания динамики квантовой системы используются дифференциальные уравнения с комплексными коэффициентами типа уравнения Шрёдингера. Решения этих уравнений заданы в комплексном гильбертовом пространстве. Операторы, соответствующие наблюдаемым величинам, эрмитовы. Коммутатор операторов координаты {hat  {x}} и импульса {displaystyle {hat {p}}_{x}} представляет собой мнимое число:

{displaystyle left[{hat {x}},{hat {p}}_{x}right]={hat {x}}{hat {p}}_{x}-{hat {p}}_{x}{hat {x}}=ihbar }

Здесь hbar  — редуцированная постоянная Планка h, то есть h/2pi (постоянная Дирака)[61].

Важную роль в квантовой механике играют матрицы Паули и матрицы Дирака, некоторые из них содержат комплексные значения[61]. Ю. Вигнер уточнял, что «…использование комплексных чисел в квантовой механике не является вычислительным трюком прикладной математики; они входят в самую суть формулировки основных законов квантовой механики.»[62].

Электротехника[править | править код]

Поскольку переменный ток есть колебательный процесс, его удобно описывать и исследовать с применением комплексных чисел. Вводятся также понятия импеданса, или комплексного сопротивления, для реактивных элементов электрической цепи, таких как ёмкость и индуктивность, — это помогает рассчитать токи в цепи[63]. Ввиду того, что традиционно символ i в электротехнике обозначает величину тока, мнимую единицу там обозначают буквой j,[64]. Во многих областях электротехники (в основном радиочастотной и оптической) используется не запись уравнений тока и напряжения для цепи, а напрямую уравнения Максвелла в их спектральном представлении, физические величины которых заданы в комплексной плоскости, и при переходе из {displaystyle (t,x)}– в {displaystyle (omega ,k)}-пространство (где t — время, omega  — угловая частота) посредством преобразования Фурье получаются более простые уравнения без производных[65].

Логические основания[править | править код]

Расширение поля вещественных чисел до комплексных, как и любое другое расширение алгебраической структуры, ставит множество вопросов, основные из которых — это вопросы о том, как определить операции над новым типом чисел, какие свойства будут иметь новые операции и (главный вопрос) допустимо ли такое расширение, не приведёт ли оно к неустранимым противоречиям.

Для анализа подобных вопросов в теории комплексных чисел надо сформировать набор аксиом.

Аксиоматика комплексных чисел[править | править код]

Можно определить аксиоматику множества комплексных чисел mathbb {C} , если опираться на аксиоматическую теорию вещественных чисел mathbb {R} . А именно, определим mathbb {C} как минимальное поле, содержащее множество вещественных чисел и по меньшей мере одно число, вторая степень которого равна −1, — мнимую единицу. Говоря более строго, аксиомы комплексных чисел следующие[66][67].

С1: Для всяких комплексных чисел u,v определена их сумма {displaystyle u+v.}
С2: Сложение коммутативно: {displaystyle u+v=v+u.} Далее в некоторых аксиомах для краткости будем опускать оговорку «для всяких u,v,w».
С3: Сложение ассоциативно: {displaystyle (u+v)+w=u+(v+w).}
С4: Существует элемент 0 (ноль) такой, что {displaystyle u+0=u.}
С5: Для всякого комплексного числа u существует противоположный ему элемент {displaystyle -u} такой, что {displaystyle u+(-u)=0.}
С6: Для всяких комплексных чисел u,v определено их произведение {displaystyle uv.}
С7: Умножение коммутативно: {displaystyle uv=vu.}
С8: Умножение ассоциативно: {displaystyle (uv)w=u(vw).}
С9: Умножение связано со сложением распределительным (дистрибутивным) законом: {displaystyle (u+v)w=uw+vw.}
С10: Существует элемент 1 (единица), не равный нулю и такой, что {displaystyle ucdot 1=u.}
С11: Для всякого ненулевого числа u существует обратное ему число {displaystyle u'} такое, что {displaystyle ucdot u'=1.}
С12: Множество комплексных чисел mathbb {C} содержит подполе, изоморфное полю вещественных чисел mathbb{R}. Для простоты далее это подполе обозначается той же буквой mathbb{R}.
С13: Существует элемент i (мнимая единица) такой, что {displaystyle i^{2}+1=0.}
С14 (аксиома минимальности): Пусть M — подмножество {displaystyle mathbb {C} ,} которое: содержит mathbb {R} и мнимую единицу и замкнуто относительно сложения и умножения. Тогда M совпадает со всем {displaystyle mathbb {C} .}

Из этих аксиом вытекают как следствия все прочие свойства. Первые 11 аксиом означают, что mathbb {C} образует поле, а 12-я аксиома устанавливает, что это поле является расширением mathbb{R}. Приведённая аксиоматика категорична, то есть любые её модели изоморфны[68].

Существуют и другие варианты аксиоматики комплексных чисел. Например, вместо того, чтобы опираться на уже построенное упорядоченное поле вещественных чисел, можно в качестве базы использовать аксиоматику теории множеств[69].

Непротиворечивость и модели[править | править код]

Стандартный способ доказать непротиворечивость новой структуры — смоделировать (интерпретировать) её аксиомы с помощью объектов другой структуры, чья непротиворечивость сомнений не вызывает. В нашем случае мы должны реализовать эти аксиомы на базе вещественных чисел[70].

Стандартная модель[править | править код]

Рассмотрим всевозможные упорядоченные пары вещественных чисел. В данной модели каждая такая пара (a,b) будет соответствовать комплексному числу {displaystyle a+bi.}[71]

Далее определим[70]:

  1. пары (a,b) и {displaystyle (c,d)} считаются равными, если a=c и {displaystyle b=d;}
  2. сложение: сумма пар (a,b) и {displaystyle (c,d)} определяется как пара {displaystyle (a+c,b+d);}
  3. умножение: произведение пар (a,b) и {displaystyle (c,d)} определяется как пара {displaystyle (ac-bd,ad+bc).}

Пояснение: сложное, на первый взгляд, определение умножения легко выводится из соотношения {displaystyle i^{2}=-1colon }

{displaystyle (a+bi)(c+di)=(a+bi)c+(a+bi)di=ac+bci+adi+bdi^{2}=(ac-bd)+i(ad+bc).}

Несложно убедиться, что описанная структура пар образует поле и удовлетворяет всему приведённому перечню аксиом комплексных чисел. Вещественные числа моделируются парами {displaystyle (a,0)}, образующими подполе mathbb {R} , причём операции с такими парами согласованы с обычными сложением и умножением вещественных чисел. Пары (0,0) и (1,0) соответствуют нулю и единице поля. Такой способ является частным случаем процедуры Кэли — Диксона.

Мнимая единица — это пара {displaystyle (0,1),} Квадрат её равен {displaystyle left(-1,;0right),} то есть -1. Любое комплексное число можно записать в виде {displaystyle (a,b)=(a,0)(1,0)+(b,0)(0,1)=a(1,0)+b(0,1)=a+bi.}

Описанная модель доказывает, что приведённая аксиоматика комплексных чисел непротиворечива. Потому что если бы в ней было противоречие, то это означало бы противоречие и в базовой для данной модели арифметике вещественных чисел, которую мы заранее предположили непротиворечивой[70].

Матричная модель[править | править код]

Комплексные числа можно также определить как подкольцо кольца вещественных матриц 2×2 вида

{displaystyle {begin{pmatrix}x&-y\y&xend{pmatrix}}}

с обычным матричным сложением и умножением[2]. Вещественной единице будет соответствовать

{begin{pmatrix}1&0\0&1end{pmatrix}},

мнимой единице —

{displaystyle {begin{pmatrix}0&-1\1&0end{pmatrix}}}.

Множество таких матриц является двумерным векторным пространством. Умножение на комплексное число x+iy является линейным оператором. В базисе {displaystyle e_{1}=1,e_{2}=i} линейный оператор умножения на x+iy представляется указанной выше матрицей, так как[2]:

{displaystyle (x+iy)cdot 1=xcdot 1+ycdot i;}
{displaystyle (x+iy)cdot i=(-y)cdot 1+xcdot i.}

Матричная модель позволяет легко продемонстрировать связь между комплексными числами и линейными преобразованиями плоскости определённого типа.
А именно, существует взаимно однозначное соответствие между комплексными числами и поворотными гомотетиями плоскости (комбинациями растяжения относительно точки и поворота): каждая поворотная гомотетия может быть представлена на комплексной плоскости как умножение на комплексное число[72].

Модель факторкольца многочленов[править | править код]

Рассмотрим кольцо многочленов mathbb{R}[x] с вещественными коэффициентами и построим его факторкольцо по модулю многочлена x^{2}+1 (или, что то же, по идеалу, порождённому указанным многочленом). Это значит, что два многочлена из mathbb{R}[x] мы будем считать эквивалентными, если при делении на многочлен x^{2}+1 они дают одинаковые остатки. Например, многочлен x^{2} будет эквивалентен константе {displaystyle -1,} многочлен x^{3} будет эквивалентен -x и т. д.[73]

Множество классов эквивалентности образует кольцо с единицей. Так как многочлен x^{2}+1 неприводим, то это факторкольцо является полем. Роль мнимой единицы играет многочлен {displaystyle i(x)=x,} поскольку квадрат его (см. выше) эквивалентен -1. Каждый класс эквивалентности содержит остаток вида {displaystyle a+bx} (от деления на x^{2}+1), который в силу сказанного можно записать как {displaystyle a+bi.} Следовательно, это поле изоморфно полю комплексных чисел[73].

Данный изоморфизм был обнаружен Коши в 1847 году. Этот подход может быть использован для построения обобщений комплексных чисел, таких как алгебры Клиффорда[74].

Расширенное комплексное поле как фактор-поле рациональных дробей полиномов с вещественными коэффициентами[править | править код]

Нетривиальная факторизация поля в поле невозможна, но поля, расширенные бесконечностью, могут нетривиально факторизоваться. Более того, возможны нетривиальные факторизации обычных полей в расширенные. В частности, обычное или расширенное поле рациональных дробей полиномов одной переменной с вещественными коэффициентами факторизуется в расширенное поле комплексных чисел (сферу Римана) путём отождествления полинома x^{2}+1 с нулём. Каждая дробь при этом заменяется на частное остатков от деления числителя и знаменателя своего несократимого представления на x^{2}+1. В силу несократимости, при этом не может образоваться неопределённость 0/0, в остальных случаях знаменатель, равный нулю, означает бесконечность, случай знаменателя, не равного нулю, рассматриваются в стандартной технике (домножением на сопряжённый знаменателю). Другим способом получения того же результата является параметризация полиномов числителя и знаменателя несократимого представления дроби мнимой единицей.

Параметризуя рациональные дроби полиномов различными числами, можно получать различные факторизации: при параметризации вещественным числом — расширенное поле вещественных, комплексным (не вещественным) — комплексных чисел. Число, используемое для параметризации, есть корень простого (над вещественным полем) полинома, отождествляемого с нулём, т. е. по модулю которого берутся числители и знаменатели (в случае вещественного числа — первой степени, комплексного — квадратный с отрицательным дискриминантом и, соответственно, двумя сопряжёнными комплексными корнями).

Алгебраическая характеризация[править | править код]

Как уже упоминалось выше, поле комплексных чисел алгебраически замкнуто и имеет характеристику ноль (из последнего свойства вытекает, что оно содержит подполе рациональных чисел mathbb {Q} ). Кроме того, любой базис трансцендентности mathbb {C} над mathbb {Q} имеет мощность континуум[K 3]. Этих трёх свойств достаточно, чтобы задать поле комплексных чисел с точностью до изоморфизма полей — между любыми двумя алгебраически замкнутыми полями характеристики 0 с континуальным базисом трансцендентности существует некоторое отождествление, согласованное с операциями сложения и умножения этих полей[75][76][K 4].

При этом отождествлении другие структуры, вроде нормы или топологии, могут не сохраняться. Например, алгебраическое замыкание {displaystyle {overline {mathbb {Q} }}_{p}} поля p-адических чисел также удовлетворяет трём указанным свойствам. Однако p-адическая норма не является архимедовой[en] и, следовательно, не эквивалентна обычной норме комплексных чисел при любом выборе изоморфизма[77]. Поэтому они задают различную структуру топологического векторного пространства: множество из любого элемента векторного пространства и его целозначных кратностей дискретно в комплексном случае и компактно — в p-адическом[77].

Вариации и обобщения[править | править код]

Ближайшее обобщение комплексных чисел было обнаружено в 1843 году. Им оказалось тело кватернионов, которое, в отличие от поля комплексных чисел, содержит три мнимые единицы, традиционно обозначаемые {displaystyle i,j,k.} Согласно теореме Фробениуса, комплексные числа являются одним из трёх возможных случаев конечномерной алгебры с делением над полем вещественных чисел. В 1919 году выяснилось, что и комплексные числа из вещественных, и кватернионы из комплексных чисел могут быть получены единой процедурой удвоения размерности, также известной как «процедура Кэли — Диксона»[78].

Дальнейшим применением этой процедуры образуются числа, описанные Артуром Кэли в 1845 году, до обнаружения этой процедуры, и названные «числами Кэли» (октонионы, октавы). Числа, получаемые следующим применением процедуры, названы седенионами. Несмотря на то, что эту процедуру можно повторять и далее, дальнейшие числа названий пока не имеют[78].

Другие типы расширений комплексных чисел (гиперкомплексные числа):

  • Бикватернионы
  • Комплексные числа гиперболического типа (двойные)
  • Комплексные числа параболического типа (дуальные)

Примечания[править | править код]

Комментарии
  1. Два возможных ударения указаны согласно следующим источникам.
    • Большая советская энциклопедия, 3-е изд. (1973), том 12, стр. 588, статья Ко́мпле́ксные числа.
    • Советский энциклопедический словарь (1982), стр. 613, статья Ко́мпле́ксное число.
    • Последнее издание «Словаря трудностей русского языка» (Розенталь Д. Э., Теленкова М. А., Айрис-пресс, 2005, стр. 273) указывает оба варианта: ко́мплексные (компле́ксные) числа.
    • В Большой российской энциклопедии (том 14, 2010 год) приводятся варианты: Компле́ксное число (стр. 691, автор не указан), но Ко́мплексный анализ Архивная копия от 2 июля 2019 на Wayback Machine (стр. 695, автор: член-корр. РАН Е. М. Чирка).
    • Орфографический словарь русского языка (изд. 6-е, 2010), Грамматический словарь русского языка, Русский орфографический словарь Российской академии наук под ред. В. В. Лопатина (изд. 4-е, 2013) и ряд других словарей указывают варианты: ко́мплексный и компле́ксный (матем.).

  2. При условии непротиворечивости системы вещественных чисел.
  3. То есть отличается от {displaystyle mathbb {Q} (x_{i}),iin mathbb {R} } (поля рациональных функций для набора переменных x_{i} мощности континуум) на алгебраическое расширение
  4. Поскольку отображение в алгебраически замкнутое поле всегда может быть продлено на алгебраическое расширение, для установления изоморфизма между алгебраическими замкнутыми полями достаточно установить изоморфизм между их простыми подполями и биекцию между базисами трансцендентности.
Использованная литература
  1. Краткий словарь иностранных слов. — 7-е изд. — М.: Русский язык, 1984. — С. 121. — 312 с.
  2. 1 2 3 4 5 Комплексное число // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1979. — Т. 2. — С. 1007.
  3. Энциклопедия элементарной математики, 1951, с. 227.
  4. Справочник по элементарной математике, 2006, с. 211, подстрочное примечание.
  5. Справочник по элементарной математике, 2006, с. 222.
  6. 1 2 3 4 5 6 7 Алгебра и математический анализ, 1998, с. 180—181.
  7. Real Part. Дата обращения: 16 января 2018. Архивировано 31 марта 2018 года.
  8. Мнимое число // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1982. — Т. 3. — С. 708.
  9. Imaginary Part. Дата обращения: 16 января 2018. Архивировано 31 марта 2018 года.
  10. Ahlfors Lars V., 1979, с. 2.
  11. История математики, том III, 1972, с. 72.
  12. 1 2 Энциклопедия элементарной математики, 1951, с. 237—239.
  13. История математики, том III, 1972, с. 61—66.
  14. 1 2 Bunch, Bryan. Mathematical Fallacies and Paradoxes. Chapter «Eliminating paradox by definition». — Dover Publications, 1997. — 240 p. — (Dover Books on Mathematics). — ISBN 978-0486296647.
  15. Энциклопедия элементарной математики, 1951, с. 233—234.
  16. 1 2 3 4 5 Энциклопедия элементарной математики, 1951, с. 234—235, 239—240.
  17. ГОСТ Р 52002-2003. Электротехника. Термины и определения основных понятий Архивная копия от 16 марта 2018 на Wayback Machine. Пункт 152. Комплексная амплитуда (синусоидального электрического) тока — комплексная величина, модуль и аргумент которой равны соответственно амплитуде и начальной фазе данного синусоидального электрического тока.
  18. 1 2 3 4 5 6 Ahlfors Lars V., 1979, с. 6—10.
  19. Свешников А. Г., Тихонов А. Н., 1967, с. 14—15.
  20. 1 2 Алгебра и математический анализ, 1998, с. 183—1851.
  21. 1 2 3 4 Ahlfors Lars V., 1979, с. 15—16.
  22. Соломенцев Е. Д., 1988, с. 7.
  23. Weisstein, Eric W. nth Root (англ.) на сайте Wolfram MathWorld.
  24. Ahlfors Lars V., 1979, с. 3—4.
  25. 1 2 3 Клайн Моррис. Математика. Утрата определённости. — М.: Мир, 1984. — С. 138—139.
  26. 1 2 Стиллвелл Д. Математика и ее история. — Москва-Ижевск: Институт компьютерных исследований, 2004. — С. 258—266. — 530 с.
  27. История математики, том III, 1972, с. 57—61.
  28. Юшкевич А. П. Леонард Эйлер. Жизнь и творчество // Развитие идей Леонарда Эйлера и современная наука. Сб. статей. — М.: Наука, 1988. — ISBN 5-02-000002-7. — С. 15—47.
  29. Острая О. Теория функций комплексного переменного. Дата обращения: 30 ноября 2017.
  30. Ренэ Декарт. Геометрия. С приложением избранных работ П. Ферма и переписки Декарта. — М.Л.: Гостехиздат, 1938. — С. 233. — 297 с. — (Классики естествознания).
  31. Глейзер Г. И. История математики в школе. IX—X классы. — М.: Просвещение, 1983. — С. 193. — 351 с.
  32. 1 2 3 4 Смирнов В. И., 2010, с. 7—15.
  33. Бронштейн, Семендяев, 1985, с. 360.
  34. Смирнов В. И., 2010, с. 15—22.
  35. Свешников А. Г., Тихонов А. Н., 1967, с. 44.
  36. 1 2 Заславский А. А. Геометрические преобразования. — 2-е изд.. — М.: МЦНМО, 2004. — С. 58. — 86 с. — ISBN 5-94057-094-1.
  37. 1 2 Евграфов М. А., 1968, с. 180—186.
  38. MAXimal :: algo :: Преобразование геометрической инверсии. e-maxx.ru. Дата обращения: 9 мая 2021. Архивировано 7 мая 2021 года.
  39. Е. А. Морозов, “Обобщённая задача Аполлония”, Матем. просв., сер. 3, 23, Изд-во МЦНМО, М., 2019, 80–111. www.mathnet.ru. Дата обращения: 9 мая 2021. Архивировано 9 мая 2021 года.
  40. Привалов И. И., 1984, с. 43.
  41. Соломенцев Е. Д., 1988, с. 10.
  42. 1 2 3 Ahlfors Lars V., 1979, с. 17—18.
  43. Соломенцев Е. Д., 1988, с. 12.
  44. Числовые системы, 1975, с. 165.
  45. Энциклопедия элементарной математики, 1951, с. 249—251.
  46. Числовые системы, 1975, с. 167.
  47. Топологическое поле // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5. — С. 386.
  48. Комплексные числа. 9—11 классы, 2012, Глава 5.
  49. Реальные применения мнимых чисел, 1988, с. 78.
  50. Реальные применения мнимых чисел, 1988, с. 114—124.
  51. Дербишир, Джон. Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. — Астрель, 2010. — 464 с. — ISBN 978-5-271-25422-2.
  52. Привалов И. И., 1984, с. 14.
  53. Филиппов А. Ф. Введение в теорию дифференциальных уравнений. — Эдиториал УРСС, 2004. — 240 с. — ISBN 5354004160.
  54. Разностное уравнение // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1984. — Т. 4. — С. 838. Архивировано 21 января 2022 года.
  55. Свешников А. Г., Тихонов А. Н., 1967, Глава 5.
  56. Свешников А. Г., Тихонов А. Н., 1967, Глава 8.
  57. Смирнов В. И., 2010, с. 22—25.
  58. Маркушевич А. И. Комплексные числа и конформные отображения. — М.: Гостехиздат, 1954. — 52 с. — (Популярные лекции по математике, выпуск 13). Архивировано 28 января 2018 года.
  59. Shao-Feng Bian, Hou-Pu Li. Mathematical Analysis in Cartography by Means of Computer Algebra System. Дата обращения: 28 января 2018. Архивировано 29 января 2018 года.
  60. Лаврентьев М. А., Шабат Б. В. Проблемы гидродинамики и их математические модели. — М.: Наука, 1973.
  61. 1 2 Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — Издание 6-е, исправленное. — М.: Физматлит, 2004. — 800 с. — («Теоретическая физика», том III). — ISBN 5-9221-0530-2.
  62. Е. Вигнер. Непостижимая эффективность математики в естественных науках // УФН. — 1968. — Т. 93. — С. 535—546. — doi:10.3367/UFNr.0094.196803f.0535.
  63. Реальные применения мнимых чисел, 1988, с. 132—144.
  64. Молчанов А. П., Занадворов П. Н. Курс электротехники и радиотехники, глава «Линейные цепи». — BH V. — 608 с. — ISBN 978-5-9775-0544-4.
  65. Афонский А. А., Дьяконов В. П. Цифровые анализаторы спектра, сигналов и логики / Под ред. проф. В. П. Дьяконова. — М.: СОЛОН-Пресс, 2009. — С. 248. — ISBN 978-5-913-59049-7.
  66. Числовые системы, 1975, с. 164—165.
  67. Энциклопедия элементарной математики, 1951, с. 227—233.
  68. Числовые системы, 1975, с. 166.
  69. Real and Complex Numbers. Дата обращения: 13 февраля 2018. Архивировано 6 февраля 2021 года.
  70. 1 2 3 Числовые системы, 1975, с. 167—168.
  71. Энциклопедия элементарной математики, 1951, с. 230—233.
  72. John Stillwell. The Four Pillars of Geometry. — Springer Science & Business Media, 2005-12-30. — С. 84—86. — 240 с. — ISBN 9780387290522.
  73. 1 2 Фаддеев Д. К. Лекции по алгебре. — М.: Наука, 1984. — С. 200—201. — 416 с.
  74. F. Brackx, R. Delanghe, H. Serras. Clifford Algebras and their Applications in Mathematical Physics: Proceedings of the Third Conference held at Deinze, Belgium, 1993. — Springer Science & Business Media, 2012-12-06. — С. 33. — 405 с. — ISBN 9789401120067.
  75. David Marker. Model Theory: An Introduction, ISBN 978-0-387-22734-4. Proposition 2.2.5. Springer Science & Business Media, 2002. См. также некоторые пояснения Архивная копия от 14 мая 2018 на Wayback Machine.
  76. William Weiss and Cherie D’Mello. Fundamentals of Model Theory Архивная копия от 13 апреля 2018 на Wayback Machine. Lemma 7: Any two algebraically closed fields of characteristic 0 and cardinality aleph_1 are isomorphic и комментарий после неё.
  77. 1 2 p-адическое число // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1977. — Т. 1. — С. 100.: «Это расширение есть пополнение поля рациональных чисел относительно неархимедова нормирования… Поле Q_p локально компактно».
  78. 1 2 Dickson, L. E. (1919), On Quaternions and Their Generalization and the History of the Eight Square Theorem, Annals of Mathematics, Second Series (Annals of Mathematics) . — Т. 20 (3): 155–171, ISSN 0003-486X, DOI 10.2307/1967865

Литература[править | править код]

  • Балк М. Б., Балк Г. Д., Полухин А. А. Реальные применения мнимых чисел. — Киев: Радянська школа, 1988. — 255 с. — ISBN 5-330-00379-2.
  • Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — изд. 13-е. — М.: Наука, 1985. — 544 с.
  • Бурбаки, Н. Очерки по истории математики. — М., 1963.
  • Виленкин Н. Я., Ивашов-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 11 класса. Учебное пособие. — Изд. 6-е. — М.: Просвещение, 1998. — 288 с. — ISBN 5-09-008036-4.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: АСТ, 2006. — 509 с. — ISBN 5-17-009554-6.
  • Глазков Ю. А., Варшавский И. К., Гаиашвили М. Я. Комплексные числа. 9—11 классы. — М.: Экзамен, 2012. — 157 с. — ISBN 978-5-377-03467-4.
  • Евграфов М. А. Аналитические функции. — 2-е изд., перераб. и дополн. — М.: Наука, 1968. — 472 с.
  • Кириллов А. А. Что такое число?. — М., 1993. — 80 с. — ISBN 5-02-014942-3.
  • Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. — 4-е изд. — М.: Наука, 1972.
  • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Нечаев В. И. Числовые системы. — М.: Просвещение, 1975. — 199 с.
  • Привалов И. И. Введение в теорию функций комплексного переменного. — 13-е изд.. — М.: Физматлит, 1984. — 432 с.
  • Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. — М.: Наука, 1967. — 304 с.
  • Смирнов В. И. Курс высшей математики в трёх томах. — Изд. 10-е. — СПб.: БХВ-Петербург, 2010. — Т. 3, часть 2-я. — 816 с. — ISBN 978-5-9775-0087-6.
  • Соломенцев Е. Д. Функции комплексного переменного и их применения. — М.: Высшая школа, 1988. — 167 с. — ISBN 5-06-003145-6.
  • Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1951. — Т. 1. — С. 160—168. — 448 с.
  • Ahlfors Lars V. Complex analysis. An introduction to the theory of analytic functions of one complex variable. — Third edition. — Harvard University: McGraw-Hill Book Company, 1979. — 317 с. — ISBN 0-07-000657-1.

Ссылки[править | править код]

Комплексные числа в тригонометрической
и показательной формах

Тригонометрическая форма комплексного числа

Каждому комплексному числу z=x+iy геометрически соответствует точка M(x,y) на плоскости Oxy. Но положение точки на плоскости, кроме декартовых координат (x,y), можно зафиксировать другой парой — ее полярных координат (r,varphi) в полярной системе (рис. 1.3,a).

Величина r является неотрицательной и для данной точки определяется единственным образом, а угол varphi может принимать бесчисленное множество значений (при этом zne0): если точке соответствует некоторое значение varphi_0, то ей также соответствуют значения varphi=varphi_0+2kpi,~ k=0,pm1,pm2,ldots. Например, если для точки z=-1-i (см. рис. 1.1) выбрать varphi_0=frac{5pi}{4}, то ей соответствует любое varphi=frac{5pi}{4}+2kpi,~ k=0,pm1,ldots, в частности varphi=-frac{3pi}{4} при k=-1. Если же выбрать varphi_0=-frac{3pi}{4}, то varphi=-frac{3pi}{4}+2kpi,~ k=0,pm1,ldots, а при k=1 получаем varphi=frac{5pi}{4}.

Положение точки на плоскости в полярных координатах

Используя связь декартовых и полярных координат точки Mcolon begin{cases} x=rcosvarphi,\ y=rsinvarphiend{cases} (рис. 1.3,б), из алгебраической формы записи комплексного числа z=x+iy получаем тригонометрическую форму:

z=r bigl(cosvarphi+isinvarphibigr).

(1.3)


Показательная форма комплексного числа

Если обозначить комплексное число z, у которого operatorname{Re}z= cosvarphi, а operatorname{Im}z=sinvarphi, через e^{i,varphi}, то есть cosvarphi+isinvarphi=e^{i,varphi}, то из (1.3) получим показательную форму записи комплексного числа:

z=r,e^{i,varphi}.

(1.4)

Равенство e^{i,varphi}= cosvarphi+isinvarphi называется формулой Эйлера.

Заметим, что геометрически задание комплексного числа z=(r,varphi) равносильно заданию вектора overrightarrow{OM}, длина которого равна r, то есть bigl|overrightarrow{OM}bigr|=r, а направление — под углом varphi к оси Ox (рис. 1.3,б).


Модуль комплексного числа

Число r — длина радиуса-вектора точки M(x,y) называется модулем комплексного числа z=x+iy. Обозначение: |z|=r.

Из рис. 1.3,б получаем формулу для нахождения модуля числа, заданного и алгебраической форме z=x+iycolon

|z|=sqrt{x^2+y^2},.

(1.5)

Геометрический смысл модуля комплексного числа

Очевидно, что |z|geqslant0 и |z|=0 только для числа z=0~(x=0,,y=0).

С помощью правила вычитания запишем модуль числа z=z_1-z_2, где z_1=x_1+iy_1 и z_2=x_2+iy_2,colon

bigl|z_1-z_2bigr|= sqrt{(x_1-x_2)^2+(y_1-y_2)^2},.

А это, как известно, есть формула для расстояния между точками M_1(x_1,y_1) и M_2(x_2,y_2).

Таким образом, число |z_1-z_2| есть расстояние между точками z_1 и z_2 на комплексной плоскости.

Пример 1.13. Найти модули комплексных чисел:

bold{1)}~z_1=2,~z_2=-2+sqrt{3},;qquad bold{2)}~z_3=-2i,~ z_4=(2-sqrt{3})i,;qquad bold{3)}~ z_5=-1+2i,.

Решение


Аргумент комплексного числа

Полярный угол varphi точки M(x,y) называется аргументом комплексного числа z=x+iy. Обозначение: varphi=arg z.

В дальнейшем, если нет специальных оговорок, под arg z будем понимать значение varphi, удовлетворяющее условию -pi&lt;varphileqslantpi. Так, для точки z=-1-i (см. рис. 1.1) arg z=-frac{3pi}{4}.

Формулу для нахождения аргумента комплексного числа z=x+iy, заданного в алгебраической форме, получаем, используя связь декартовых и полярных координат точки M(x,y) (см. рис. 1.3,б). Для точек, не лежащих на мнимой оси, т.е. для z, у которых xne0, получаем operatorname{tg}varphi= frac{y}{x}; для точек мнимой положительной полуоси, т.е. для z, у которых x=0,~ y&gt;0, имеем varphi=frac{pi}{2}; для точек мнимой отрицательной полуоси, т.е. для z, у которых x=0,~ y&lt;0, соответственно varphi=-frac{pi}{2}.

Аргумент числа z=0 — величина неопределенная.

Нахождение аргумента при xne0 сводится к решению тригонометрического уравнения operatorname{tg}varphi= frac{y}{x}. При y=0, т.е. когда z=x — число действительное, имеем varphi=0 при x&gt;0 и varphi=pi при x&lt;0. При yne0 решение уравнения зависит от четверти плоскости Oxy. Четверть, в которое расположена точка z, определяется по знакам operatorname{Re}z и operatorname{Im}z. В результате получаем:

Аргумент комплексного числа

arg z= begin{cases}operatorname{arctg}dfrac{y}{x},& x&gt;0;\ pi+operatorname{arctg}dfrac{y}{x},& x&lt;0,ygeqslant0;\ -pi+operatorname{arctg}dfrac{y}{x},& x&lt;0,y&lt;0;\ dfrac{pi}{2},& x=0,~y&gt;0;\ -dfrac{pi}{2},& x=0,~y&lt;0.end{cases}

(1.6)

При решении примеров удобно пользоваться схемой, которая изображена на рис. 1.5.

Пример 1.14. Найти аргументы чисел из примера 1.13.

Решение

Пример 1.15. Найти модуль и аргумент числа z=2-i.

Решение. Находим |z|=sqrt{2^2+(-1)^2}= sqrt{5}. Так как operatorname{Re}z=2&gt;0,~ operatorname{Im}z=-1&lt;0, т.е. точка расположена в четвертой четверти, то из равенства operatorname{tg}varphi=-frac{1}{2} получаем varphi= operatorname{arctg}!left(-frac{1}{2}right) (рис. 1.5).


Главное значение аргумента комплексного числа

Аргумент комплексного числа определяется неоднозначно. Это следует из неоднозначности задания величины угла varphi для данной точки, а также из тригонометрической формы записи комплексного числа и свойства периодичности функций sinvarphi и cosvarphi.

Всякий угол, отличающийся от arg z на слагаемое, кратное 2pi, обозначается operatorname{Arg}z и записывается равенством:

operatorname{Arg}z=arg z+2kpi,quad k=0,pm1,pm2,ldots,

(1.7)

где arg z — главное значение аргумента, -pi&lt;arg zleqslantpi.

Комплексные числа с нулевыми вещественными и мнимыми частями

Пример 1.16. Записать arg z и operatorname{Arg}z для чисел z_1=1,~ z_2=-1,~ z_3=i,~ z_4=-i.

Решение. Числа z_1 и z_2 — действительные, расположены на действительной оси (рис. 1.6), поэтому

arg z_1=0,~~ operatorname{Arg}z_1=2kpi;qquad arg z_2=pi,~~ operatorname{Arg}z_2= pi+2kpi,quad k=0,pm1,pm2,ldots;

числа z_3 и z_4 — чисто мнимые, расположены на мнимой оси (рис. 1.6), поэтому

arg z_3=frac{pi}{2},~~ operatorname{Arg}z_3=frac{pi}{2}+2kpi;qquad arg z_4=-frac{pi}{2},~~ operatorname{Arg}z_4= -frac{pi}{2}+2kpi,quad k=0,pm1, pm2,ldots

Пример 1.17. Записать комплексные числа из примера 1.16:

а) в тригонометрической форме;

б) в показательной форме.

Решение

Модули всех чисел, очевидно, равны 1. Поэтому, используя решение предыдущего примера и формулы (1.3) и (1.4), получаем:

а) 1=cos2kpi+ isin2kpi;~~ -1=cos(pi+2kpi)+ isin(pi+2kpi);~~ k=0,pm1,pm2,ldots

i=cos!left(frac{pi}{2}+2kpiright)+ isin!left(frac{pi}{2}+2kpiright);quad -i=cos!left(-frac{pi}{2}+2kpiright)+ isin!left(-frac{pi}{2}+2kpiright);

б) 1=e^{2kpi i};~~ -1=e^{(pi+2kpi)i};~~ i=e^{left(frac{pi}{2}+2kpiright)i};~~ -i=e^{left(-frac{pi}{2}+2kpiright)i},~~ k=0,pm1,pm2,ldots.

Пример 1.18. Записать в тригонометрической форме числа z_1=-1-i,~ z_2=cosfrac{pi}{5}-isinfrac{pi}{5},~ z_3= ileft(cosfrac{pi}{5}-isinfrac{pi}{5}right).

Решение

Числа z_1 и z_2 записаны в алгебраической форме (заметим, что заданная запись числа z_2 не является тригонометрической формой записи (сравните с (1.3)). Находим модули чисел по формуле (1.5):

|z_1|= sqrt{(-1)^2+(-1)^2}= sqrt{2},,qquad |z_2|=sqrt{cos^2 frac{pi}{5}+ left(-sin frac{pi}{5}right)^2}=1.

Далее находим аргументы. Для числа z_1 имеем operatorname{tg}varphi=1 и, так как operatorname{Re}z_1&lt;0,~ operatorname{Im}z_1&lt;0 (точка расположена в третьей четверти), получаем arg z_1=-pi+frac{pi}{4}=-frac{3pi}{4} (см. рис. 1.5). Для числа z_2 имеем operatorname{tg}varphi=-operatorname{tg}frac{pi}{5}, или operatorname{tg}varphi= operatorname{tg}left(-frac{pi}{5}right), и, так как operatorname{Re}z_2&gt;0,~ operatorname{Im}z_2&lt;0 (точка расположена в четвертой четверти (см. рис. 1.5)), получаем arg z_2=-frac{pi}{5}.

Записываем числа z_1 и z_2 в тригонометрической форме

begin{gathered}z_1= sqrt{2} left[cosleft(-frac{3pi}{4}+2kpiright)+ isinleft(-frac{3pi}{4}+2kpiright)right];\[5pt] z_2= cosleft(-frac{pi}{5}+2kpiright)+ isinleft(-frac{pi}{5}+ 2kpiright)!,quad k=0,pm1,pm2,ldots end{gathered}

Заметим, что для числа z_2 решение можно найти иначе, а именно используя свойства тригонометрических функций: cosalpha=cos(-alpha),~ -sinalpha=sin(-alpha).

Число z_3 является произведением двух чисел. Выполнив умножение, получим алгебраическую форму записи (найдем operatorname{Re}z_3 и operatorname{Im}z_3): z_3=sin frac{pi}{5}+ icos frac{pi}{5}. Здесь, как и для числа z_2, при решении удобно использовать преобразования тригонометрических выражений, а именно sinfrac{pi}{5}= cos!left(frac{pi}{2}-frac{pi}{5}right)!,~ cosfrac{pi}{5}= sin!left(frac{pi}{2}-frac{pi}{5}right).

Рассуждая, как выше, найдем |z_3|=1,~ arg z_3=frac{pi}{2}-frac{pi}{5}= frac{3pi}{10}. Для числа z_3=sin frac{pi}{5}+ icos frac{pi}{5}, записанного в алгебраической форме, получаем тригонометрическую форму:

z_3= cos!left(frac{3pi}{10}+2kpiright)+ isin!left(frac{3pi}{10}+2kpiright)!,quad k=0,pm1,pm2,ldots


Равенство комплексных чисел в тригонометрической форме

Условия равенства комплексных чисел получаем, используя геометрический смысл модуля и аргумента комплексного числа, заданного в тригонометрической форме. Так, для чисел z_1=r_1(cosvarphi_1+ isinvarphi_1), z_2=r_2(cosvarphi_2+ isinvarphi_2), из условия z_1=z_2. очевидно, следует:

r_1=r_2;qquad varphi_1-varphi_2=2kpi,quad k=0,pm1,pm2,ldots

или

|z_1|=|z_2|,quad operatorname{Arg}z_1-operatorname{Arg}z_2= 2kpi,quad k=0,pm1,pm2,ldots

(1.8)

Аргументы равных комплексных чисел либо равны (в частности равны главные значения), либо отличаются на слагаемое, кратное 2pi.

Для пары сопряженных комплексных чисел z и overline{z} справедливы следующие равенства:

|overline{z}|= |z|,qquad argoverline{z}=-arg z,.

(1.9)


Умножение комплексных чисел в тригонометрической форме

Зададим два комплексных числа в тригонометрической форме z_1=r_1(cosvarphi_1+ isinvarphi_1) и z_2=r_2(cosvarphi_2+isinvarphi_2) и перемножим их по правилу умножения двучленов:

begin{aligned}z_1cdot z_2&= r_1cdot r_2cdot (cosvarphi_1+ isinvarphi_1)cdot (cosvarphi_2+isinvarphi_2)=\ &= r_1cdot r_2 bigl(cosvarphi_1cosvarphi_2- sinvarphi_1 sinvarphi_2+ i(cosvarphi_1 sinvarphi_2+ sinvarphi_1 cosvarphi_2)bigr) end{aligned}

или

z_1cdot z_2= r_1cdot r_2cdot bigl(cos(varphi_1+varphi_2)+ isin(varphi_1+ varphi_2)bigr).

Получили новое число z, записанное в тригонометрической форме: z=r(cosvarphi+ isinvarphi), для которого r=r_1cdot r_2,~ varphi= varphi_1+ varphi_2.

Правило умножения. При умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножаются, а аргументы складываются:

|z_1cdot z_2|= |z_1|cdot |z_2|,qquad operatorname{Arg}(z_1cdot z_2)= arg z_1+arg z_2.

(1.10)

В результате умножения чисел может получиться аргумент произведения, не являющийся главным значением.

Пример 1.19. Найти модули и аргументы чисел:

bold{1)}~ z=-2i left(cosfrac{4pi}{7}- isinfrac{4pi}{7}right)!;qquad bold{2)}~ z=(1+i)(sqrt{3}-i).

Решение

Каждое из заданных чисел записано в виде произведения. Найдем модули и аргументы сомножителей и воспользуемся правилом (1.10) умножения чисел, заданных в тригонометрической форме:

bold{1)}quad z=z_1cdot z_2,quad z_1=-2i,quad z_2= cosfrac{4pi}{7}- isinfrac{4pi}{7}= cos!left(-frac{4pi}{7}right)+ isin!left(-frac{4pi}{7}right),.

Для чисел z_1 и z_2 находим модули и аргументы: |z_1|=2,~ arg z_1=-frac{pi}{2};~ |z_2|=1,~ arg z_2=-frac{4pi}{7}. Используя формулы (1.10), получаем

|z|=|z_1|cdot|z_2|=2,quad operatorname{Arg}z= arg z_1+arg z_2= -frac{pi}{2}-frac{4pi}{7};quad arg z= 2pi- frac{15pi}{14}= frac{13pi}{14}

б) z=z_1cdot z_2,~ z_1=1+i,~ z_2=sqrt{3}-i. Для числа z_1 имеем: |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}; для числа z_2colon, |z_2|=2,~ operatorname{tg}varphi_2=-frac{1}{sqrt{3}}, и так как operatorname{Re}z_2&gt;0,~ operatorname{Im}z_2&lt;0 (точка расположена в четвертой четверти), то arg z_2=-frac{pi}{6}. Используя формулы (1.10), получаем |z|=2sqrt{2},~ arg z=frac{pi}{4}-frac{pi}{6}=frac{pi}{12}.

Заметим, что для решения этой задачи можно раскрыть скобки, записать каждое число в алгебраической форме, а затем найти |z| и arg z, используя формулы (1.5), (1.6).


Деление комплексных чисел в тригонометрической форме

Рассмотрим частное комплексных чисел frac{z_1}{z_2}, заданных в тригонометрической форме. Из определения частного z=frac{z_1}{z_2} имеем z_1=zcdot z_2 и, применяя к произведению правило умножения (формулы (1.10)), получаем r=frac{r_1}{r_2},~ varphi=varphi_1-varphi_2.

Правило деления. Модуль частного, полученного в результате деления чисел, заданных в тригонометрической форме, равен частному от деления модуля числителя на модуль знаменателя, а аргумент частного равен разности аргументов делимого и делителя:

left|frac{z_1}{z_2}right|= frac{|z_1|}{|z_2|},qquad operatorname{Arg}frac{z_1}{z_2}= arg z_1-arg z_2.

(1.11)

В результате деления чисел по формуле (1.11) может получиться аргумент честного, не являющийся главным значением.

Пример 1.20. Записать в тригонометрической форме комплексное число frac{1+i}{sqrt{3}-i}.

Решение. Обозначим z=frac{z_1}{z_2},~ z_1=1+i,~ z_2=sqrt{3}-i. Для чисел z_1 и z_2 находим модули и аргументы: |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}; |z_2|=2,~ arg z_2=-frac{pi}{6} (см. пример 1.19). По формуле (1.11) получаем |z|=frac{|z_1|}{|z_2|}=frac{sqrt{2}}{2},~ arg z=arg z_1-arg z_2=frac{pi}{4}-left(-frac{pi}{6}right)= frac{5pi}{12} и

frac{1+i}{sqrt{3}-i}= frac{sqrt{2}}{2}left(cosleft(frac{5pi}{12}+2kpiright)+ isinleft(frac{5pi}{12}+2kpiright)right)!,~ k=0,pm1,pm2,ldots


Возведение в степень комплексного числа в тригонометрической форме

Из определения степени z^n и правила умножения чисел, записанных в тригонометрической форме (формула (1.10)), получаем

|z^n|=r^n,quad operatorname{Arg}z^n=nvarphi, где z=r(cosvarphi+ isinvarphi).

Правило возведения в степень. При возведении в степень комплексного числа в эту степень возводится модуль числа, а аргумент умножается на показатель степени:

|z^n|= |z|^n,qquad operatorname{Arg}z^n= narg z,.

(1.12)

Записывая число z^n в тригонометрической форме z^n= r^n(cos nvarphi+ isin nvarphi), получаем формулу возведения в степень:

bigl[r(cosvarphi+ isinvarphi)bigr]^n= r^n(cos nvarphi+ isin nvarphi).

(1.13)

При r=1 это равенство принимает вид и называется формула Муавра

(cosvarphi+ isinvarphi)^n= cos nvarphi+ isin nvarphi,.

(1.14)

Пример 1.21. Найти модуль и аргумент комплексного числа (1+i)^5.

Решение. Обозначим z=z_1^5,~ z_1=1+i. Находим модуль и аргумент числа z_1colon, |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}. Поэтому |z|= (sqrt{2})^5 и operatorname{Arg}z=5arg z_1=frac{5pi}{4}. Так как по определению для главного значения аргумента выполняется условие -pi&lt;arg zleqslantpi, то arg z= frac{5pi}{4}-2pi=-frac{3pi}{4}.

Пример 1.22. Записать в тригонометрической форме число (1+i)^5(sqrt{3}-i)^7.

Решение

Пример 1.23. Используя формулу Муавра, найти выражения для cos3varphi и sin3varphi через тригонометрические функции угла varphi.

Решение

Из формулы (1.14) при n=3 имеем (cosvarphi+ isinvarphi)^3= cos3varphi+isin3varphi. Возведем левую часть в степень, учитывая, что i^3=-i (см. пример 1.8):

begin{aligned}cos^3varphi+ i3cos^2varphisinvarphi- 3cosvarphi sin^2varphi+ i^3sin^3varphi&= cos3varphi+ isin3varphi,\ (cos^3varphi-3cosvarphisin^2varphi)+ i(3cos^2varphisinvarphi-sin^3varphi)&= cos3varphi+ isin3varphi.end{aligned}

Используя условие равенства комплексных чисел, получаем:

cos3varphi= cos^3varphi- 3cosvarphisin^2varphi,qquad sin3varphi= 3cos^2varphi sinvarphi- sin^3varphi.


Извлечение корня из комплексного числа в тригонометрической форме

Рассмотрим задачу извлечения корня из комплексного числа, заданного в показательной или тригонометрической форме z=r,e^{ivarphi}, или z=r(cosvarphi+ isinvarphi). Искомое число w=sqrt[LARGE{n}]{z} также запишем в показательной форме: w=rho,e^{ivarphi},~ rho=|w|,~ theta=arg w. Используя определение операции извлечения корня z=w^n и условия (1.8), получаем соотношения

rho^n=r,qquad ncdottheta= varphi+2kpi,quad k=0,pm1,pm2,ldots

или

rho= sqrt[LARGE{n}]{r},quad theta= frac{varphi+2kpi}{n},quad k=0,pm1,pm2,ldots

(1.15)

Правило извлечения корня. Чтобы извлечь корень из комплексного числа, нужно извлечь корень (арифметический) той же степени из модуля данного числа, а аргумент (operatorname{Arg}z) разделить на показатель корня:

bigl|sqrt[LARGE{n}]{z}bigr|= sqrt[LARGE{n}]{|z|},qquad operatorname{Arg}sqrt[LARGE{n}]{z}= frac{operatorname{Arg}z}{n},.

(1.16)

Теперь можно записать число w=sqrt[LARGE{n}]{z} в показательной форме:

sqrt[LARGE{n}]{z}= sqrt[LARGE{n}]{|z|}cdot exp frac{i operatorname{Arg}z}{n},.

Если записать это соотношение в тригонометрической форме, то, учитывая периодичность тригонометрических функций, нетрудно убедиться, что выражение sqrt[LARGE{n}]{z} принимает только n различных значений. Для их записи достаточно в формуле (1.15) взять n последовательных значений k, например k=0,1,2,ldots,n-1. В результате получаем формулу извлечения корня из комплексного числа в тригонометрической форме, где r=|z|,~ varphi=arg z:

sqrt[LARGE{n}]{z}= sqrt[LARGE{n}]{r} left(cos frac{varphi+2kpi}{n}+ isin frac{varphi+2kpi}{n}right)!,quad 0,1,2,ldots,n-1.

(1.17)


Значения корня комплексного числа

Замечания 1.1

1. Рассмотренная задача извлечения корня степени n из комплексного числа равносильна решению уравнения вида z^n-a=0, где, очевидно, z=sqrt[LARGE{n}]{a}.

Для решения уравнения нужно найти n значений sqrt[LARGE{n}]{a}, а для этого необходимо найти r=|a|,~ varphi=arg a и использовать формулу извлечения корня.

2. Исследование формулы (1.17) показывает, что все комплексные числа w_k,~ k=1,2,ldots,n (значения sqrt[LARGE{n}]{z}) имеют равные модули, т.е. геометрически расположены на окружности радиуса R=sqrt[LARGE{n}]{r},~ r=|z|. Аргументы двух последовательных чисел отличаются на frac{2pi}{n}, так как arg w_{k+1}-arg w_k= frac{2pi}{n}, т.е. каждое последующее значение w_{k+1} может быть получено из предыдущего w_k поворотом радиуса-вектора точки w_k на frac{2pi}{n}.В этом заключается геометрический смысл формулы (1.17), что можно сформулировать следующим образом.

Точки, соответствующие значениям sqrt[LARGE{n}]{z}, расположены в вершинах правильного n-угольника, вписанного в окружность с центром в начале координат, радиус которой R= sqrt[LARGE{n}]{|z|}, причем аргумент одного из значений w_k равен frac{arg z}{n}= frac{varphi}{n} (рис. 1.7).


Алгоритм решения комплексных уравнений вида z^n-a=0

1. Найти модуль и аргумент числа acolon, r=|a|,~ varphi=arg a.
2. Записать формулу (1.17) при заданном значении ncolon, sqrt[LARGE{n}]{a}= sqrt[LARGE{n}]{r} left(cos frac{varphi+2kpi}{n}+ isin frac{varphi+2kpi}{n}right).
3. Выписать значения корней уравнения z_k, придавая значения k=0,1,2,ldots,n-1.

Пример 1.24. Решить уравнения: a) z^6-1=0; б) z^3-i=0.

Решение

Задача равносильна задаче нахождения всех значений корня из комплексного числа. Решаем в каждом случае по алгоритму.

а) Найдем z=sqrt[LARGE{6}]{1}.
1. Определим модуль и аргумент числа 1colon, r=1,~ varphi=0.
2. При полученных значениях r и varphi записываем формулу (1.17):

z= sqrt[LARGE{6}]{1}= sqrt[LARGE{6}]{1} left(cosfrac{2kpi}{6}+ isinfrac{2kpi}{6}right)!,qquad k=0,1,2,3,4,5.

Заметим, что справа стоит sqrt[LARGE{6}]{1} — арифметический корень, его единственное значение равно 1.

3. Придавая k последовательно значения от 0 до 5, выписываем решения уравнения:

begin{array}{ll}z_1= cos0+isin0=1,&qquad z_2=cos dfrac{pi}{3}+isindfrac{pi}{3}= dfrac{1}{2}+ i,dfrac{sqrt{3}}{2},\[7pt] z_3= cosdfrac{2pi}{3}+ isindfrac{2pi}{3}= -dfrac{1}{2}+ i,dfrac{sqrt{3}}{2},&qquad z_4=cospi+isinpi=-1,\[10pt] z_5= cosdfrac{4pi}{3}+ isindfrac{4pi}{3}= -dfrac{1}{2}-i,dfrac{sqrt{3}}{2},&qquad z_6= cosdfrac{5pi}{3}+ isindfrac{5pi}{3}= dfrac{1}{2}-i,dfrac{sqrt{3}}{2}.end{array}

Геометрически соответствующие точки расположены в вершинах правильного шестиугольника, вписанного в окружность радиуса R=1, одна из точек (соответствует k=0) z_1=1. Строим шестиугольник (рис. 1.8,в). Отметим свойства корней этого уравнения с действительными коэффициентами — его комплексные корни являются попарно сопряженными: z_6= overline{z}_2,~ z_5= overline{z}_3,~ z_1 и z_4 — действительные числа.

б) Найдем z=sqrt[LARGE{3}]{i}.
1. Определим модуль и аргумент числа rcolon, r=|i|=1,~ varphi=arg i=frac{pi}{2}.
2. По формуле (1.17) имеем

sqrt[LARGE{3}]{i}= 1cdot left(cosfrac{frac{pi}{2}+2kpi}{3}+ isin frac{frac{pi}{2}+2kpi}{3}right)= cos!left(frac{pi}{6}+ frac{2}{3}kpiright)+ isin!left(frac{pi}{6}+ frac{2}{3}kpiright)!,quad k=0,1,2.

3. Выписываем корни z_1,,z_2,,z_3colon, z_1= frac{sqrt{3}}{2}+i frac{1}{2},~ z_2= -frac{sqrt{3}}{2}+i frac{1}{2},~ z_3=-i.

Геометрический смысл комплексных корней

Для геометрического представления решения уравнения достаточно изобразить одно значение, например z_1=cosfrac{pi}{6}+ isinfrac{pi}{6} (при k=0) — это точка окружности |z|=1, лежащая на луче varphi=frac{pi}{6}. После этого строим правильный треугольник, вписанный в окружность |z|=1 (рис. 1.8,б).

Пример 1.25. Найти корень уравнения z^4-1+i=0, для которого operatorname{Re}z&lt;0,~ operatorname{Im}z&gt;0.

Решение

Геометрическая интерпретация корней комплексного уравнения

Задача равносильна задаче нахождения z=sqrt[LARGE{4}]{1-i} при условие operatorname{Re}z&lt;0,~ operatorname{Im}z&gt;0.

1. Находим модуль и аргумент числа 1-icolon, r=|1-i|=sqrt{2},~ varphi=arg(1-i)=-frac{pi}{4}.

2. По формуле (1.17) имеем: z_{k+1}= sqrt[LARGE{4}]{1-i}= sqrt[LARGE{8}]{2}e^{left(-frac{pi}{16}+frac{2kpi}{4}right) i},~ k=0,1,2,3.

3. Для нахождения искомого решения нет необходимости выписывать все значения корня. Нужно выбрать значение k~(k=0,1,2,3), при котором выполняется условие frac{pi}{2}&lt; arg zleqslantpi (соответствующая точка — точка второй четверти). Удобно при этом использовать чертеж (рис. 1.9).

Условию поставленной задачи удовлетворяет корень z_3 (при k=2): z_3= sqrt[LARGE{8}]{2}e^{left(pi-frac{pi}{16}right)i}= sqrt[LARGE{8}]{2}e^{frac{15pi}{16},i}.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Содержание:

Хроника возникновения комплексных чисел:

Комплексные числа - определение и вычисление с примерами решения

Исследование.

1) Подтвердите примерами справедливость следующих высказываний. Если высказывание ложно, то сделайте так, чтобы оно стало истинным.

  • а) Если а и b – натуральные числа, то корень уравнения х + а = b также является натуральным числом.
  • б) Если а и b -целые числа, то корень уравнения ах = b также является целым числом
  • в) Если а неотрицательное рациональное число, то корень уравнения х1 = а также является рациональным числом.
  • г) Если а неотрицательное действительное число, то корень уравнения х2 = а также является действительным числом.

2) Существует ли действительное число квадрат которого равен -1?

3)

  • а) Существуют ли действительные корни уравнения х2 = а при Комплексные числа - определение и вычисление с примерами решения
  • б) Можно ли решить эту задачу расширив множество действительных чисел?

4) Существует ли однозначное соответствие между множеством действительных чисел и множеством точек на числовой оси? А какие числа соответствуют точкам на координатной плоскости?

На множестве действительных чисел уравнение х2 = -1 не имеет решений. Значит, мы должны расширить множество действительных чисел так, чтобы корни этого уравнения входили в него. Для этого введём новое число и примем, что оно является корнем уравнения х2 + 1 = 0, т.е. Комплексные числа - определение и вычисление с примерами решения. Отсюда Комплексные числа - определение и вычисление с примерами решения. После этого, корнями уравнения х2 + 1 = 0 являются числа Комплексные числа - определение и вычисление с примерами решения. Число Комплексные числа - определение и вычисление с примерами решения называется мнимой единицей.

Расширим множество действительных чисел так, чтобы в него входили все действительные числа и число Комплексные числа - определение и вычисление с примерами решения, и были справедливы все свойства сложения и умножения. Для произвольных действительных чисел а и b введём “произведение” Комплексные числа - определение и вычисление с примерами решения и “сумму” Комплексные числа - определение и вычисление с примерами решения, и назовём комплексным числом следующее выражение Комплексные числа - определение и вычисление с примерами решения. Выражение вида Комплексные числа - определение и вычисление с примерами решения называется комплексным числом, где а и b – действительные числа, Комплексные числа - определение и вычисление с примерами решения мнимая единица.Комплексные числа можно обозначать через Комплексные числа - определение и вычисление с примерами решения и т.д.Например, Комплексные числа - определение и вычисление с примерами решения. Запись Комплексные числа - определение и вычисление с примерами решения называется алгебраической формой комплексного числа, а является действительной частью, b – мнимой частью комплексного числа Комплексные числа - определение и вычисление с примерами решения, и записывается так: Комплексные числа - определение и вычисление с примерами решения. При а = 0 получается число вида Комплексные числа - определение и вычисление с примерами решения. Эти числа называются чисто мнимыми числами. При а = 0, b = 0 комплексное число равно нулю и наоборот, если а + Комплексные числа - определение и вычисление с примерами решения = 0, то а = 0 и b = 0.

Следствие: для комплексных чисел а + Комплексные числа - определение и вычисление с примерами решения и с + Комплексные числа - определение и вычисление с примерами решения равенство

а + Комплексные числа - определение и вычисление с примерами решения = с + Комплексные числа - определение и вычисление с примерами решения справедливо тогда и только тогда, если а = с, b = d.

Пример. Из равенства Комплексные числа - определение и вычисление с примерами решения найдите х и у.

Решение: Из равенства действительных и мнимых частей получаем: х = 5

Комплексные числа - определение и вычисление с примерами решения.

Суммой комплексных чисел Комплексные числа - определение и вычисление с примерами решения называется комплексное число Комплексные числа - определение и вычисление с примерами решения

Действия над комплексными числами

Произведением комплексных чисел Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения называется число Комплексные числа - определение и вычисление с примерами решения, т.е.

Комплексные числа - определение и вычисление с примерами решения

Значит, два комплексных числа умножаются по правилу умножения многочленов при условии, что Комплексные числа - определение и вычисление с примерами решения.

Пример №1

Комплексные числа - определение и вычисление с примерами решения

Рассмотрим частные случаи степеней мнимых единиц: Комплексные числа - определение и вычисление с примерами решения

Как видно, натуральные степени мнимой единицы Комплексные числа - определение и вычисление с примерами решения равны Комплексные числа - определение и вычисление с примерами решения, -1, –Комплексные числа - определение и вычисление с примерами решения‘, 1 и повторяются через каждые четыре шага, т.е.справедливо равенство Комплексные числа - определение и вычисление с примерами решения

Пример №2

Вычислите: а) Комплексные числа - определение и вычисление с примерами решения б) Комплексные числа - определение и вычисление с примерами решения

Решение: а) Комплексные числа - определение и вычисление с примерами решения б) Комплексные числа - определение и вычисление с примерами решения

Число Комплексные числа - определение и вычисление с примерами решения называется сопряжённым для числа Комплексные числа - определение и вычисление с примерами решения и обозначается как : Комплексные числа - определение и вычисление с примерами решения. Ясно, что если число Комплексные числа - определение и вычисление с примерами решения является сопряжённым для числа Комплексные числа - определение и вычисление с примерами решения, то число Комплексные числа - определение и вычисление с примерами решения является сопряжённым для числа Комплексные числа - определение и вычисление с примерами решения. Поэтому, числа Комплексные числа - определение и вычисление с примерами решения называются взаимно сопряжёнными комплексными числами. Действительные части взаимно сопряжённых чисел равны, а мнимые части являются противоположными числами.

Произведение взаимно сопряжённых комплексных чисел является действительным числом: Комплексные числа - определение и вычисление с примерами решения.

В частном случае, сопряжённым для действительного числа является само число, для мнимого – произведение числа и (-1).

Для каждого комплексного числа Комплексные числа - определение и вычисление с примерами решения существует противоположное число Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения. Для каждого, отличного от нуля, комплексного числа Комплексные числа - определение и вычисление с примерами решения существует противоположное. Комплексные числа - определение и вычисление с примерами решения

Вычитание и частное комплексных чисел определяется равенствами:

Комплексные числа - определение и вычисление с примерами решения

Для нахождения отношения комплексных чисел, удобнее числитель и знаменатель умножить на число, сопряжённое для знаменателя .

Пример №3

Найдём разность и отношение чисел Комплексные числа - определение и вычисление с примерами решения.

Решение: Комплексные числа - определение и вычисление с примерами решения

Все свойства арифметических операций для действительных чисел, справедливы для комплексных чисел. Как следствие, получаем, что любые алгебраические тождества справедливы для множества комплексных чисел. Например, для комплексных чисел Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения справедливы тождества

Комплексные числа - определение и вычисление с примерами решения

Квадратный корень комплексного числа

Число, квадрат которого равен Комплексные числа - определение и вычисление с примерами решения называется квадратным корнем комплексного числа Комплексные числа - определение и вычисление с примерами решения и обозначается как Комплексные числа - определение и вычисление с примерами решения.

Пример №4

Найдём квадратный корень комплексного числа Комплексные числа - определение и вычисление с примерами решения

Решение: Пусть Комплексные числа - определение и вычисление с примерами решения. Возведём обе части равенства в квадрат: Комплексные числа - определение и вычисление с примерами решения

Из равенства действительных и мнимых частей имеем:

Комплексные числа - определение и вычисление с примерами решения

Отсюда получаем решение (2; -1) и (-2; 1). Значит, Комплексные числа - определение и вычисление с примерами решения

Примечание: В отличии от действительных чисел, говоря о квадратном корне комплексного числа, имеется в виду каждое из двух значений, различающихся знаками. Корни квадратного уравнения Комплексные числа - определение и вычисление с примерами решения для множества комплексных чисел находится по тому же правилу, что и для действительных чисел. Комплексные числа - определение и вычисление с примерами решения

Пример №5

Решим уравнение Комплексные числа - определение и вычисление с примерами решения.

Решение:

Комплексные числа - определение и вычисление с примерами решения.

Комплексные числа - определение и вычисление с примерами решения

Легко можно проверить, что также в силе остаётся и теорема Виета. Для квадратного уравнения с действительными коэффициентами комплексные корни являются сопряжёнными числами. Комплексное число Комплексные числа - определение и вычисление с примерами решения задаётся парой действительных чисел (а; b) и эта пара соответствует определённым точкам на координатной плоскости. Поставим в соответствие числу Комплексные числа - определение и вычисление с примерами решения точку А (а; b) и обозначим её через Комплексные числа - определение и вычисление с примерами решения. Каждая точка на координатной плоскости изображает комплексное число и наоборот, каждое комплексное число на координатной плоскости, соответствует одной точке. Действительные числа располагаются на оси абсцисс, чисто мнимые числа на оси ординат. Поэтому ось абсцисс называется действительной осью, ось ординат – мнимой, а плоскость – комплексной плоскостью.

Пример:

Комплексные числа - определение и вычисление с примерами решения

Точки, соответствующие комплексно сопряжённым числам располагаются симметрично оси абсцисс.

Модуль и аргумент комплексного числа

Тригонометрическая форма комплексного числа

Пусть на комплексной плоскости комплексному числу Комплексные числа - определение и вычисление с примерами решения соответствует точка М(а; b). Обозначим расстояние ОМ через R, угол между лучом ОМ и положительным направлением оси абсцисс через Комплексные числа - определение и вычисление с примерами решения. Из Комплексные числа - определение и вычисление с примерами решения по теореме Пифагора имеем: Комплексные числа - определение и вычисление с примерами решения

Отсюда: Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Расстояние, от начала координат до точки соответствующей комплексному числу, называется модулем комплексного числа и обозначается как: Комплексные числа - определение и вычисление с примерами решения.

Комплексные числа - определение и вычисление с примерами решения

Угол, образованный конечной стороной угла поворота луча ОМ,

называется аргументом Комплексные числа - определение и вычисление с примерами решения комплексного числа Комплексные числа - определение и вычисление с примерами решения.

Из Комплексные числа - определение и вычисление с примерами решения: Комплексные числа - определение и вычисление с примерами решения

Модуль числа Комплексные числа - определение и вычисление с примерами решения имеет единственное значение, а аргумент Комплексные числа - определение и вычисление с примерами решения находится с точностью Комплексные числа - определение и вычисление с примерами решения. То есть, если одно из значений аргумента равно Комплексные числа - определение и вычисление с примерами решения, то другое будет иметь вид Комплексные числа - определение и вычисление с примерами решения.

Для аргумента комплексного числа, обычно берётся угол принадлежащий промежутку [0; Комплексные числа - определение и вычисление с примерами решения).

Пример №6

Найдём модуль и аргумент комплексного числа Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Решение: Из того, чтоКомплексные числа - определение и вычисление с примерами решения следует,что Комплексные числа - определение и вычисление с примерами решения

и принимая внимание, что угол Комплексные числа - определение и вычисление с примерами решения расположен в I четверти,

получим:Комплексные числа - определение и вычисление с примерами решения

Из формул Комплексные числа - определение и вычисление с примерами решения , Комплексные числа - определение и вычисление с примерами решения получаем: Комплексные числа - определение и вычисление с примерами решения

Тогда Комплексные числа - определение и вычисление с примерами решения

Для комплексного числа Комплексные числа - определение и вычисление с примерами решения число Комплексные числа - определение и вычисление с примерами решения называется тригонометрической формой комплексного числа.

В частном случае для модуля и аргумента числа Комплексные числа - определение и вычисление с примерами решения имеем:

Пример №7

Запишем комплексное число Комплексные числа - определение и вычисление с примерами решения

в тригонометрической форме.

Решение: Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Так как угол Комплексные числа - определение и вычисление с примерами решения принадлежит II четверги, то

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Действия над комплексными числами, заданными в тригонометрической форме

Найдём произведение комплексных чисел, заданных в тригонометрической форме Комплексные числа - определение и вычисление с примерами решения.

Комплексные числа - определение и вычисление с примерами решения

Чтобы найти произведение комплексных чисел, заданных в тригонометрической форме, надо перемножить их модули и сложить их аргументы.

Пример:

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Теперь найдём отношение Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Модуль отношение равен отношению модулей делимого и делителя, а аргумент равен разности аргументов делимого и делителя.

Пример:

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Возвести число Комплексные числа - определение и вычисление с примерами решения в степень с натуральным показателем n можно умножив n раз число Комплексные числа - определение и вычисление с примерами решения

Модуль степени комплексного числа с натуральным показателем равен степени модуля основания, а аргумент равен аргументу основания умноженному на показатель степени n.

Пример:

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Формулу Комплексные числа - определение и вычисление с примерами решения называют формулой Муавра. При помощи этой формулы можно найти синус и косинус n кратных углов через синус и косинус одинарных углов. Например, при n = 2 имеем:

Комплексные числа - определение и вычисление с примерами решения

Отсюда

Комплексные числа - определение и вычисление с примерами решения

Из равенства двух комплексных чисел имеем:

Комплексные числа - определение и вычисление с примерами решения

Аналогичным образом можно написать формулы для Комплексные числа - определение и вычисление с примерами решения.

Корень n-ой степени комплексного числа

Найдём значение выражения Комплексные числа - определение и вычисление с примерами решения.

Запишем в виде Комплексные числа - определение и вычисление с примерами решения и найдём корень n – ой степени

виде Комплексные числа - определение и вычисление с примерами решения.

Возведём каждую из двух сторон в n-ую степень:

Комплексные числа - определение и вычисление с примерами решения

Если два комплексных числа, заданных в тригонометрической форме равны, то их модули равны, а аргументы отличаются на Комплексные числа - определение и вычисление с примерами решения.

Это значит,Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Таким образом, Комплексные числа - определение и вычисление с примерами решения

Отсюда при Комплексные числа - определение и вычисление с примерами решения для первых Комплексные числа - определение и вычисление с примерами решения значений полученного числа равны значениям, полученным при Комплексные числа - определение и вычисление с примерами решения.

Обозначим корни Комплексные числа - определение и вычисление с примерами решения– ой степени единицы через Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Как видно, модули корней Комплексные числа - определение и вычисление с примерами решения-ой степени равны 1, аргументы отличаются друг от друга в Комплексные числа - определение и вычисление с примерами решения раз. То есть, эти числа расположены внутри единичной окружности, центр которой совпадает с началом координат, и соответствуют комплексным числам, являющимися вершинами правильного Комплексные числа - определение и вычисление с примерами решения-угольника.

Комплексные числа - определение и вычисление с примерами решения

Корнем Комплексные числа - определение и вычисление с примерами решения-ой степени комплексного числа Комплексные числа - определение и вычисление с примерами решения называется такое число Комплексные числа - определение и вычисление с примерами решения, что Комплексные числа - определение и вычисление с примерами решения. Если Комплексные числа - определение и вычисление с примерами решения, то для корня Комплексные числа - определение и вычисление с примерами решения-ой степени существуют Комплексные числа - определение и вычисление с примерами решения различных значений.

Запишем Комплексные числа - определение и вычисление с примерами решенияв виде

Комплексные числа - определение и вычисление с примерами решения .

Для Комплексные числа - определение и вычисление с примерами решения получим:

Комплексные числа - определение и вычисление с примерами решения

Из равенства двух комплексных чисел получим:

Комплексные числа - определение и вычисление с примерами решения

Значения при Комплексные числа - определение и вычисление с примерами решения отличаются от первых Комплексные числа - определение и вычисление с примерами решения значений на Комплексные числа - определение и вычисление с примерами решения

Поэтому, должно соблюдаться следующее:Комплексные числа - определение и вычисление с примерами решения

Формула корни n-ой степени комплексного числа

Если Комплексные числа - определение и вычисление с примерами решения, то

Комплексные числа - определение и вычисление с примерами решения

Пример №8

Найдём все значения Комплексные числа - определение и вычисление с примерами решения

Решение: пусть Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Отсюда Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

При Комплексные числа - определение и вычисление с примерами решения

При Комплексные числа - определение и вычисление с примерами решения

При Комплексные числа - определение и вычисление с примерами решения

Для чего нужны комплексные числа

Комплексные числа возникают в связи с задачей решения квадратных уравнений. Так, оставаясь в множестве действительных чисел, невозможно решить квадратное уравнение, дискриминант которого меньше нуля.

Комплексные числа необходимы в различных приложениях математики. В частности, теория функций комплексной переменной является действенным инструментом при использовании математических методов в различных областях науки.

Арифметические операции над комплексными числами

Комплексным числом называется выражение вида Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения— действительные числа, Комплексные числа - определение и вычисление с примерами решения — мнимая единица.

Число Комплексные числа - определение и вычисление с примерами решения называется действительной частью числа Комплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения (от франц. reele — «действительный»), а число Комплексные числа - определение и вычисление с примерами решения — мнимой частью числа Комплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения (от франц. imaginaire — «мнимый»), т.е. Комплексные числа - определение и вычисление с примерами решения

Действительное числоКомплексные числа - определение и вычисление с примерами решения является частным случаем комплексного Комплексные числа - определение и вычисление с примерами решения при Комплексные числа - определение и вычисление с примерами решения Комплексные числа вида Комплексные числа - определение и вычисление с примерами решения не являющиеся действительными, т.е. при Комплексные числа - определение и вычисление с примерами решения называются мнимыми, а при Комплексные числа - определение и вычисление с примерами решения т.е. числа вида Комплексные числа - определение и вычисление с примерами решениячисто мнимыми.

Числа Комплексные числа - определение и вычисление с примерами решенияназываются сопряженными.

Два комплексных числа Комплексные числа - определение и вычисление с примерами решения называются равными, если равны их действительные и мнимые части, т.е. Комплексные числа - определение и вычисление с примерами решения еслиКомплексные числа - определение и вычисление с примерами решения В частности, Комплексные числа - определение и вычисление с примерами решения если Комплексные числа - определение и вычисление с примерами решения

Арифметические операции на множестве комплексных чисел определяются следующим образом.

1.Сложение (вычитание) комплексных чисел

Комплексные числа - определение и вычисление с примерами решения

2. Умножение комплексных чисел

Комплексные числа - определение и вычисление с примерами решения

В частности,

Комплексные числа - определение и вычисление с примерами решения

т.е. мнимая единица есть число, квадрат которого равен — 1.

3. Деление двух комплексных чисел

Комплексные числа - определение и вычисление с примерами решения

Нетрудно убедиться в том, что все арифметические операции (16.1)-(16.3) над комплексными числами определяются естественным образом из правил сложения и умножения многочленов Комплексные числа - определение и вычисление с примерами решения если считать Комплексные числа - определение и вычисление с примерами решенияНапример, произведение комплексных чисел (16.2) есть

Комплексные числа - определение и вычисление с примерами решения

Пример №9

Даны комплексные числа Комплексные числа - определение и вычисление с примерами решения

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения (учли, что Комплексные числа - определение и вычисление с примерами решения).

Комплексные числа - определение и вычисление с примерами решения Умножая числитель и знаменатель на сопряженное делителю комплексное число Комплексные числа - определение и вычисление с примерами решения, получим

Комплексные числа - определение и вычисление с примерами решения

Если для геометрического изображения действительных чисел используются точки числовой прямой, то для изображения комплексных чисел служат точки координатной плоскости Комплексные числа - определение и вычисление с примерами решения

Плоскость называется комплексной, если каждому комплексному числу Комплексные числа - определение и вычисление с примерами решения ставится в соответствие точка плоскости Комплексные числа - определение и вычисление с примерами решения причем это соответствие взаимно однозначное (рис. 16.1).

Комплексные числа - определение и вычисление с примерами решения

Оси Комплексные числа - определение и вычисление с примерами решения, на которых расположены действительные числаКомплексные числа - определение и вычисление с примерами решения и чисто мнимые числа Комплексные числа - определение и вычисление с примерами решенияназываются соответственно действительной и мнимой осями.

Тригонометрическая и показательная формы комплексного числа

С каждой точкой Комплексные числа - определение и вычисление с примерами решения комплексной плоскости связан радиус-вектор этой точки Комплексные числа - определение и вычисление с примерами решения, длина которого Комплексные числа - определение и вычисление с примерами решения называется модулем комплексного числа Комплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения (см. рис. 16.1):

Комплексные числа - определение и вычисление с примерами решения

Угол Комплексные числа - определение и вычисление с примерами решения образованный радиусом-вектором Комплексные числа - определение и вычисление с примерами решения с осью Комплексные числа - определение и вычисление с примерами решения называется аргументом комплексного числа Комплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения Из значений Комплексные числа - определение и вычисление с примерами решения выделяется главное значение Комплексные числа - определение и вычисление с примерами решения удовлетворяющее условию Комплексные числа - определение и вычисление с примерами решения Например, Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Очевидно (см. рис. 16.1), что

Комплексные числа - определение и вычисление с примерами решения

Следовательно, комплексное числоКомплексные числа - определение и вычисление с примерами решения можно представить как

Комплексные числа - определение и вычисление с примерами решения

Представление комплексного числа в виде (16.6), где Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решенияназывается тригонометрической формой комплексного числа.

Сформулируем некоторые свойства арифметических операций над комплексными числами.

1. При сложении (вычитании) комплексных чисел их радиусы-векторы складываются (вычитаются) по правилу параллелограмма.

На рис. 16.2 показаны радиусы-векторы комплексных чиселКомплексные числа - определение и вычисление с примерами решенияих суммы Комплексные числа - определение и вычисление с примерами решения и разности Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

2. Модуль произведения (частного) двух комплексных чисел равен произ ведению (частному) модулей этих чисел, а его аргумент — сумме (разности) аргументов этих чисел, т.е.

Комплексные числа - определение и вычисление с примерами решения

Геометрически умножение числаКомплексные числа - определение и вычисление с примерами решения означает изменение длины радиуса-вектора Комплексные числа - определение и вычисление с примерами решения раз и его поворот вокруг точки Комплексные числа - определение и вычисление с примерами решения против часовой стрелки на угол Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Пример №10

Комплексные числа Комплексные числа - определение и вычисление с примерами решения представить в тригонометрической форме и найти Комплексные числа - определение и вычисление с примерами решения

Решение:

По формуле (16.4) найдем модуль комплексного числа Комплексные числа - определение и вычисление с примерами решенияа из соотношений (16.5) Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решенияполучим аргумент числа Комплексные числа - определение и вычисление с примерами решения (берем его главное значение): Комплексные числа - определение и вычисление с примерами решения

Аналогично Комплексные числа - определение и вычисление с примерами решения т.е. Комплексные числа - определение и вычисление с примерами решения

Теперь по формулам (16.7) и (16.8)

Комплексные числа - определение и вычисление с примерами решения

Так как в соответствии с формулами (16.7) и (16.8) при умножении комплексных чисел их модули перемножаются, а аргументы складываются, легко получить формулу возведения комплексного числа в натуральную степень Комплексные числа - определение и вычисление с примерами решения, известную как формула Муавра:

Комплексные числа - определение и вычисление с примерами решения

Пример №11

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

По формуле Муавра (16.9)

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения Обратимся к извлечению корня из комплексного числа.

Пусть

Комплексные числа - определение и вычисление с примерами решения

Тогда, используя определение корня и формулу Муавра (16.9), получим

Комплексные числа - определение и вычисление с примерами решения

или

Комплексные числа - определение и вычисление с примерами решения

Отсюда следует, что

Комплексные числа - определение и вычисление с примерами решения

Итак,Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

При Комплексные числа - определение и вычисление с примерами решениязначения корня уже будут повторяться.

Таким образом, корень Комплексные числа - определение и вычисление с примерами решения-й степени из комплексного числа (не равного нулю) имеет Комплексные числа - определение и вычисление с примерами решения различных значений.

Пример №12

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

В примере 16.2 было получено

Комплексные числа - определение и вычисление с примерами решения

откуда получаем три значения корня

Комплексные числа - определение и вычисление с примерами решения

На комплексной плоскости найденные значения корня представляют равноотстоящие друг от друга точки Комплексные числа - определение и вычисление с примерами решения расположенные на окружности радиуса Комплексные числа - определение и вычисление с примерами решения (рис. 16.3). ►

Комплексные числа - определение и вычисление с примерами решения

Связь между тригонометрическими и показательными функциями выражается формулой Эйлера.

Комплексные числа - определение и вычисление с примерами решения

Отсюда следует показательная форма комплексного числа. Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

В заключение отметим, что в показательной форме, так же как и в тригонометрической, легко проводить операции умножения, деления, возведения в степень, извлечение корня из комплексных чисел.

Формы записи комплексного числа

Решение простейшего квадратного уравнения Комплексные числа - определение и вычисление с примерами решения невозможно в области вещественных чисел. Однако, если выполнить решение формально, то получим Комплексные числа - определение и вычисление с примерами решения

Определение: Выражение Комплексные числа - определение и вычисление с примерами решения называется мнимой единицей.

Определение: Комплексным числом называется выражение видаКомплексные числа - определение и вычисление с примерами решения где х,у

Определение: Приведенная форма записи комплексного числа называется алгебраической.

Определение: Два комплексных числа Комплексные числа - определение и вычисление с примерами решения называются равными, если равны их вещественные и мнимые части, т.е. Комплексные числа - определение и вычисление с примерами решения

Определение: Комплексное число называется нулевым, если вещественная и мнимая части равны нулю.

Определение: Комплексно-сопряженным к комплексному числу Комплексные числа - определение и вычисление с примерами решения называется комплексное число Комплексные числа - определение и вычисление с примерами решения

Пример №13

Записать комплексно-сопряженное число к комплексному числу Комплексные числа - определение и вычисление с примерами решения

Решение:

Согласно определению комплексно-сопряженного числа получаем Комплексные числа - определение и вычисление с примерами решения

Замечание: Двойное комплексное сопряжение приводит к исходному комплекс- ному числу, т.е. Комплексные числа - определение и вычисление с примерами решения

Решение квадратных уравнений с отрицательным дискриминантом невозможно в области вещественных чисел, так как нельзя извлекать корень четной степени из отрицательного числа на множестве действительных чисел. Однако это ограничение снимается в области комплексных чисел.

Пример №14

Решить квадратное уравнение Комплексные числа - определение и вычисление с примерами решения

Решение:

Вычислим дискриминант уравнения Комплексные числа - определение и вычисление с примерами решения таким образом, Комплексные числа - определение и вычисление с примерами решения Следовательно, Комплексные числа - определение и вычисление с примерами решения

Замечание: Решение квадратного уравнения с отрицательным дискриминантом всегда состоит из комплексно-сопряженных корней.

Комплексное число Комплексные числа - определение и вычисление с примерами решения изобретается на комплексной плоскости Комплексные числа - определение и вычисление с примерами решения в виде вектора, соединяющего начало координат с точкой М(х; у) (Рис. 2): Комплексные числа - определение и вычисление с примерами решения

Рис. 2. Изображение комплексного числа на комплексной плоскости.

Пример №15

Изобразить на комплексной плоскости число z = 2-3i (Рис. 3). Комплексные числа - определение и вычисление с примерами решения

Решение:

Рис. 3. Изображение комплексного Комплексные числа - определение и вычисление с примерами решения на комплексной плоскости. Если перейти от декартовой системы координат к полярной системе отсчета, т.е. Комплексные числа - определение и вычисление с примерами решения то комплексное число Комплексные числа - определение и вычисление с примерами решения

Определение: Полученная форма записи комплексного числа называется тригонометрической.

Обратный переход от полярной системы отсчета к декартовой системе координат осуществляется по формулам:Комплексные числа - определение и вычисление с примерами решенияпри этом Комплексные числа - определение и вычисление с примерами решения является модулем, а Комплексные числа - определение и вычисление с примерами решенияаргументом комплексного числа z .

Замечание: Аргумент комплексного числа Комплексные числа - определение и вычисление с примерами решения определяется в зависимости от знаков вещественной и мнимой частей:

Комплексные числа - определение и вычисление с примерами решения

Действия с комплексными числами

1. Для того чтобы сложить (найти разность) два комплексных числа Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения сложить (найти разность) отдельно действительные и мнимые части, Комплексные числа - определение и вычисление с примерами решения

Пример №16

Найти сумму и разность чисел Комплексные числа - определение и вычисление с примерами решения Изобразить все числа на комплексной плоскости.

Решение:

Найдем сумму заданных комплексных чисел Комплексные числа - определение и вычисление с примерами решения Вычислим разность данных чисел Комплексные числа - определение и вычисление с примерами решения Изобразим заданные и полученные числа на комплексной плоскости (Рис. 4):

Комплексные числа - определение и вычисление с примерами решения

Рис. 4. Изображение комплексных чисел на комплексной плоскости.

Замечание: Отметим, что Комплексные числа - определение и вычисление с примерами решения

2. Для того чтобы найти произведение двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения надо их перемножить, как два выражения с учетом того, что Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Замечание: Отметим, что Комплексные числа - определение и вычисление с примерами решения

Замечание: Произведение комплексных чисел в тригонометрической форме записи имеет вид Комплексные числа - определение и вычисление с примерами решения Из полученной формулы видно, что модули комплексных чисел перемножаются, а аргументы складываются. Следовательно, n-ая степень любого комплексного числа будет иметь вид Комплексные числа - определение и вычисление с примерами решения При извлечении корня п -ой степени применяют формулу Муавра Комплексные числа - определение и вычисление с примерами решения где величина Комплексные числа - определение и вычисление с примерами решения

3. Деление комплексного числа Комплексные числа - определение и вычисление с примерами решения на комплексное число Комплексные числа - определение и вычисление с примерами решения осуществляется так Комплексные числа - определение и вычисление с примерами решения

Замечание: Деление этих чисел в тригонометрической форме записи имеет вид: Комплексные числа - определение и вычисление с примерами решения т.е. при делении комплексных чисел берут отношение модулей этих чисел, а из аргумента первого числа вычитают аргумент второго комплексного числа.

Показательная форма записи комплексного числа

Известно, что любую дифференцируемую функцию можно представить по формуле Тейлора-Маклорена (см. Лекцию № 22, Первый семестр), например, Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Последняя формула называется формулой Эйлера. Используя эту формулу,

запишем комплексное число Комплексные числа - определение и вычисление с примерами решения в показательной форме: Комплексные числа - определение и вычисление с примерами решения Отсюда видно, что при нахождении произведения и отношения комплексных чисел получаемКомплексные числа - определение и вычисление с примерами решения

Комплексные числа и арифметические операции

Как известно, под комплексным числом понимается выражение вида

Комплексные числа - определение и вычисление с примерами решения

где х и у — действительные числа, a i — мнимая единица.

Числа вида Комплексные числа - определение и вычисление с примерами решения отождествляются с действительными числами; в частности, Комплексные числа - определение и вычисление с примерами решения. Числа вида 0 + iy = iy называются чисто мнимыми.

Действительные числа х и у называются соответственно действительной и мнимой частями числа z и обозначаются следующим образом:

Комплексные числа - определение и вычисление с примерами решения

Под модулем комплексного числа z понимается неотрицательное число

Комплексные числа - определение и вычисление с примерами решения

Сопряженным числом Комплексные числа - определение и вычисление с примерами решения к числу (1) называется комплексное число

Комплексные числа - определение и вычисление с примерами решения

Таким образом,

Комплексные числа - определение и вычисление с примерами решения

На множестве комплексных чисел следующим образом определено отношение равенства двух чисел, а также операции сложения, вычитания, умножения и деления.

I. Пусть z1=x1+iy1 и z2=x2+iy2.Тогда

Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решенияRez1 = Re z2, Im z1 = Im z2

В частности, z = 0 Комплексные числа - определение и вычисление с примерами решения Re z = 0, Im z = 0.

II. z1±z2= (x1± x2) + i(y1 ± y2)-

Отсюда следует, что

Re (z1 ± z2) – Re z1 ± Re z2,

Im (z1 ± z2) – Imz1 ± 1mz2

III. z1z2 = (x1x2 – y1y2) + i(x1y2+x2y1).

Отсюда, в частности, получаем важное соотношение

Комплексные числа - определение и вычисление с примерами решения=Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения=Комплексные числа - определение и вычисление с примерами решения+Комплексные числа - определение и вычисление с примерами решения=-1

Заметим, что правило умножения III получается формально путем умножения двучленов Комплексные числа - определение и вычисление с примерами решения + Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения +Комплексные числа - определение и вычисление с примерами решения с учетом (7).

Очевидно также, что для Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения имеем

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения=Комплексные числа - определение и вычисление с примерами решения=Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Легко проверить следующие свойства:

1)Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

  • Заказать решение задач по высшей математике

Комплексная плоскость

Рассмотрим плоскость с прямоугольной системой координат Оху. Каждому комплексному числу z = х + iy может быть поставлена в соответствие точка плоскости z(x, у) (рис. 161), причем это соответствие взаимно однозначно. Плоскость, на которой реализовано такое соответствие, называют комплексной плоскостью, и вместо комплексных чисел говорят о точках комплексной плоскости.

Комплексные числа - определение и вычисление с примерами решения

На оси Ох расположены действительные числа: z =Комплексные числа - определение и вычисление с примерами решения:, поэтому она называется действительной осью. На оси Оу расположены чисто мнимые числа z = 0 + iy = iy, она носит название мнимой оси.

Заметим, что г = |z| представляет собой расстояние точки г от начала координат.

С каждой точкой z связан радиус-вектор этой точки Oz; угол, образованный радиусом-вектором точки z с осью Ох, называется аргументом ф = Arg z этой точки. Здесь Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения. Для нулевой точки z = 0 аргумент произволен. Наименьшее по модулю значение Arg z называется главным значением его и обозначается через arg z:

Комплексные числа - определение и вычисление с примерами решения

Для аргумента ср имеем (рис. 161)

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

Примеры: 1) arg 2 = 0; 2) arg (-1) = Комплексные числа - определение и вычисление с примерами решения; 3) arg i = Комплексные числа - определение и вычисление с примерами решения.

Модуль г и аргумент ф комплексного числа z можно рассматривать (рис. 161) как полярные координаты точки z. Отсюда получаем

Комплексные числа - определение и вычисление с примерами решения

Таким образом, имеем тригонометрическую форму комплексного числа

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

Теорема: При сложении комплексных чисел их радиусы-векторы складываются (по правилу параллелограмма).

Действительно, если число Комплексные числа - определение и вычисление с примерами решения соответствует точке с координатами Комплексные числа - определение и вычисление с примерами решения, а число Комплексные числа - определение и вычисление с примерами решения — точке с координатами Комплексные числа - определение и вычисление с примерами решения то числу Комплексные числа - определение и вычисление с примерами решения отвечает точка Комплексные числа - определение и вычисление с примерами решения Так как (рис. 162) заштрихованные прямоугольные треугольники с катетами х2 и у2 равны между собой, то четырехугольник с вершинами 0, Комплексные числа - определение и вычисление с примерами решения есть параллелограмм. Следовательно, радиус-вектор точки Комплексные числа - определение и вычисление с примерами решения является суммой радиусов-векторов точек Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения.

Комплексные числа - определение и вычисление с примерами решения

Следствие. Так как Комплексные числа - определение и вычисление с примерами решения есть длина вектора Комплексные числа - определение и вычисление с примерами решения, то

Комплексные числа - определение и вычисление с примерами решения

Теорема: При вычитании комплексных чисел их радиусы-векторы вычитаются. Так как Комплексные числа - определение и вычисление с примерами решения, то Комплексные числа - определение и вычисление с примерами решения равен второй диагонали параллелограмма, построенного на векторах Комплексные числа - определение и вычисление с примерами решения(рис. 163), т. е. равен разности радиусов-векторов точек Комплексные числа - определение и вычисление с примерами решения.

Следствие. Расстояние между двумя точками Комплексные числа - определение и вычисление с примерами решения равно

Комплексные числа - определение и вычисление с примерами решения

Теоремы о модуле и аргументе

Теорема: Модуль произведения комплексных чисел равен произведению модулей этих чисел, а аргумент произведения равен сумме аргументов сомножителей. Действительно, если

Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

то имеем

Комплексные числа - определение и вычисление с примерами решения

Отсюда

Комплексные числа - определение и вычисление с примерами решения

и

Комплексные числа - определение и вычисление с примерами решения

где значения многозначной функции Arg, стоящие в левой и правой частях равенства (1), следует подбирать соответствующим образом. Это замечание надо иметь в виду и для дальнейшего.

Следствие. Модуль целой положительной степени комплексного числа равен такой же степени модуля этого числа, а аргумент степени равен аргументу числа, умноженному на показатель степени, т. е.

Комплексные числа - определение и вычисление с примерами решения

(Комплексные числа - определение и вычисление с примерами решения — целое положительное число).

Доказательство непосредственно вытекает из рассмотрения произведения равных сомножителей.

Пример №17

Построить точку Комплексные числа - определение и вычисление с примерами решения.

Решение:

Имеем

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Следовательно, при умножении на i вектор Комплексные числа - определение и вычисление с примерами решения поворачивается на прямой угол против хода часовой стрелки (рис. 164).

Комплексные числа - определение и вычисление с примерами решения

Теорема: Модуль частного двух комплексных чисел равен частному модулей этих чисел, а аргумент частного равен разности аргументов делимого и делителя. Пусть

Комплексные числа - определение и вычисление с примерами решения

Так как

Комплексные числа - определение и вычисление с примерами решения

то на основании теоремы 1 имеем

Комплексные числа - определение и вычисление с примерами решения

ОтсюдаКомплексные числа - определение и вычисление с примерами решения

Извлечение корня из комплексного числа

Пусть

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения. Тогда на основании имеем

Комплексные числа - определение и вычисление с примерами решения

Отсюда получаем

Комплексные числа - определение и вычисление с примерами решения

Таким образом,

Комплексные числа - определение и вычисление с примерами решения

Заметим, что здесь под Комплексные числа - определение и вычисление с примерами решения понимается арифметическое значение корня.

Здесь в качестве числа k достаточно брать лишь значения Комплексные числа - определение и вычисление с примерами решения, так как при всех прочих значениях k получаются повторения уже найденных значений корня. Следовательно, окончательно имеем

Комплексные числа - определение и вычисление с примерами решения

Из формулы (4) следует, что корень Комплексные числа - определение и вычисление с примерами решения-й степени из любого комплексного числа Комплексные числа - определение и вычисление с примерами решения=0 имеет точно л значений.

Пример №18

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

Так как Комплексные числа - определение и вычисление с примерами решения, то на основании формулы (4) имеем

Комплексные числа - определение и вычисление с примерами решения

Отсюда

Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Точки Комплексные числа - определение и вычисление с примерами решения представляют собой равноотстоящие друг от друга точки, расположенные на окружности радиуса Комплексные числа - определение и вычисление с примерами решения (рис. 165).

Понятие функции комплексной переменной

Пусть даны две комплексные плоскости Оху (плоскость г) и O’uv (плоскость w).

Определение: Если каждой точке z Комплексные числа - определение и вычисление с примерами решения Е (Е — множество точек плоскости z) по некоторому закону f ставится в соответствие единственная точка w Комплексные числа - определение и вычисление с примерами решения Е’ (Е’ — множество точек плоскости w), то говорят, что w есть функция от z (однозначная)

Комплексные числа - определение и вычисление с примерами решения

с областью определения Е, значения которой принадлежат множеству Е’ (рис. 166). Если множество значений функции f(z) исчерпывает все множество Е то Е’ называется множеством значений (областью изменения) функции f(z). В этом случае пишут

Комплексные числа - определение и вычисление с примерами решения

Множества Е и Е’ можно изображать на одной комплексной плоскости.

Комплексные числа - определение и вычисление с примерами решения

Таким образом, каждая комплексная функция реализует однозначное в одну сторону отображение одного множества на другое. Благодаря этому комплексные функции находят свое применение в таких науках, как гидродинамика и аэродинамика, так как с их помощью удобно описывать «историю» движения объема жидкости (или газа).

Раздел математики, изучающий свойства комплексных функций, носит название теории функций комплексной переменной.

Пример:

Во что переходит сектор Е

Комплексные числа - определение и вычисление с примерами решения

(рис. 167, а) при отображении Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Решение:

Имеем

Комплексные числа - определение и вычисление с примерами решения

Поэтому отображенная область E’ представляет собой полукруг (рис. 167, б).

Определение комплексных чисел

Определение комплексного числа и основные функции комплексной переменной

Определение 7.1. Множеством комплексных чисел Комплексные числа - определение и вычисление с примерами решения называется множество пар действительных чисел Комплексные числа - определение и вычисление с примерами решения на котором введены операции сложения и умножения следующим образом. Если Комплексные числа - определение и вычисление с примерами решения то Комплексные числа - определение и вычисление с примерами решения Элементы множества Комплексные числа - определение и вычисление с примерами решения называются комплексными числами. Два комплексных числа Комплексные числа - определение и вычисление с примерами решения называются равными, если Комплексные числа - определение и вычисление с примерами решения

Операции сложения и умножения на множестве Комплексные числа - определение и вычисление с примерами решения обладают привычными свойствами (коммутативность сложения и умножения, ассоциативность сложения и умножения, дистрибутивность умножения относительно сложения).

Лемма 7.1. Для любых комплексных чисел Комплексные числа - определение и вычисление с примерами решения выполняются равенства

  • 1)Комплексные числа - определение и вычисление с примерами решения
  • 2)Комплексные числа - определение и вычисление с примерами решения
  • 3)Комплексные числа - определение и вычисление с примерами решения
  • 4)Комплексные числа - определение и вычисление с примерами решения
  • 5)Комплексные числа - определение и вычисление с примерами решения

□ Докажем, например, свойство 4 (свойство 5 доказывается аналогично, свойства 1, 2, 3 очевидны).

Пусть Комплексные числа - определение и вычисление с примерами решения Тогда

Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Два последних комплексных числа совпадают. После раскрытия скобок оказывается, что оба они равны

Комплексные числа - определение и вычисление с примерами решения

Определение 7.2. Комплексное число Комплексные числа - определение и вычисление с примерами решения отождествляется с действительным числом а.

Это определение оправдывается тем, что установлено взаимно однозначное соответствие между множеством пар Комплексные числа - определение и вычисление с примерами решения и множеством действительных чисел, сохраняющее операции сложения и умножения:

Комплексные числа - определение и вычисление с примерами решения

Такое соответствие в высшей алгебре называется изоморфизмом.

Определение 7.3. Комплексное число (0,1) обозначается буквой Комплексные числа - определение и вычисление с примерами решения

Легко видеть, что Комплексные числа - определение и вычисление с примерами решения т.е. Комплексные числа - определение и вычисление с примерами решения

Далее, так как Комплексные числа - определение и вычисление с примерами решения то пару Комплексные числа - определение и вычисление с примерами решения можно записать в виде Комплексные числа - определение и вычисление с примерами решения В дальнейшем комплексное число так и будем записывать: Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Определения операций при этом запишутся так:

Комплексные числа - определение и вычисление с примерами решения

Иными словами, комплексные числа можно складывать и умножать, пользуясь известными законами сложения и умножения (лемма 7.1), имея в виду, что Комплексные числа - определение и вычисление с примерами решения

Определение 7.4. Разностью двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения называется такое комплексное число Комплексные числа - определение и вычисление с примерами решения что Комплексные числа - определение и вычисление с примерами решения(обозначается Комплексные числа - определение и вычисление с примерами решения). Частным двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения (Комплексные числа - определение и вычисление с примерами решения) называется такое комплексное число z, что Комплексные числа - определение и вычисление с примерами решения (обозначается Комплексные числа - определение и вычисление с примерами решения).

Проверим, что эти операции однозначно определены.

□ Пусть Комплексные числа - определение и вычисление с примерами решения Для разности имеем: Комплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решенияТогда Комплексные числа - определение и вычисление с примерами решения Разность двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения определяется однозначно: Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения т.е. вычитание можно осуществлять непосредственно.

Для частного имеем: Комплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения Так как Комплексные числа - определение и вычисление с примерами решения то определитель этой системы Комплексные числа - определение и вычисление с примерами решения решая систему по правилу Крамера, получим: Комплексные числа - определение и вычисление с примерами решения   Частное двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения определено однозначно:

Комплексные числа - определение и вычисление с примерами решения

Такое деление можно осуществлять непосредственно:

Комплексные числа - определение и вычисление с примерами решения

Комплексное число Комплексные числа - определение и вычисление с примерами решения называется сопряжённым к числу Комплексные числа - определение и вычисление с примерами решения Мы воспользовались тем, что Комплексные числа - определение и вычисление с примерами решения Произведённые действия аналогичны домножению числителя и знаменателя дроби со знаменателем вида Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения на число Комплексные числа - определение и вычисление с примерами решения сопряжённое к знаменателю (такие действия применяются для избавления от иррациональности в знаменателе).

Определение 7.5. Пусть Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Тогда числа Комплексные числа - определение и вычисление с примерами решения называются соответственно действительной и мнимой частью числа Комплексные числа - определение и вычисление с примерами решения                  (Комплексные числа - определение и вычисление с примерами решения). Комплексное число Комплексные числа - определение и вычисление с примерами решения называется числом, сопряжённым к Комплексные числа - определение и вычисление с примерами решения Действительное неотрицательное число Комплексные числа - определение и вычисление с примерами решения называется модулем числа Комплексные числа - определение и вычисление с примерами решения

Лемма 7.2. Для любых комплексных чисел Комплексные числа - определение и вычисление с примерами решения имеют место следующие соотношения: 

Комплексные числа - определение и вычисление с примерами решения

Доказать эти утверждения будет предложено самостоятельно в качестве упражнения.

Множество комплексных чисел Комплексные числа - определение и вычисление с примерами решения геометрически интерпретируется как множество точек плоскости (комплексная плоскость Комплексные числа - определение и вычисление с примерами решения). Если координаты точек заданы в прямоугольной системе координат 0, Комплексные числа - определение и вычисление с примерами решения (кратчайший поворот от Комплексные числа - определение и вычисление с примерами решения осуществляется против часовой стрелки), то комплексное число Комплексные числа - определение и вычисление с примерами решения соответствует точке Комплексные числа - определение и вычисление с примерами решения с координатами Комплексные числа - определение и вычисление с примерами решения Такое соответствие является взаимно однозначным. Точка Комплексные числа - определение и вычисление с примерами решения симметрична точке Комплексные числа - определение и вычисление с примерами решения относительно оси абсцисс, которая называется действительной осью, ось ординат называется мнимой осью. Расстояние от точки Комплексные числа - определение и вычисление с примерами решения до начала координат равно Комплексные числа - определение и вычисление с примерами решения (см. рис. 7.1).

Комплексные числа - определение и вычисление с примерами решения
Аргументом числа Комплексные числа - определение и вычисление с примерами решения называется угол Комплексные числа - определение и вычисление с примерами решения поворота от положительного луча действительной оси к лучу Комплексные числа - определение и вычисление с примерами решения (против часовой стрелки). Этот угол определён с точностью до Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения и обозначается Комплексные числа - определение и вычисление с примерами решения Аргумент нулевого комплексного числа не определён. Фактически мы ввели полярные координаты на комплексной плоскости: Комплексные числа - определение и вычисление с примерами решения При этом Комплексные числа - определение и вычисление с примерами решения и комплексное число Комплексные числа - определение и вычисление с примерами решения можно записать в тригонометрической форме:

Комплексные числа - определение и вычисление с примерами решения

Пример:

Записать в тригонометрической форме числа Комплексные числа - определение и вычисление с примерами решения

□  1) Комплексные числа - определение и вычисление с примерами решения

При записи комплексного числа в тригонометрической форме обычно берут одно фиксированное («наиболее простое») значение аргумента. Возьмём Комплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

2) Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения(Комплексные числа - определение и вычисление с примерами решения).

Комплексные числа, записанные в тригонометрической форме, удобно умножать и делить. При умножении модули чисел перемножаются, аргументы складываются. При делении модули делятся, аргументы вычитаются.

Лемма 7.3. Пусть Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Тогда

Комплексные числа - определение и вычисление с примерами решения

 Комплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения откуда следует, что Комплексные числа - определение и вычисление с примерами решения

Степень с целым показателем для комплексных чисел определяется так же, как и для действительных. Поэтому мы можем сформулировать

Следствие (формула Муавра). Если Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения то при любом целом Комплексные числа - определение и вычисление с примерами решения имеет место равенство

Комплексные числа - определение и вычисление с примерами решения

Иными словами, при возведении комплексного числа в целую степень модуль числа возводится в эту степень, а аргумент умножается на показатель степени.

Пример:

Применяя формулу Муавра, получить известные формулы тригонометрии для Комплексные числа - определение и вычисление с примерами решения

□ Имеем: Комплексные числа - определение и вычисление с примерами решения Возводя двучлен в куб, получим: Комплексные числа - определение и вычисление с примерами решения (мы воспользовались тем, что Комплексные числа - определение и вычисление с примерами решения). Приравнивая действительные и мнимые части двух равных выражений, имеем

Комплексные числа - определение и вычисление с примерами решения

Определение 7.6. Пусть Комплексные числа - определение и вычисление с примерами решения — натуральное число, Комплексные числа - определение и вычисление с примерами решения Корнем Комплексные числа - определение и вычисление с примерами решения степени из комплексного числа Комплексные числа - определение и вычисление с примерами решения называется комплексное число Комплексные числа - определение и вычисление с примерами решения такое, что Комплексные числа - определение и вычисление с примерами решения (обозначение: Комплексные числа - определение и вычисление с примерами решения).

Лемма 7.4. Если Комплексные числа - определение и вычисление с примерами решения принимает единственное значение 0 при любом Комплексные числа - определение и вычисление с примерами решения Если Комплексные числа - определение и вычисление с примерами решения то Комплексные числа - определение и вычисление с примерами решения принимает ровно Комплексные числа - определение и вычисление с примерами решения комплексных значений, имеющих одинаковый модуль Комплексные числа - определение и вычисление с примерами решения различных значений аргумента Комплексные числа - определение и вычисление с примерами решения

□ Правая часть леммы очевидна, так как Комплексные числа - определение и вычисление с примерами решения и если Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения Пусть теперь Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Комплексные числа, записанные в тригонометрической форме, равны тогда и только тогда, когда их модули равны, а аргументы отличаются на Комплексные числа - определение и вычисление с примерами решения (пока значение Комплексные числа - определение и вычисление с примерами решения стояло только под знаком косинуса и синуса, неоднозначность определения Комплексные числа - определение и вычисление с примерами решения можно было не учитывать, если сравнивать сами углы — эту неоднозначность учитывать необходимо). Итак, Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения (арифметический корень Комплексные числа - определение и вычисление с примерами решения степени из положительного числа), Комплексные числа - определение и вычисление с примерами решения

При замене Комплексные числа - определение и вычисление с примерами решения получим тот же угол, увеличенный на Комплексные числа - определение и вычисление с примерами решения поэтому существенно различные значения Комплексные числа - определение и вычисление с примерами решения дают лишь Комплексные числа - определение и вычисление с примерами решения значений Комплексные числа - определение и вычисление с примерами решения далее значения корня повторяются).    

Замечание. Комплексные числа - определение и вычисление с примерами решения значений Комплексные числа - определение и вычисление с примерами решения на комплексной плоскости соответствуют Комплексные числа - определение и вычисление с примерами решения точкам, лежащим в вершинах правильного Комплексные числа - определение и вычисление с примерами решения-угольника, вписанного в окружность радиуса Комплексные числа - определение и вычисление с примерами решения с центром в начале координат.

Пример №19

Найти все значения Комплексные числа - определение и вычисление с примерами решения

□ 1) Комплексные числа - определение и вычисление с примерами решения поэтому Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Получим 3 значения: Комплексные числа - определение и вычисление с примерами решения (см. рис. 7.2).

Первое из них — арифметическое значение кубического корня из положительного числа 8.
Комплексные числа - определение и вычисление с примерами решения
2) Комплексные числа - определение и вычисление с примерами решения поэтому

Комплексные числа - определение и вычисление с примерами решения

Получим 4 значения:
Комплексные числа - определение и вычисление с примерами решения
(см. рис. 7.3). Комплексные числа - определение и вычисление с примерами решения здесь — арифметическое значение корня 4-й степени из положительного числа 5.

3) Комплексные числа - определение и вычисление с примерами решения,  поэтому

Комплексные числа - определение и вычисление с примерами решения

Получим 3 значения:

Комплексные числа - определение и вычисление с примерами решения

(см. рис. 7.4).    ■

Определение 7.7. Пусть Комплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения определяется как комплексное число Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения (при Комплексные числа - определение и вычисление с примерами решения получаем обычное действительное значение Комплексные числа - определение и вычисление с примерами решения). Отмстим, что Комплексные числа - определение и вычисление с примерами решения при любых Комплексные числа - определение и вычисление с примерами решения

Лемма 7.5. Для любых Комплексные числа - определение и вычисление с примерами решения имеют место равенства Комплексные числа - определение и вычисление с примерами решения

□ Пусть Комплексные числа - определение и вычисление с примерами решения Тогда

Комплексные числа - определение и вычисление с примерами решения

Далее, так как Комплексные числа - определение и вычисление с примерами решения откуда следует второе утверждение леммы.    

Пример №20

Вычислить Комплексные числа - определение и вычисление с примерами решения

□ Имеем: Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Так как при всех Комплексные числа - определение и вычисление с примерами решения выполняются равенства Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения, то функция комплексной переменной Комплексные числа - определение и вычисление с примерами решения имеет мнимый период Комплексные числа - определение и вычисление с примерами решения Привычной взаимной однозначности отображения при помощи функции Комплексные числа - определение и вычисление с примерами решения уже нет.

Определение 7.8. Логарифмом комплексного числа Комплексные числа - определение и вычисление с примерами решения называется комплексное число Комплексные числа - определение и вычисление с примерами решения такое, что Комплексные числа - определение и вычисление с примерами решения (обозначение: Комплексные числа - определение и вычисление с примерами решения).

Лемма 7.6. Если Комплексные числа - определение и вычисление с примерами решения не определен. Если Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения принимает бесконечно много значений, имеющих одинаковую действительную часть Комплексные числа - определение и вычисление с примерами решения (обычный натуральный логарифм положительного числа) и бесконечное число значений мнимой части Комплексные числа - определение и вычисление с примерами решения

□ Первая часть леммы следует из того, что Комплексные числа - определение и вычисление с примерами решения при любых Комплексные числа - определение и вычисление с примерами решения Пусть теперь Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения (откуда Комплексные числа - определение и вычисление с примерами решения), Комплексные числа - определение и вычисление с примерами решения

Таким образом, множество значений функции Комплексные числа - определение и вычисление с примерами решения есть вся комплексная плоскость, кроме точки 0.

Пример №21

Найти все значения Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Определение 7.9. Для любых Комплексные числа - определение и вычисление с примерами решения определим Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения так:

Комплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения Поэтому

Комплексные числа - определение и вычисление с примерами решения

Аналогично, Комплексные числа - определение и вычисление с примерами решения

Отметим также, что все известные формулы тригонометрии сохраняются для комплексных значений аргументов (при этом Комплексные числа - определение и вычисление с примерами решения).   Например, для всех Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Так как Комплексные числа - определение и вычисление с примерами решения

Легко видеть, что Комплексные числа - определение и вычисление с примерами решения Косинус на действительной оси соответствует гиперболическому косинусу на мнимой оси и наоборот: аналогично для синусов. Поэтому формально все операции для тригонометрических и гиперболических функций проводятся одинаково с точностью до некоторых степеней числа Комплексные числа - определение и вычисление с примерами решения (если работать только с действительными числами, то всё будет происходить одинаково с точностью до степеней числа —1). Этим и объясняется сходство формул тригонометрии с соответствующими формулами для гиперболических функций, включая формулы для производных и разложения по формуле Тейлора.

Комплекснозначные функции действительной переменной

Рассмотрим функцию Комплексные числа - определение и вычисление с примерами решения такую, что Комплексные числа - определение и вычисление с примерами решения Тогда при всех Комплексные числа - определение и вычисление с примерами решения можно рассмотреть Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Так как Комплексные числа - определение и вычисление с примерами решения можно интерпретировать как плоскость Комплексные числа - определение и вычисление с примерами решения, то комплекснозначная функция действительной переменной фактически есть двумерная вектор-функция, значения которой записываются как комплексные числа.

Определение 7.10. Комплекснозначная функция действительной переменной Комплексные числа - определение и вычисление с примерами решения называется непрерывной (дифференцируемой, непрерывно дифференцируемой, дважды дифференцируемой и т.д.) в точке или на промежутке, если таковыми же являются обе функции Комплексные числа - определение и вычисление с примерами решения Для дифференцируемой функции по определению Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения

Для комплекснозначных функций сохраняются формулы производной суммы, произведения и частного.

Лемма 7.7. Если комплекснозначные функции действительной переменной Комплексные числа - определение и вычисление с примерами решения дифференцируемы в точке Комплексные числа - определение и вычисление с примерами решения то функции Комплексные числа - определение и вычисление с примерами решения также дифференцируемы в этой точке, причем

Комплексные числа - определение и вычисление с примерами решения

в точке Комплексные числа - определение и вычисление с примерами решения (в последнем случае нужно требовать, чтобы Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

□ Докажем лемму для случая производной произведения. Утверждение для производной суммы доказывается проще, а для производной частного — несколько сложнее, но, по сути дела, аналогично.

Пусть Комплексные числа - определение и вычисление с примерами решения функции Комплексные числа - определение и вычисление с примерами решения дифференцируемы в точке Комплексные числа - определение и вычисление с примерами решения Тогда

Комплексные числа - определение и вычисление с примерами решения

Функция Комплексные числа - определение и вычисление с примерами решения дифференцируема в точке Комплексные числа - определение и вычисление с примерами решения так как существуют и конечны все производные в последнем выражении. Далее,

Комплексные числа - определение и вычисление с примерами решения

Легко видеть, что это выражение совпадает с Комплексные числа - определение и вычисление с примерами решения

Пример №22

Доказать, что при любом Комплексные числа - определение и вычисление с примерами решения имеет место равенство

Комплексные числа - определение и вычисление с примерами решения

т.е. привычная для действительных Комплексные числа - определение и вычисление с примерами решения формула сохраняется и при комплексных Комплексные числа - определение и вычисление с примерами решения

□ Пусть Комплексные числа - определение и вычисление с примерами решения

Тогда Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

С другой стороны, Комплексные числа - определение и вычисление с примерами решения

что совпадает с Комплексные числа - определение и вычисление с примерами решения

Отметим, что производная комплекснозначной функции берётся по действительной переменной. Принципиально иная ситуация возникает при рассмотрении комплекснозначных функций комплексной переменной и при дифференцировании их по комплексной переменной. Здесь имеют место совершенно неожиданные эффекты (например, если функция дифференцируема в окрестности точки, то она имеет производные всех порядков в этой окрестности), которые студенты обычно изучают на III курсе (курс ТФКП — теория функций комплексной переменной).

Многочлены

Функция комплексной переменной Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения называется многочленом степени Комплексные числа - определение и вычисление с примерами решения от переменной Комплексные числа - определение и вычисление с примерами решения Многочлен степени 0 — это постоянная функция Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Нулевому многочлену не приписывается никакая степень (иногда удобно считать, что его степень равна Комплексные числа - определение и вычисление с примерами решения). Если все Комплексные числа - определение и вычисление с примерами решения, то говорят о многочлене с действительными коэффициентами (Комплексные числа - определение и вычисление с примерами решения или Комплексные числа - определение и вычисление с примерами решения по смыслу задачи). Если все Комплексные числа - определение и вычисление с примерами решения то говорят о многочлене с комплексными коэффициентами Комплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения — многочлен степени Комплексные числа - определение и вычисление с примерами решения то многочлен Комплексные числа - определение и вычисление с примерами решения можно разделить с остатком на Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения

Теорема 7.1 (Безу). Остаток от деления многочлена Комплексные числа - определение и вычисление с примерами решения на двучлен Комплексные числа - определение и вычисление с примерами решения равен Комплексные числа - определение и вычисление с примерами решения

□ Из (7.1) имеем при Комплексные числа - определение и вычисление с примерами решения

Следствие. Многочлен Комплексные числа - определение и вычисление с примерами решения делится без остатка на Комплексные числа - определение и вычисление с примерами решения тогда и только тогда, когда число Комплексные числа - определение и вычисление с примерами решения является корнем многочлена Комплексные числа - определение и вычисление с примерами решения

□ Утверждение немедленно следует из теоремы Безу.

Таким образом, число Комплексные числа - определение и вычисление с примерами решения является корнем многочлена Комплексные числа - определение и вычисление с примерами решения тогда и только тогда, когда Комплексные числа - определение и вычисление с примерами решения где степень многочлена Комплексные числа - определение и вычисление с примерами решения на единицу меньше степени Р.

Теорема 7.2 (основная теорема алгебры). Любой многочлен степени Комплексные числа - определение и вычисление с примерами решения с комплексными коэффициентами имеет комплексный корень.

В настоящее время мы не располагаем математическим аппаратом для доказательства этой теоремы, поэтому примем её без доказательства. Доказана она будет очень просто в курсе ТФКП (и даже двумя способами — как простое следствие из теоремы Лиувилля или теоремы Руше).

Теорема 7.3. Многочлен с комплексными коэффициентами

Комплексные числа - определение и вычисление с примерами решения

раскладывается в произведение линейных множителей

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения (среди чисел Комплексные числа - определение и вычисление с примерами решения возможно, есть равные).

□    По основной теореме алгебры Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения — многочлен степени Комплексные числа - определение и вычисление с примерами решения Применяя такую же процедуру к Комплексные числа - определение и вычисление с примерами решения получим: Комплексные числа - определение и вычисление с примерами решения — многочлен степени Комплексные числа - определение и вычисление с примерами решения и т.д. В конце концов дойдём до многочлена степени 0.

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения (комплексная постоянная). Здесь Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения — комплексные числа, среди которых могут быть равные.

Если раскрыть скобки в правой части (7.2), то коэффициент при Комплексные числа - определение и вычисление с примерами решения будет равен С, т.е. Комплексные числа - определение и вычисление с примерами решения

Определение 7.11. Комплексное число Комплексные числа - определение и вычисление с примерами решения называется корнем кратности Комплексные числа - определение и вычисление с примерами решения многочлена Комплексные числа - определение и вычисление с примерами решения степени Комплексные числа - определение и вычисление с примерами решения если Комплексные числа - определение и вычисление с примерами решения — многочлен такой, что Комплексные числа - определение и вычисление с примерами решения При Комплексные числа - определение и вычисление с примерами решения корень называется простым, при Комплексные числа - определение и вычисление с примерами решения— кратным.

Если Комплексные числа - определение и вычисление с примерами решения, то число Комплексные числа - определение и вычисление с примерами решения не является корнем многочлена Комплексные числа - определение и вычисление с примерами решения

В общем случае, учитывая кратность корней, многочлен Комплексные числа - определение и вычисление с примерами решения степени Комплексные числа - определение и вычисление с примерами решения раскладывается на линейные множители:

Комплексные числа - определение и вычисление с примерами решения

где все комплексные числаКомплексные числа - определение и вычисление с примерами решения различны, корень Комплексные числа - определение и вычисление с примерами решения имеет кратность Комплексные числа - определение и вычисление с примерами решения, при этом степень многочлена равна Комплексные числа - определение и вычисление с примерами решения

Лемма 7.8. Пусть Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения (многочлен, сопряжённый к P). Число Комплексные числа - определение и вычисление с примерами решения является корнем многочлена Р  кратности Комплексные числа - определение и вычисление с примерами решения тогда и только тогда, когда число а является корнем многочлена Комплексные числа - определение и вычисление с примерами решения той же кратности Комплексные числа - определение и вычисление с примерами решения

 □ Так как Комплексные числа - определение и вычисление с примерами решения то утверждение достаточно доказать лишь в одну сторону. Пусть Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Так как Комплексные числа - определение и вычисление с примерами решения — любое комплексное число, то в последней записи можно заменить Комплексные числа - определение и вычисление с примерами решения Получим

Комплексные числа - определение и вычисление с примерами решения

Это и означает, что Комплексные числа - определение и вычисление с примерами решения — корень многочлена Комплексные числа - определение и вычисление с примерами решения кратности Комплексные числа - определение и вычисление с примерами решения

Следствие. Если Комплексные числа - определение и вычисление с примерами решения — многочлен с действительными коэффициентами, то числа Комплексные числа - определение и вычисление с примерами решения одновременно являются его корнями, причем кратности их совпадают (т.е. недействительные корни появляются «парочками» — взаимно сопряжённые корни одинаковой кратности).

□ Это очевидно из леммы 7.8, так как Комплексные числа - определение и вычисление с примерами решения — один и тот же многочлен.  

Теорема 7.4. Многочлен степени Комплексные числа - определение и вычисление с примерами решения с действительными коэффициентами Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения раскладывается в произведение линейных и неприводимых квадратичных множителей:

Комплексные числа - определение и вычисление с примерами решения

□ По теореме 7.3 и лемме 7.8

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения — действительные корни многочлена Комплексные числа - определение и вычисление с примерами решения кратностей Комплексные числа - определение и вычисление с примерами решения соответственно, a Комплексные числа - определение и вычисление с примерами решения — оставшиеся корни (Комплексные числа - определение и вычисление с примерами решения имеют одинаковую кратность Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения). Очевидно, что степень многочлена равна Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения т.е. эта сумма равна Комплексные числа - определение и вычисление с примерами решения

Пусть Комплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения

Получили квадратный трёхчлен с действительными коэффициентами Комплексные числа - определение и вычисление с примерами решения который имеет отрицательный дискриминант Комплексные числа - определение и вычисление с примерами решения Остаётся символически заменить Комплексные числа - определение и вычисление с примерами решения подчёркивая этим, что нас интересуют лишь действительные значения Комплексные числа - определение и вычисление с примерами решения и мы получим нужное равенство. 

Теорема 7.4 является примером утверждения, в формулировке которого отсутствуют комплексные числа (чисто действительное утверждение), а естественное доказательство его получается с выходом во множество комплексных чисел. Таких утверждений можно встретить немало в различных математических курсах и прикладных науках.

Кстати, квадратный трехчлен с комплексными коэффициентами имеет такой же вид разложения на линейные множители, как и квадратный трёхчлен с действительными корнями в элементарной алгебре:

Комплексные числа - определение и вычисление с примерами решения

Корни Комплексные числа - определение и вычисление с примерами решения — комплексные, и они обязательно существуют. Роль дискриминанта Комплексные числа - определение и вычисление с примерами решения сводится только к определению того, различны ли корни Комплексные числа - определение и вычисление с примерами решения или они совпадают (т.е. квадратный трёхчлен имеет один корень Комплексные числа - определение и вычисление с примерами решения кратности 2). Если Комплексные числа - определение и вычисление с примерами решения то квадратный трёхчлен имеет два различных простых корня, если Комплексные числа - определение и вычисление с примерами решения — один корень кратности 2. В самом деле, решая квадратное уравнение Комплексные числа - определение и вычисление с примерами решения методом выделения полного квадрата, получим, как и в элементарной алгебре:

Комплексные числа - определение и вычисление с примерами решения

Если Комплексные числа - определение и вычисление с примерами решения и уравнение имеет один корень Комплексные числа - определение и вычисление с примерами решения кратности 2 Комплексные числа - определение и вычисление с примерами решения Если Комплексные числа - определение и вычисление с примерами решения то Комплексные числа - определение и вычисление с примерами решения (писать ± не имеет смысла, так как Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения и под Комплексные числа - определение и вычисление с примерами решения понимаются оба значения квадратного корня из ненулевого комплексного числа). Окончательно получим привычную формулу корней квадратного уравнения:

Комплексные числа - определение и вычисление с примерами решения

Пример №23

Решить уравнение Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения Найдём оба значения Комплексные числа - определение и вычисление с примерами решения Пусть Комплексные числа - определение и вычисление с примерами решения Тогда Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения Решая эту систему, получим: Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Полученное биквадратное уравнение Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения решается при помощи замены Комплексные числа - определение и вычисление с примерами решения Квадратное уравнение Комплексные числа - определение и вычисление с примерами решения имеет корни Комплексные числа - определение и вычисление с примерами решения Так как Комплексные числа - определение и вычисление с примерами решения Получили два значения квадратного корня: Комплексные числа - определение и вычисление с примерами решения Тогда корни данного уравнения равны

Комплексные числа - определение и вычисление с примерами решения

Пример №24

Найти все значения Комплексные числа - определение и вычисление с примерами решения решая уравнение Комплексные числа - определение и вычисление с примерами решения

□ Левая часть раскладывается на множители:

Комплексные числа - определение и вычисление с примерами решения

Поэтому один из корней равен 2. Квадратный трёхчлен Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения не имеет действительных корней Комплексные числа - определение и вычисление с примерами решения поэтому Комплексные числа - определение и вычисление с примерами решения имеет всего одно действительное значение 2. Найдём оставшиеся два комплексно-сопряжённых значения. Решаем квадратное уравнение Комплексные числа - определение и вычисление с примерами решения по формуле чётного коэффициента:

Комплексные числа - определение и вычисление с примерами решения

Во множестве комплексных чисел Комплексные числа - определение и вычисление с примерами решения имеет два значения Комплексные числа - определение и вычисление с примерами решения поэтому Комплексные числа - определение и вычисление с примерами решения имеет 3 комплексных значения: Комплексные числа - определение и вычисление с примерами решения Комплексные числа - определение и вычисление с примерами решения (такой же результат был получен в примере 7.3 другим способом).    ■

Разложение правильной дроби в сумму простейших дробей

Мы будем рассматривать действительные дробно-рациональные функции Комплексные числа - определение и вычисление с примерами решения— многочлены степеней соответственно Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения Дробь называется правильной, если Комплексные числа - определение и вычисление с примерами решения и неправильной, если Комплексные числа - определение и вычисление с примерами решения

Лемма 7.9. Если Комплексные числа - определение и вычисление с примерами решения правильная дробь и Комплексные числа - определение и вычисление с примерами решения —действительный корень многочлена Комплексные числа - определение и вычисление с примерами решения кратности Комплексные числа - определение и вычисление с примерами решения то

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения — многочлен, для которого Комплексные числа - определение и вычисление с примерами решения является корнем кратности Комплексные числа - определение и вычисление с примерами решения a Комплексные числа - определение и вычисление с примерами решения— такой многочлен, что дробь Комплексные числа - определение и вычисление с примерами решения является правильной.

□ Так как Комплексные числа - определение и вычисление с примерами решения — корень Комплексные числа - определение и вычисление с примерами решения кратности Комплексные числа - определение и вычисление с примерами решения то Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения — многочлен такой, что Комплексные числа - определение и вычисление с примерами решения Рассмотрим число Комплексные числа - определение и вычисление с примерами решения и многочлен Комплексные числа - определение и вычисление с примерами решения (это многочлен, так как Комплексные числа - определение и вычисление с примерами решения и числитель делится нацело на Комплексные числа - определение и вычисление с примерами решения).

Так как степень G меньше степени Q и степень Р меньше степени Q, то степень числителя последней дроби меньше степени Q; значит, степень Комплексные числа - определение и вычисление с примерами решения меньше степени Комплексные числа - определение и вычисление с примерами решения т.е. дробь Комплексные числа - определение и вычисление с примерами решения правильная. Далее, Комплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения

Утверждение леммы, очевидно, сохраняется, если все числа и многочлены считать комплексными.

Лемма 7.10. ПустьКомплексные числа - определение и вычисление с примерами решения — неприводимый квадратный трёхчлен, входящий в разложение многочлена Комплексные числа - определение и вычисление с примерами решения на множители в степени Комплексные числа - определение и вычисление с примерами решения Тогда правильная дробь Комплексные числа - определение и вычисление с примерами решения представляется в виде

Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения — многочлен, в разложение которого Комплексные числа - определение и вычисление с примерами решения входит в степени Комплексные числа - определение и вычисление с примерами решения — такой многочлен, что дробь Комплексные числа - определение и вычисление с примерами решения является правильной.

□ Пусть Комплексные числа - определение и вычисление с примерами решения где Комплексные числа - определение и вычисление с примерами решения и Комплексные числа - определение и вычисление с примерами решения комплексно-сопряжённые корни квадратного трёхчлена Комплексные числа - определение и вычисление с примерами решения — действительный многочлен такой, что Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения Рассмотрим действительные числа А и В такие, что

Комплексные числа - определение и вычисление с примерами решения

Такие числа А и В определены единственным образом, так как если Комплексные числа - определение и вычисление с примерами решения то равенство (7.3) перепишется так:

Комплексные числа - определение и вычисление с примерами решения

и числа А, В находятся из системы Комплексные числа - определение и вычисление с примерами решения очевидно, имеющей единственное решение. Из (7.3) следует также, что Комплексные числа - определение и вычисление с примерами решения так как Комплексные числа - определение и вычисление с примерами решения — многочлены с действительными коэффициентами.

Рассмотрим многочлен Комплексные числа - определение и вычисление с примерами решения (это — многочлен, так как Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения значит, числитель делится нацело на Комплексные числа - определение и вычисление с примерами решения и на Комплексные числа - определение и вычисление с примерами решения следовательно, делится на Комплексные числа - определение и вычисление с примерами решения). Пусть степень Q равна Комплексные числа - определение и вычисление с примерами решения Так как степень G не превосходит Комплексные числа - определение и вычисление с примерами решения то степень многочлена Комплексные числа - определение и вычисление с примерами решения не превосходит Комплексные числа - определение и вычисление с примерами решения т.е. меньше степени Q. Степень Р также меньше степени Q, поэтому степень числителя последней дроби меньше степени Q.

Значит, степень Комплексные числа - определение и вычисление с примерами решения меньше, чем Комплексные числа - определение и вычисление с примерами решения, т.е. меньше степени Комплексные числа - определение и вычисление с примерами решения и дробь Комплексные числа - определение и вычисление с примерами решенияправильная. Далее,

Комплексные числа - определение и вычисление с примерами решения

откуда

Комплексные числа - определение и вычисление с примерами решения

Последовательно выделяя из многочлена Комплексные числа - определение и вычисление с примерами решения линейные, а затем неприводимые квадратичные множители, и применяя соответственно леммы 7.9 и 7.10, получим разложение Комплексные числа - определение и вычисление с примерами решения в сумму правильных дробей вида

Комплексные числа - определение и вычисление с примерами решения

(здесь Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения — как разложение многочлена в теореме 7.4).

Все слагаемые последней суммы называются простейшими дробями. Все коэффициенты, обозначенные символом Комплексные числа - определение и вычисление с примерами решения, являются действительными числами (вообще говоря, различными). Всего их Комплексные числа - определение и вычисление с примерами решения штук. Можно доказать, что они определены единственным образом. Процесс выделения слагаемых по леммам 7.9 и 7.10 прекратится, когда в знаменателе останется ровно один множитель вида Комплексные числа - определение и вычисление с примерами решения Но такая правильная дробь сама будет простейшей. Таким образом, доказана

Теорема 7.5. Любая правильная рациональная дробь с действительными коэффициентами раскладывается в сумму простейших дробей.

Пример №25

Разложить в сумму простейших дробей:

Комплексные числа - определение и вычисление с примерами решения

а) Комплексные числа - определение и вычисление с примерами решения Приводя к общему знаменателю, имеем: Комплексные числа - определение и вычисление с примерами решения При Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения получим Комплексные числа - определение и вычисление с примерами решения при Комплексные числа - определение и вычисление с примерами решения получим Комплексные числа - определение и вычисление с примерами решения Окончательно имеем: Комплексные числа - определение и вычисление с примерами решения

б)Комплексные числа - определение и вычисление с примерами решения Приводя в общему знаменателю, имеем: Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения При Комплексные числа - определение и вычисление с примерами решения получим Комплексные числа - определение и вычисление с примерами решения Приравнивая коэффициенты при Комплексные числа - определение и вычисление с примерами решения получим Комплексные числа - определение и вычисление с примерами решения т.е. Комплексные числа - определение и вычисление с примерами решения Приравнивая свободные члены, получим Комплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения Окончательно имеем

Комплексные числа - определение и вычисление с примерами решения

в) Комплексные числа - определение и вычисление с примерами решения

Комплексные числа - определение и вычисление с примерами решения Приводя к общему знаменателю, имеем: Комплексные числа - определение и вычисление с примерами решения Приравнивая коэффициенты при Комплексные числа - определение и вычисление с примерами решения получим: Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения откуда Комплексные числа - определение и вычисление с примерами решения Окончательно имеем

Комплексные числа - определение и вычисление с примерами решения

Вычисление комплексного числа

Определение 1.1. Многочленом (полиномом) степени n с действительными коэффициентами называется любое выражение вида
Комплексные числа - определение и вычисление с примерами решения

где Комплексные числа - определение и вычисление с примерами решения
х – переменная.

Корнем многочлена (1.1) называется любое число Комплексные числа - определение и вычисление с примерами решения такое, чтоКомплексные числа - определение и вычисление с примерами решения

Нетрудно заметить, что некоторые многочлены вообще не имеют
действительных корней, например: Комплексные числа - определение и вычисление с примерами решения

Расширим множество действительных чисел. Добавим к этому
множеству символ i , такой что Комплексные числа - определение и вычисление с примерами решения ( i называется мнимой единицей).
Тогда ±i – два корня уравнения Комплексные числа - определение и вычисление с примерами решения
 

Определение 1.2. Множеством комплексных чисел называется множество
Комплексные числа - определение и вычисление с примерами решения

Суммой двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения называется число
Комплексные числа - определение и вычисление с примерами решения.
Произведением двух комплексных чисел Комплексные числа - определение и вычисление с примерами решения называется число
Комплексные числа - определение и вычисление с примерами решения
Для числа z= a +bi число а называется действительной частью,
число b – мнимой частью. Обозначения: Комплексные числа - определение и вычисление с примерами решения

Относительно операций «+» и « · » комплексные числа С обладают
такими же свойствами, как и действительные числа. Эти операции
коммутативны и ассоциативны; для них существуют обратные операции:
вычитание и деление (кроме деления на 0).

Пример №26

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

Комплексные числа - определение и вычисление с примерами решения
 

Теорема 1.1 (основная теорема алгебры). Любое уравнение вида (1.2)
имеет решение во множестве С.
 

Пример №27

Решить уравнение
Комплексные числа - определение и вычисление с примерами решения

Решение:

Комплексные числа - определение и вычисление с примерами решения
 

Определение 1.3. Для комплексного числа z =a +bi число z =a -bi называется комплексно-сопряженным, число Комплексные числа - определение и вычисление с примерами решенияназывается модулем z.

Если рассмотреть плоскость с декартовой системой координат ( O,x,y ) и на оси Ох отложить а – действительную часть z, а на оси Oy – b – мнимую часть z, то получим взаимно однозначное соответствие между множеством С всех
комплексных чисел и множеством точек плоскости.

Такая плоскость называется комплексной плоскостью, рис. 1.1.

Комплексные числа - определение и вычисление с примерами решения

При этом Комплексные числа - определение и вычисление с примерами решения – длина радиуса-вектора точки z.

Комплексные числа - определение и вычисление с примерами решения

Определение 1.4. Аргументом комплексного числа z =a +bi  называется
угол Комплексные числа - определение и вычисление с примерами решения, который образует радиус-вектор точки z с положительным
направлением оси Ох Аргумент будем обозначать Argz . Аргумент
определен с точностью до 2 πn. При этом значение Комплексные числа - определение и вычисление с примерами решения называется
главным и обозначается argz.
 

Замечание. Комплексные числа - определение и вычисление с примерами решения

При этом
Комплексные числа - определение и вычисление с примерами решения
Если Комплексные числа - определение и вычисление с примерами решения – аргумент z, то z представляется в виде Комплексные числа - определение и вычисление с примерами решения

тригонометрическая форма комплексного числа.
 

Теорема 1.2. Пусть Комплексные числа - определение и вычисление с примерами решения
Комплексные числа - определение и вычисление с примерами решения

Доказательство
Комплексные числа - определение и вычисление с примерами решения 

Из формул (1.5) следует, в частности, что Комплексные числа - определение и вычисление с примерами решения – формула Муавра. (1.6)

Пример №28

Комплексные числа - определение и вычисление с примерами решения Представить числа Комплексные числа - определение и вычисление с примерами решения в тригонометрической форме.

Решение:

Комплексные числа - определение и вычисление с примерами решения
поэтому по формуле (1.3)
Комплексные числа - определение и вычисление с примерами решения
Тогда по формуле (1.4)
Комплексные числа - определение и вычисление с примерами решения

поэтому по формуле (1.3)
Комплексные числа - определение и вычисление с примерами решения

Тогда Комплексные числа - определение и вычисление с примерами решенияКомплексные числа - определение и вычисление с примерами решения

Из формул (1.5), (1.6) видно, что аргумент Комплексные числа - определение и вычисление с примерами решения комплексного числа z при
умножении, делении, возведении в степень ведет себя как показатель
степени. Обозначим Комплексные числа - определение и вычисление с примерами решения – формула Эйлера. (1.7)

Тогда из теоремы 1.2 следует, что
Комплексные числа - определение и вычисление с примерами решения

Учитывая (1.7), формулу (1.4) для z можно переписать в виде Комплексные числа - определение и вычисление с примерами решенияпоказательная форма комплексного числа.

Пример №29

Вычислить Комплексные числа - определение и вычисление с примерами решения

Решение:

Согласно примеру 1.3 Комплексные числа - определение и вычисление с примерами решения

Поэтому

 Комплексные числа - определение и вычисление с примерами решения

Определение 1.5. Корнем n-й степени из числа z Комплексные числа - определение и вычисление с примерами решенияC называется такое
число Комплексные числа - определение и вычисление с примерами решения, что Комплексные числа - определение и вычисление с примерами решения, при этом обозначается Комплексные числа - определение и вычисление с примерами решения. Таким образом
Комплексные числа - определение и вычисление с примерами решения

Из формулы (1.8) видно что Комплексные числа - определение и вычисление с примерами решения корней n-й степени из числа z, при этом,
если Комплексные числа - определение и вычисление с примерами решения, то

Комплексные числа - определение и вычисление с примерами решения
 

Пример №30

Найти Комплексные числа - определение и вычисление с примерами решения

Решение:

Комплексные числа - определение и вычисление с примерами решения

  • Координаты на прямой
  • Координаты на плоскости
  • Линейная функция
  • Квадратичная функция
  • Степенные ряды
  • Элементы матричного анализа
  • Уравнение линии
  • Функции нескольких переменных

Добавить комментарий