Как найти второй корень квадратного уравнения

Квадра́тное уравне́ние — алгебраическое уравнение второй степени с общим видом

{displaystyle ax^{2}+bx+c=0,;aneq 0,}

в котором x — неизвестное, а коэффициенты a, b и c — вещественные или комплексные числа.

Корень уравнения ax^{2}+bx+c=0 — это значение неизвестного x, обращающее квадратный трёхчлен {displaystyle ax^{2}+bx+c} в ноль, а квадратное уравнение в верное числовое равенство. Также это значение называется корнем самого многочлена {displaystyle ax^{2}+bx+c.}

Элементы квадратного уравнения имеют собственные названия[1]:

Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице[1]. Такое уравнение может быть получено делением всего выражения на старший коэффициент a:

{displaystyle x^{2}+px+q=0,quad p={dfrac {b}{a}},quad q={dfrac {c}{a}}.}

Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.

Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов, кроме старшего (либо второй коэффициент, либо свободный член), равен нулю.

Квадратное уравнение является разрешимым в радикалах, то есть его корни могут быть выражены через коэффициенты в общем виде.

Исторические сведения о квадратных уравнениях[править | править код]

Древний Вавилон[править | править код]

Уже во втором тысячелетии до нашей эры вавилоняне знали, как решать квадратные уравнения[1]. Решение их в Древнем Вавилоне было тесно связано с практическими задачами, в основном такими, как измерение площади земельных участков, земельные работы, связанные с военными нуждами; наличие этих познаний также обусловлено развитием математики и астрономии вообще. Были известны способы решения как полных, так и неполных квадратных уравнений. Приведём примеры квадратных уравнений, решавшихся в Древнем Вавилоне, используя современную алгебраическую запись:

x^{2}+x={frac {3}{4}}; x^{2}-x=14{frac {1}{2}}.

Правила решения квадратных уравнений во многом аналогичны современным, однако в вавилонских текстах не зафиксированы рассуждения, путём которых эти правила были получены.

Индия[править | править код]

Задачи, решаемые с помощью квадратных уравнений, встречаются в трактате по астрономии «Ариабхаттиам», написанным индийским астрономом и математиком Ариабхатой в 499 году нашей эры. Один из первых известных выводов формулы корней квадратного уравнения принадлежит индийскому учёному Брахмагупте (около 598 г.)[1]; Брахмагупта изложил универсальное правило решения квадратного уравнения, приведённого к каноническому виду: {displaystyle ax^{2}+bx=c;} притом предполагалось, что в нём все коэффициенты, кроме a, могут быть отрицательными. Сформулированное учёным правило по своему существу совпадает с современным.

Корни квадратного уравнения на множестве действительных чисел[править | править код]

I способ. Общая формула для вычисления корней с помощью дискриминанта[править | править код]

Дискриминантом квадратного уравнения {displaystyle ax^{2}+bx+c=0} называется величина {displaystyle {mathcal {D}}=b^{2}-4ac}.

Условие {displaystyle {mathcal {D}}>0} {displaystyle {mathcal {D}}=0} {displaystyle {mathcal {D}}<0}
Количество корней Два корня Один корень кратности 2
(другими словами, два равных корня)
Действительных корней нет
Формула {displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}}       (1) {displaystyle x=-{frac {b}{2a}}}

Данный метод универсальный, однако не единственный.

II способ. Корни квадратного уравнения при чётном коэффициенте b[править | править код]

Для уравнений вида ax^{2}+2kx+c=0, то есть при чётном b, где

k={frac {1}{2}}b,

вместо формулы (1) для нахождения корней существует возможность использования более простых выражений[1].

Примечание: данные ниже формулы можно получить, подставив в стандартные формулы выражение b = 2k, через несложные преобразования.

Дискриминант Корни
неприведённое приведённое D > 0 неприведённое приведённое
удобнее вычислять значение

четверти дискриминанта:

{frac {D}{4}}=k^{2}-ac

Все необходимые свойства при этом сохраняются.

{frac {D}{4}}=k^{2}-c. x_{1,2}={frac {-kpm {sqrt {k^{2}-ac}}}{a}}. x_{1,2}=-kpm {sqrt {k^{2}-c}}
D = 0 x={frac {-k}{a}} x=-k

III способ. Решение неполных квадратных уравнений[править | править код]

К решению неполных квадратных уравнений практикуется особый подход. Рассматриваются три возможных ситуации.

IV способ. Использование частных соотношений коэффициентов[править | править код]

Существуют частные случаи квадратных уравнений, в которых коэффициенты находятся в соотношениях между собой, позволяющих решать их гораздо проще.

Корни квадратного уравнения, в котором сумма старшего коэффициента и свободного члена равна второму коэффициенту[править | править код]

Если в квадратном уравнении ax^{2}+bx+c=0 сумма первого коэффициента и свободного члена равна второму коэффициенту: a+c=b, то его корнями являются -1 и число, противоположное отношению свободного члена к старшему коэффициенту (-{frac {c}{a}}).

Доказательство

Способ 1. Сначала выясним, действительно ли такое уравнение имеет два корня (в том числе, два совпадающих):

{displaystyle {mathcal {D}}=b^{2}-4ac=(a+c)^{2}-4ac=a^{2}+2ac+c^{2}-4ac=a^{2}-2ac+c^{2}=(a-c)^{2}}.

Да, это так, ведь при любых действительных значениях коэффициентов (a-c)^{2}geqslant 0, а значит и дискриминант неотрицателен. Таким образом, если anot =c, то уравнение имеет два корня, если же a=c, то оно имеет только один корень.
Найдём эти корни:

{displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}={frac {-(a+c)pm {sqrt {(a-c)^{2}}}}{2a}}={frac {-a-cpm |a-c|}{2a}}={frac {-a-cpm amp c}{2a}}}.
x_{1}={frac {-a-c-a+c}{2a}}={frac {-2a}{2a}}=-1;
x_{2}={frac {-a-c+a-c}{2a}}={frac {-2c}{2a}}=-{frac {c}{a}}.

В частности, если a=c, то корень будет один: -1.

Способ 2.

Геометрическая интерпретация: парабола, заданная аналитически указанной формулой, пересекает ось x в двух точках, абсциссами которых и являются корни, хотя бы один из которых равен -1

Используем геометрическую модель корней квадратного уравнения: их мы будем рассматривать как точки пересечения параболы y=ax^{2}+bx+c с осью абсцисс. Всякая парабола вне зависимости от задающего её выражения является фигурой, симметричной относительно прямой x=-{frac {b}{2a}}. Это означает, что отрезок всякой перпендикулярной к ней прямой, отсекаемый на ней параболой, делится осью симметрии пополам. Сказанное, в частности, верно и для оси абсцисс. Таким образом, для всякой параболы справедливо одно из следующих равенств: -{frac {b}{2a}}+rho (x_{1};-{frac {b}{2a}})=x_{2} (если x_{1}<x_{2}) или -{frac {b}{2a}}-rho (-{frac {b}{2a}};x_{1})=x_{2} (если верно неравенство противоположного смысла). Используя тождество rho (a;b)=|a-b|, выражающее геометрический смысл модуля, а также принимая, что x_{1}=-1 (это можно доказать, подставив равенство в квадратный трёхчлен: acdot (-1)^{2}+bcdot (-1)+c=(a+c)-b=0, поэтому -1 – корень такого уравнения) , приходим к следующему равенству: -{frac {b}{2a}}pm |-{frac {b}{2a}}-(-1)|=x_{2}. Если учитывать, что разность в том случае, когда мы прибавляем модуль, всегда положительна, а в том, когда отнимаем – отрицательна, что говорит о тождественности этих случаев, и, к тому же, помня о равенстве b-a=c, раскрываем модуль: x_{2}=-{frac {b}{2a}}-{frac {b}{2a}}+1=-{frac {2b-2a}{2a}}=-{frac {b-a}{a}}=-{frac {c}{a}}. Во втором случае,совершив аналогичные преобразования, придём к тому же результату, ч.т.д.

Отсюда следует, что перед решением какого-либо квадратного уравнения целесообразна проверка возможности применения к нему этой теоремы: сравнить сумму старшего коэффициента и свободного члена со вторым коэффициентом.

Корни квадратного уравнения, сумма всех коэффициентов которого равна нулю[править | править код]

Если в квадратном уравнении сумма всех его коэффициентов равна нулю (a+b+c=0), то корнями такого уравнения являются 1 и отношение свободного члена к старшему коэффициенту ({frac {c}{a}}).

Доказательство

Способ 1. Прежде всего заметим, что из равенства a+b+c=0 следует, что b=-(a+c)
Установим количество корней:

{displaystyle {mathcal {D}}=b^{2}-4ac=(-(a+c))^{2}-4ac=a^{2}+2ac+c^{2}-4ac=a^{2}-2ac+c^{2}=(a-c)^{2}.}

При любых значениях коэффициентов уравнение имеет хотя бы один корень: действительно, ведь при любых значениях коэффициентов (a-c)^{2}geqslant 0, а значит и дискриминант неотрицателен. Обратите внимание, что если anot =c, то уравнение имеет два корня, если же a=c, то только один.
Найдём эти корни:

{displaystyle x_{1,2}={frac {-bpm {sqrt {mathcal {D}}}}{2a}}={frac {a+cpm {sqrt {(a-c)^{2}}}}{2a}}={frac {a+cpm |a-c|}{2a}}={frac {a+cpm amp c}{2a}};}
x_{1}={frac {a+c+a-c}{2a}}={frac {2a}{2a}}=1;
x_{2}={frac {a+c-a+c}{2a}}={frac {2c}{2a}}={frac {c}{a}},

что и требовалось доказать.

В частности, если a=c, то уравнение имеет только один корень, которым является число 1.

Способ 2. Пользуясь данным выше определением корня квадратного уравнения, обнаруживаем путём подстановки, что число 1 является таковым в рассматриваемом случае: acdot 1^{2}+bcdot 1+c=0 – верное равенство, следовательно, единица – корень такого вида квадратных уравнений. Далее, по теореме Виета находим второй корень: согласно этой теореме, произведение корней уравнения равно числу, равному отношению свободного члена к старшему коэффициенту – x_{1}x_{2}={frac {c}{a}}Rightarrow x_{2}={frac {c}{ax_{1}}}={frac {c}{acdot 1}}={frac {c}{a}}, ч.т.д.

Отсюда следует, что перед решением уравнения стандартными методами целесообразна проверка применимости к нему этой теоремы, а именно сложение всех коэффициентов данного уравнения и установление, не равна ли нулю эта сумма.

V способ. Разложение квадратного трёхчлена на линейные множители[править | править код]

Если трёхчлен вида {displaystyle ax^{2}+bx+c~(anot =0)} удастся каким-либо образом представить в качестве произведения линейных множителей (kx+m)(lx+n)=0, то можно найти корни уравнения ax^{2}+bx+c=0 — ими будут -{frac {m}{k}} и -{frac {n}{l}}, действительно, ведь {displaystyle (kx+m)(lx+n)=0Longleftrightarrow {biggl [}{begin{array}{lcl}kx+m=0,\lx+n=0,end{array}}} а решив указанные линейные уравнения, получим вышеописанное. Квадратный трёхчлен не всегда раскладывается на линейные множители с действительными коэффициентами: это возможно, если соответствующее ему уравнение имеет действительные корни.

Рассматриваются некоторые частные случаи.

Использование формулы квадрата суммы (разности)[править | править код]

Если квадратный трёхчлен имеет вид (ax)^{2}+2abx+b^{2}, то применив к нему названную формулу, можно разложить его на линейные множители и, значит, найти корни:

{displaystyle (ax)^{2}+2abx+b^{2}=(ax+b)^{2},}
{displaystyle (ax+b)^{2}=0,}
x=-{frac {b}{a}}.

Выделение полного квадрата суммы (разности)[править | править код]

Также названную формулу применяют, пользуясь методом, получившим названия «выделение полного квадрата суммы (разности)». Применительно к приведённому квадратному уравнению с введёнными ранее обозначениями, это означает следующее:

  1. прибавляют и отнимают одно и то же число:
    x^{2}+px+({frac {p}{2}})^{2}-({frac {p}{2}})^{2}+q=0;.
  2. применяют формулу к полученному выражению, переносят вычитаемое и свободный член в правую часть:
    {displaystyle (x^{2}+2{frac {p}{2}}x+({frac {p}{2}})^{2})+(-({frac {p}{2}})^{2}+q)=0,}
    (x+{frac {p}{2}})^{2}={frac {p^{2}}{4}}-q;
  3. извлекают из левой и правой частей уравнения квадратный корень и выражают переменную:
    {displaystyle x+{frac {p}{2}}=pm {sqrt {{frac {p^{2}}{4}}-q}},}
    x_{1,2}=-{frac {p}{2}}pm {sqrt {{frac {p^{2}}{4}}-q}}.

Примечание: данная формула совпадает с предлагаемой в разделе «Корни приведённого квадратного уравнения», которую, в свою очередь, можно получить из общей формулы (1) путём подстановки равенства a = 1. Этот факт не просто совпадение: описанным методом, произведя, правда, некоторые дополнительные рассуждения, можно вывести и общую формулу, а также доказать свойства дискриминанта.

VI способ. Использование прямой и обратной теоремы Виета[править | править код]

Прямая теорема Виета (см. ниже) и обратная ей теорема позволяют решать приведённые квадратные уравнения устно, не прибегая к вычислениям по формуле (1).

Согласно обратной теореме, всякая пара чисел (число) x_{1},x_{2}, будучи решением системы уравнений

{displaystyle {begin{cases}x_{1}+x_{2}=-p,\x_{1}x_{2}=q,end{cases}}}
являются корнями уравнения x^{2}+px+q=0.

Подобрать устно числа, удовлетворяющие этим уравнениям, поможет прямая теорема. С её помощью можно определить знаки корней, не зная сами корни. Для этого следует руководствоваться правилом:

1) если свободный член отрицателен, то корни имеют различный знак, и наибольший по модулю из корней — знак, противоположный знаку второго коэффициента уравнения;
2) если свободный член положителен, то оба корня обладают одинаковым знаком, и это — знак, противоположный знаку второго коэффициента.

VII способ. Метод «переброски»[править | править код]

По своей сущности метод «переброски» является просто модификацией теоремы Виета.

Метод «переброски» — это сведение уравнения, которое нельзя привести так, чтобы все коэффициенты остались целыми, к приведённому уравнению с целыми коэффициентами:

1) умножаем обе части на старший коэффициент:
{displaystyle ax^{2}+bx+c=0quad mid ;cdot a,}
{displaystyle (ax)^{2}+b(ax)+ac=0;}
2) заменяем {displaystyle y=axcolon }
{displaystyle y^{2}+by+ac=0.}

Далее решаем уравнение относительно y по методу, описанному выше, и находим x = y/a.

Как можно заметить, в методе «переброски» старший коэффициент как раз «перебрасывается» к свободному члену.

Графическое решение квадратного уравнения[править | править код]

Квадратное уравнение.gif

Графиком квадратичной функции является парабола. Решениями (корнями) квадратного уравнения называют абсциссы точек пересечения параболы с осью абсцисс. Если парабола, описываемая квадратичной функцией, не пересекается с осью абсцисс, уравнение не имеет вещественных корней. Если парабола пересекается с осью абсцисс в одной точке (в вершине параболы), уравнение имеет один вещественный корень (также говорят, что уравнение имеет два совпадающих корня). Если парабола пересекает ось абсцисс в двух точках, уравнение имеет два вещественных корня (см. изображение справа.)

Если коэффициент a положительный, ветви параболы направлены вверх и наоборот. Если коэффициент b положительный (при положительном a, при отрицательном наоборот), то вершина параболы лежит в левой полуплоскости и наоборот.

Графический способ решения квадратных уравнений[править | править код]

Помимо универсального способа, описанного выше, существует так называемый графический способ. В общем виде этот способ решения рационального уравнения вида f(x)=g(x) заключается в следующем: в одной системе координат строят графики функций y=f(x) и y=g(x) и находят абсциссы общих точек этих графиков; найденные числа и будут корнями уравнения.

Есть всего пять основных способов графического решения квадратных уравнений.

Приём I[править | править код]

Для решения квадратного уравнения ax^{2}+bx+c=0 строится график функции y=ax^{2}+bx+c
и отыскиваются абсциссы точек пересечения такого графика с осью x.

Приём II[править | править код]

Для решения того же уравнения этим приёмом уравнение преобразуют к виду ax^{2}=-bx-c
и строят в одной системе координат графики квадратичной функции y=ax^{2} и линейной функции y=-bx-c, затем находят абсциссу точек их пересечения.

Приём III[править | править код]

Данный приём подразумевает преобразование исходного уравнения к виду a(x+l)^{2}+m=0, используя метод выделения полного квадрата суммы (разности) и затем в a(x+l)^{2}=-m. После этого строятся график функции y=a(x+l)^{2} (им является график функции y=ax^{2}, смещённый на |l| единиц масштаба вправо или влево в зависимости от знака) и прямую y=-m, параллельную оси абсцисс. Корнями уравнения будут абсциссы точек пересечения параболы и прямой.

Приём IV[править | править код]

Квадратное уравнение преобразуют к виду ax^{2}+c=-bx, строят график функции y=ax^{2}+c (им является график функции y=ax^{2}, смещённый на c единиц масштаба вверх, если этот коэффициент положителен, либо вниз, если он отрицателен), и y=-bx, находят абсциссы их общих точек.

Приём V[править | править код]

Квадратное уравнение преобразуют к особому виду:

{displaystyle {dfrac {ax^{2}}{x}}+{dfrac {bx}{x}}+{dfrac {c}{x}}={dfrac {0}{x}};}
{displaystyle ax+b+{dfrac {c}{x}}=0;}

затем

{displaystyle ax+b=-{dfrac {c}{x}}.}

Совершив преобразования, строят графики линейной функции y=ax+b и обратной пропорциональности y=-{frac {c}{x}}; (cnot =0), отыскивают абсциссы точек пересечения этих графиков. Этот приём имеет границу применимости: если c=0, то приём не используется.

Решение квадратных уравнений с помощью циркуля и линейки[править | править код]

Описанные выше приёмы графического решения имеют существенные недостатки: они достаточно трудоёмки, при этом точность построения кривых — парабол и гипербол — низка. Указанные проблемы не присущи предлагаемому ниже методу, предполагающему относительно более точные построения циркулем и линейкой.

Чтобы произвести такое решение, нужно выполнить нижеследующую последовательность действий.

  1. Построить в системе координат Oxy окружность с центром в точке {displaystyle Sleft(-{dfrac {b}{2a}};{dfrac {a+c}{2a}}right)}, пересекающую ось Oy в точке {displaystyle Cleft(0;,1right)}.
  2. Далее возможны три случая:

Доказательство

Иллюстрация к доказательству.

Рассматриваемый способ предполагает построение окружности, пересекающей ось ординат в точках (точке), абсциссы которых являются корнями (или корнем) решаемого уравнения. Как нужно строить такую окружность? Предположим, что она уже построена. Окружность определяется однозначно заданием трёх своих точек. Пусть в случае, если корня два, это будут точки A(x_{1};0),B(x_{2};0),C(0;1), где x_{1},x_{2}, естественно, действительные корни квадратного уравнения (подчёркиваем: если они имеются). Найдём координаты центра такой окружности. Для этого докажем, что эта окружность проходит через точку D(0;{frac {c}{a}}). Действительно, согласно теореме о секущих, в принятых обозначениях выполняется равенство OAcdot OB=OCcdot OD (см рисунок). Преобразовывая это выражение, получаем величину отрезка OD, которой и определяется искомая ордината точки D: {displaystyle OD={dfrac {OAcdot OB}{OC}}={frac {x_{1}x_{2}}{1}}={frac {c}{a}}} (в последнем преобразовании использована теорема Виета (см. ниже в одноимённом разделе)). Если же корень один, то есть ось абсцисс будет касательной к такой окружности, и окружность пересекает ось y в точке с ординатой 1, то она обязательно пересечёт её и в точке с указанной выше ординатой (в частности, если 1=c/a, это могут быть совпадающие точки), что доказывается аналогично с использованием уже теоремы о секущей и касательной, являющаяся частным случаем теоремы о секущих. В первом случае ({displaystyle {dfrac {c}{a}}not =1}), определяющими будут точка касания, точка оси y с ординатой 1, и её же точка с ординатой {displaystyle {dfrac {c}{a}}}. Если c/a и 1 – совпадающие точки, а корня два, определяющими будут эта точка и точки пересечения с осью абсцисс. В случае, когда (1=c/a) и корень один, указанных сведений достаточно для доказательства, так как такая окружность может быть только одна – её центром будет вершина квадрата, образуемого отрезками касательных и перпендикулярами, а радиус – стороне этого квадрата, составляющей 1. Пускай S – центр окружности, имеющей с осью абсцисс две общие точки. Найдём его координаты: для этого опустим от этой точки перпендикуляры к координатным осям. Концы этих перпендикуляров будут серединами отрезков AB и CD – ведь треугольники ASB и CSD равнобедренные, так как в них AS=BS=CS=DS как радиусы одной окружности, следовательно, высоты в них, проведённые к основаниям, также являются и медианами. Найдём координаты середин названных отрезков. Так как парабола симметрична относительно прямой {displaystyle x=-{dfrac {b}{2a}}}, то точка этой прямой с такой же абсциссой будет являться серединой отрезка AB. Следовательно, абсцисса точки S равна этому числу. В случае же, если уравнение имеет один корень, то ось x является касательной по отношению к окружности,поэтому, согласно её свойству, её радиус перпендикулярен оси, следовательно, и в этом случае указанное число – абсцисса центра. Её ординату найдём так: {displaystyle {dfrac {CD}{2}}={dfrac {OC+(OC+CD)}{2}}={dfrac {OC+OD}{2}}={dfrac {1+{dfrac {c}{a}}}{2}}={dfrac {a+c}{2a}}}. В третьем из возможных случаев, когда ca=1 (и, значит, a=c), то {displaystyle {dfrac {c}{a}}=1={dfrac {2a}{2a}}={dfrac {a+c}{2a}}}.

Итак, нами найдены необходимые для построения данные. Действительно, если мы построим окружность с центром в точке {displaystyle S(-{dfrac {b}{2a}};{dfrac {c+a}{2a}})}, проходящую через точку C(0;1), то она, в случаях, когда уравнение имеет действительные корни, пересечёт ось x в точках, абсциссы которых есть эти корни. Причём, если длина радиуса больше длины перпендикуляра к оси Ox, то уравнение имеет два корня (предположив обратное, мы бы получили противоречие с доказанным выше), если длины равны, то один (по той же причине), если же длина радиуса меньше длины перпендикуляра, то окружность не имеет общих точек с осью x, следовательно, и действительных корней у уравнения нет (доказывается тоже от противного: если корни есть, то окружность, проходящая через A, B, C совпадает с данной, и поэтому пересекает ось, однако она не должна пересекать ось абсцисс по условию, значит, предположение неверно).

Корни квадратного уравнения на множестве комплексных чисел[править | править код]

Уравнение с действительными коэффициентами[править | править код]

Квадратное уравнение с вещественными коэффициентами a,~b,~c всегда имеет с учётом кратности два комплексных корня, о чём гласит основная теорема алгебры. При этом, в случае неотрицательного дискриминанта корни будут вещественными, а в случае отрицательного — комплексно-сопряжёнными:

Уравнение с комплексными коэффициентами[править | править код]

В комплексном случае квадратное уравнение решается по той же формуле (1) и указанным выше её вариантам, но различимыми являются только два случая: нулевого дискриминанта (один двукратный корень) и ненулевого (два корня единичной кратности).

Корни приведённого квадратного уравнения[править | править код]

Квадратное уравнение вида x^{2}+px+q=0, в котором старший коэффициент a равен единице, называют приведённым. В этом случае формула для корней (1) упрощается до

x_{1,2}=-{frac {p}{2}}pm {sqrt {left({frac {p}{2}}right)^{2}-q}}.

Мнемонические правила:

  • Из «Радионяни»:

«Минус» напишем сначала,
Рядом с ним p пополам,
«Плюс-минус» знак радикала,
С детства знакомого нам.
Ну, а под корнем, приятель,
Сводится всё к пустяку:
p пополам и в квадрате
Минус прекрасное[2] q.

  • Из «Радионяни» (второй вариант):

p, со знаком взяв обратным,
На два мы его разделим,
И от корня аккуратно
Знаком «минус-плюс» отделим.
А под корнем очень кстати
Половина p в квадрате
Минус q — и вот решенья,
То есть корни уравненья.

  • Из «Радионяни» (третий вариант на мотив Подмосковных вечеров):

Чтобы x найти к половине p,

Взятой с минусом не забудь,
Радикал приставь с плюсом минусом,
Аккуратно, не как-нибудь.
А под ним квадрат половины p,

Ты, убавь на q и конец,
Будет формула приведенная,
Рассуждений твоих венец.
Будет формула приведенная,
Рассуждений твоих венец.

Теорема Виета [3][править | править код]

Формулировка для приведённого квадратного уравнения[править | править код]

Сумма корней приведённого квадратного уравнения x^{2}+px+q=0 (вещественных или комплексных) равна второму коэффициенту p, взятому с противоположным знаком, а произведение этих корней — свободному члену q:

x_{1}+x_{2}=-p,quad x_{1}x_{2}=q.

С его помощью приведённые уравнения можно решать устно:

Для неприведённого квадратного уравнения[править | править код]

В общем случае, то есть для неприведённого квадратного уравнения {displaystyle ax^{2}+bx+c=0colon }

{displaystyle {begin{cases}x_{1}+x_{2}=-b/a,\x_{1}x_{2}=c/a.end{cases}}}

На практике (следуя методу «переброски») для вычисления корней применяется модификация теорема Виета:

{displaystyle {begin{cases}x_{1}+x_{2}=-b/a&mid cdot a,\x_{1}x_{2}=c/a&mid cdot a^{2};end{cases}}}
{displaystyle {begin{cases}(ax_{1})+(ax_{2})=-b,\(ax_{1})(ax_{2})=ac,end{cases}}}

по которой можно устно находить ax1, ax2, а оттуда — сами корни:

Но у некоторых неприведённых уравнений корни можно устно угадать даже по стандартной теореме Виета:

Разложение квадратного трёхчлена на множители и теоремы, следующие из этого[править | править код]

Если известны оба корня квадратного трёхчлена, его можно разложить по формуле

{displaystyle ax^{2}+bx+c=a(x-x_{1})(x-x_{2})} (2)

Доказательство[править | править код]

Для доказательства этого утверждения воспользуемся теоремой Виета. Согласно этой теореме, корни x_{1} и x_{2} квадратного уравнения ax^{2}+bx+c=0 образуют соотношения с его коэффициентами: {displaystyle x_{1}+x_{2}=-{frac {b}{a}}, x_{1}x_{2}={frac {c}{a}}}. Подставим эти соотношения в квадратный трёхчлен:

{displaystyle {begin{alignedat}{2}ax^{2}+bx+c&=a(x^{2}+{frac {b}{a}}x+{frac {c}{a}})=a(x^{2}-(x_{1}+x_{2})x+x_{1}x_{2})=\&=a(x^{2}-x_{1}x-x_{2}x+x_{1}x_{2})=a(x(x-x_{1})-x_{2}(x-x_{1}))\&=a(x-x_{1})(x-x_{2}).end{alignedat}}}

В случае нулевого дискриминанта это соотношение становится одним из вариантов формулы квадрата суммы или разности.

Из формулы (2) имеются два важных следствия:

Следствие 1[править | править код]

Если квадратный трёхчлен раскладывается на линейные множители с вещественными коэффициентами, то он имеет вещественные корни.

Доказательство[править | править код]

Пусть ax^{2}+bx+c=(kx+m)(nx+l). Тогда, переписав это разложение, получим:

(kx+m)(nx+l)=k(x+{frac {m}{k}})n(x+{frac {l}{n}})=kn(x-(-{frac {m}{k}}))(x-(-{frac {l}{n}})).

Сопоставив полученное выражение с формулой (2), находим, что корнями такого трёхчлена являются -{frac {m}{k}} и -{frac {l}{n}}. Так как коэффициенты вещественны, то и числа, противоположные их отношениям также являются элементами множества mathbb {R} .

Следствие 2[править | править код]

Если квадратный трёхчлен не имеет вещественных корней, то он не раскладывается на линейные множители с вещественными коэффициентами.

Доказательство[править | править код]

Действительно, если мы предположим противное (что такой трёхчлен раскладывается на линейные множители), то, согласно следствию 1, он имеет корни в множестве mathbb {R} , что противоречит условию, а потому наше предположение неверно, и такой трёхчлен не раскладывается на линейные множители.

Для квадратичной функции:
f (x) = x2x − 2 = (x + 1)(x − 2) действительной переменной x, x — координаты точки, где график пересекает ось абсцисс, x = −1 и x = 2, являются решениями квадратного уравнения: x2x − 2 = 0.

Уравнения, сводящиеся к квадратным[править | править код]

Алгебраические[править | править код]

Уравнение вида acdot f^{2}(x)+bcdot f(x)+c=0 является уравнением, сводящимся к квадратному.

В общем случае оно решается методом введения новой переменной, то есть заменой {displaystyle f(x)=t,~tin {mathcal {E}}(f),} где {mathcal {E}} — множество значений функции f, c последующим решением квадратного уравнения acdot t^{2}+bcdot t+c=0.

Также при решении можно обойтись без замены, решив совокупность двух уравнений:

f(x)={frac {-b-{sqrt {b^{2}-4cdot acdot c}}}{2a}} и
f(x)={frac {-b+{sqrt {b^{2}-4cdot acdot c}}}{2a}}

К примеру, если f(x)=x^{2}, то уравнение принимает вид:

{displaystyle ax^{4}+bx^{2}+c=0.}

Такое уравнение 4-й степени называется биквадратным[4][1].

С помощью замены

y=x+{dfrac {k}{x}}

к квадратному уравнению сводится уравнение

ax^{4}+bx^{3}+cx^{2}+kbx+k^{2}a=0,

известное как возвратное или обобщённо-симметрическое уравнение[1].

Дифференциальные[править | править код]

Линейное однородное дифференциальное уравнение с постоянными коэффициентами второго порядка

y''+py'+qy=0

подстановкой y=e^{kx} сводится к характеристическому квадратному уравнению:

k^{2}+pk+q=0

Если решения этого уравнения k_{1} и k_{2} не равны друг другу, то общее решение имеет вид:

y=Ae^{k_{1}x}+Be^{k_{2}x}, где A и B — произвольные постоянные.

Для комплексных корней k_{1,2}=k_{r}pm k_{i}i можно переписать общее решение, используя формулу Эйлера:

{displaystyle y=e^{k_{r}x}left(Acos {k_{i}x}+Bsin {k_{i}x}right)=Ce^{k_{r}x}cos(k_{i}x+varphi ),}

где A, B, C, φ — любые постоянные. Если решения характеристического уравнения совпадают k_{1}=k_{2}=k, общее решение записывается в виде:

y=Axe^{kx}+Be^{kx}

Уравнения такого типа часто встречаются в самых разнообразных задачах математики и физики, например, в теории колебаний или теории цепей переменного тока.

Примечания[править | править код]

Литература[править | править код]

  • Квадратное уравнение; Квадратный трёхчлен // Энциклопедический словарь юного математика / Сост. А. П. Савин. — М.: Педагогика, 1985. — С. 133-136. — 352 с.

Ссылки[править | править код]

  • Weisstein, Eric W. Quadratic Equation (англ.) на сайте Wolfram MathWorld.
  • Вывод формулы корней полного квадратного уравнения. Решение приведённых квадратных уравнений и уравнений с чётным вторым коэффициентом Архивная копия от 28 января 2016 на Wayback Machine / Фестиваль педагогических идей «Открытый урок».
  • Математические методы

Решение квадратных уравнений

6 июля 2011

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Формула корней квадратного уравнения

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2xx2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Решение простого квадратного уравнения

Второе уравнение:
15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

[begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

[x=frac{-12+sqrt{0}}{2cdot 1}=-6]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Разложение уравнения на множители

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Тест на тему «Значащая часть числа»
  4. Метод коэффициентов, часть 1
  5. Однородные тригонометрические уравнения: общая схема решения
  6. Задача B4: строительные бригады

В продолжение темы «Решение уравнений» материал данной статьи познакомит вас с квадратными уравнениями.

Рассмотрим все подробно: суть и запись квадратного уравнения, зададим сопутствующие термины, разберем схему решения неполных и полных уравнений, познакомимся с формулой корней и дискриминантом, установим связи между корнями и коэффициентами, ну и конечно приведем наглядное решение практических примеров.

Квадратное уравнение, его виды

Определение 1

Квадратное уравнение – это уравнение, записанное как a·x2+b·x+c=0, где x – переменная, a, b и c – некоторые числа, при этом a не есть нуль.

Зачастую квадратные уравнения также носят название уравнений второй степени, поскольку по сути квадратное уравнение есть алгебраическое уравнение второй степени.

Приведем пример для иллюстрации заданного определения: 9·x2+16·x+2=0;  7,5·x2+3,1·x+0,11=0 и т.п. – это квадратные уравнения.

Определение 2

Числа a, b и c – это коэффициенты квадратного уравнения a·x2+b·x+c=0, при этом коэффициент a носит название первого, или старшего, или коэффициента при x2, b – второго коэффициента, или коэффициента при x, а c называют свободным членом.

К примеру, в квадратном уравнении 6·x2−2·x−11=0 старший коэффициент равен 6, второй коэффициент есть −2, а свободный член равен −11. Обратим внимание на тот факт, что, когда коэффициенты b и/или c являются отрицательными, то используется краткая форма записи вида 6·x2−2·x−11=0, а не 6·x2+(−2)·x+(−11)=0.

Уточним также такой аспект: если коэффициенты a и/или b равны 1 или −1, то явного участия в записи квадратного уравнения они могут не принимать, что объясняется особенностями записи указанных числовых коэффициентов. К примеру, в квадратном уравнении y2−y+7=0 старший коэффициент равен 1, а второй коэффициент есть −1.

Приведенные и неприведенные квадратные уравнения

По значению первого коэффициента квадратные уравнения подразделяют на приведенные и неприведенные.

Определение 3

Приведенное квадратное уравнение – это квадратное уравнение, где старший коэффициент равен 1. При иных значениях старшего коэффициента квадратное уравнение является неприведенным.

Приведем примеры: квадратные уравнения x2−4·x+3=0, x2−x−45=0 являются приведенными, в каждом из которых старший коэффициент равен 1.

9·x2−x−2=0 – неприведенное квадратное уравнение, где первый коэффициент отличен от 1.

Любое неприведенное квадратное уравнение возможно преобразовать в приведенное уравнение, если разделить обе его части на первый коэффициент (равносильное преобразование). Преобразованное уравнение будет иметь такие же корни, как и заданное неприведенное уравнение или так же не иметь корней вовсе.

Рассмотрение конкретного примера позволит нам наглядно продемонстрировать выполнение перехода от неприведенного квадратного уравнения к приведенному.

Пример 1

Задано уравнение 6·x2+18·x−7=0. Необходимо преобразовать  исходное уравнение в приведенную форму.

Решение

Cогласно указанной выше схеме разделим обе части исходного уравнения на старший коэффициент 6. Тогда получим: (6·x2+18·x−7):3=0:3, и это то же самое, что: (6·x2):3+(18·x):3−7:3=0 и далее: (6:6)·x2+(18:6)·x−7:6=0. Отсюда: x2+3·x-116=0. Таким образом, получено уравнение, равносильное заданному.

Ответ: x2+3·x-116=0.

Полные и неполные квадратные уравнения

Обратимся к определению квадратного уравнения. В нем мы уточнили, что a≠0. Подобное условие необходимо, чтобы уравнение a·x2+b·x+c=0 было именно квадратным, поскольку при a=0 оно по сути преобразуется в линейное уравнение b·x+c=0.

В случае же, когда коэффициенты b и c равны нулю (что возможно, как по отдельности, так и совместно), квадратное уравнение носит название неполного.

Определение 4

Неполное квадратное уравнение – такое квадратное уравнение a·x2+b·x+c=0, где хотя бы один из коэффициентов b и c (или оба) равен нулю.

Полное квадратное уравнение – квадратное уравнение, в котором все числовые коэффициенты не равны нулю.

Порассуждаем, почему типам квадратных уравнений даны именно такие названия.

При b=0 квадратное уравнение примет вид a·x2+0·x+c=0, что то же самое, что a·x2+c=0. При c=0 квадратное уравнение записано как a·x2+b·x+0=0, что равносильно a·x2+b·x=0. При b=0 и c=0 уравнение примет вид a·x2=0. Уравнения, которые мы получили, отличны от полного квадратного уравнения тем, что в их левых частях не содержится либо слагаемого с переменной x, либо свободного члена, либо обоих сразу. Собственно, этот факт и задал название такому типу уравнений – неполное.

Например, x2+3·x+4=0 и −7·x2−2·x+1,3=0 – это полные квадратные уравнения; x2=0, −5·x2=0; 11·x2+2=0, −x2−6·x=0 – неполные квадратные уравнения.

Решение неполных квадратных уравнений

Заданное выше определение дает возможность выделить следующие виды неполных квадратных уравнений:

  • a·x2=0, такому уравнению соответствуют коэффициенты b=0 и c=0;
  • a·x2+c=0 при b=0;
  • a·x2+b·x=0 при c=0.

Рассмотрим последовательно решение каждого вида неполного квадратного уравнения.

Решение уравнения a·x2=0

Как уже было указано выше, такому уравнению отвечают коэффициенты b и c, равные нулю. Уравнение a·x2=0 возможно преобразовать в равносильное ему уравнение x2=0, которое мы получим, поделив обе части исходного уравнения на число a, не равное нулю. Очевидный факт, что корень уравнения x2=0 это нуль, поскольку 02=0. Иных корней это уравнение не имеет, что объяснимо свойствами степени: для любого числа p, не равного нулю, верно неравенство p2>0, из чего следует, что при p≠0 равенство p2=0 никогда не будет достигнуто.

Определение 5

Таким образом, для неполного квадратного уравнение a·x2=0 существует единственный корень x=0.

Пример 2

Для примера решим неполное квадратное уравнение −3·x2=0. Ему равносильно уравнение x2=0, его единственным корнем является x=0, тогда и исходное уравнение имеет единственный корень – нуль.

Кратко решение оформляется так:

−3·x2=0,x2=0,x=0.

Решение уравнения a·x2+c=0

На очереди – решение неполных квадратных уравнений, где b=0, c≠0, то есть уравнений вида a·x2+c=0. Преобразуем это уравнение, перенеся слагаемое из одной части уравнения в другую, сменив знак на противоположный и разделив обе части уравнения на число, не равное нулю:

  • переносим c в правую часть, что дает уравнение a·x2=−c;
  • делим обе части уравнения на a, получаем в итоге x=-ca.

Наши преобразования являются равносильными, соответственно полученное уравнение также равносильно исходному, и этот факт дает возможность делать вывод о корнях уравнения. От того, каковы значения a и c зависит значение выражения  -ca: оно может иметь знак  минус (допустим, если a=1 и c=2, тогда -ca=-21=-2 ) или знак плюс (например, если a=−2 и c=6, то -ca=-6-2=3 ); оно не равно нулю, поскольку c≠0. Подробнее остановимся на ситуациях, когда  -ca<0 и -ca>0.

В случае, когда -ca<0,  уравнение x2=-ca не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при -ca<0  ни для какого числа p равенство p2=-ca  не может быть верным.

Все иначе, когда -ca>0: вспомним о квадратном корне, и станет очевидно, что корнем уравнения x2=-ca будет число -ca, поскольку -ca2=-ca. Нетрудно понять, что число –ca – также корень уравнения x2=-ca: действительно, –ca2=-ca.

Прочих корней уравнение не будет иметь. Мы можем это продемонстрировать, используя метод от противного. Для начала зададим обозначения найденных выше корней как x1 и −x1. Выскажем предположение, что уравнение  x2=-ca имеет также корень x2, который отличается от корней x1 и −x1. Мы знаем, что, подставив в уравнение вместо x его корни, преобразуем уравнение в справедливое числовое равенство.

Для x1 и −x1 запишем: x12=-ca , а для x2 – x22=-ca  . Опираясь на свойства числовых равенств, почленно вычтем одно верное равенство из другого, что даст нам: x12−x22=0. Используем свойства действий с числами, чтобы переписать последнее равенство как (x1−x2)·(x1+x2)=0. Известно, что произведение двух чисел есть нуль тогда и только тогда, когда хотя бы одно из чисел является нулем. Из сказанного следует, что x1−x2=0 и/или x1+x2=0, что то же самое, x2=x1 и/или x2=−x1. Возникло очевидное противоречие, ведь  вначале было условлено, что корень уравнения x2 отличается от x1 и −x1. Так, мы доказали, что уравнение  не имеет иных корней, кроме x=-ca и x=–ca.

Резюмируем все рассуждения выше.

Определение 6

Неполное квадратное уравнение a·x2+c=0 равносильно уравнению  x2=-ca, которое:

  • не будет иметь корней при -ca<0;
  • будет иметь два корня x=-ca и x=–ca  при -ca>0.

Приведем примеры решения уравнений a·x2+c=0.

Пример 3

Задано квадратное уравнение 9·x2+7=0. Необходимо найти его решение.

Решение

Перенесем  свободный член в правую часть уравнения, тогда уравнение примет вид 9·x2=−7.
Разделим обе части полученного уравнения на 9, придем к x2=-79. В правой части мы видим число со знаком минус, что означает: у заданного уравнения нет корней. Тогда и исходное неполное квадратное уравнение 9·x2+7=0 не будет иметь корней.

Ответ: уравнение 9·x2+7=0 не имеет корней.

Пример 4

Необходимо решить уравнение −x2+36=0.

Решение

Перенесем 36 в правую часть: −x2=−36.
Разделим обе части на −1, получим x2=36. В правой части – положительное число, отсюда можно сделать вывод, что x=36 или x=-36.
Извлечем корень и запишем окончательный итог: неполное квадратное уравнение −x2+36=0 имеет два корня x=6 или x=−6.

Ответ: x=6 или x=−6.

Решение уравнения a·x2+b·x=0

Разберем третий вид неполных квадратных уравнений, когда c=0. Чтобы найти решение неполного квадратного уравнения a·x2+b·x=0, воспользуемся методом разложения на множители. Разложим на множители многочлен, который находится в левой части уравнения, вынеся за скобки общий множитель x. Этот шаг даст возможность преобразовать исходное неполное квадратное уравнение в равносильное ему x·(a·x+b)=0. А это уравнение, в свою очередь,  равносильно совокупности уравнений x=0 и a·x+b=0. Уравнение a·x+b=0 линейное, и корень его: x=−ba.

Определение 7

Таким образом, неполное квадратное уравнение a·x2+b·x=0 будет иметь  два корня x=0 и x=−ba.

Закрепим материал примером.

Пример 5

Необходимо найти решение уравнения 23·x2-227·x=0.

Решение

Вынесем x за скобки и получим уравнение x·23·x-227=0. Это уравнение равносильно уравнениям x=0 и 23·x-227=0. Теперь следует решить полученное линейное уравнение: 23·x=227, x=22723.

Далее осуществим деление смешанного числа на обыкновенную дробь и определяем, что x=337. Таким образом, корни исходного уравнения это: x=0 и x=337.

Кратко решение уравнения запишем так:

23·x2-227·x=0x·23·x-227=0

x=0 или 23·x-227=0

x=0 или x=337

Ответ: x=0, x=337.

Дискриминант, формула корней квадратного уравнения

Для нахождения решения квадратных уравнений существует формула корней:

Определение 8

x=-b±D2·a, где D=b2−4·a·c – так называемый дискриминант квадратного уравнения.

Запись x=-b±D2·a по сути означает, что x1=-b+D2·a, x2=-b-D2·a.

Нелишним будет понимать, как была выведена указанная формула и каким образом ее применять.

Вывод формулы корней квадратного уравнения

Пускай перед нами стоит задача решить квадратное уравнение a·x2+b·x+c=0. Осуществим ряд равносильных преобразований:

  • разделим обе части уравнения на число a, отличное от нуля, получим приведенное квадратное уравнение: x2+ba·x+ca=0;
  • выделим полный квадрат в левой  части получившегося уравнения:
    x2+ba·x+ca=x2+2·b2·a·x+b2·a2-b2·a2+ca==x+b2·a2-b2·a2+ca
    После этого уравнения примет вид: x+b2·a2-b2·a2+ca=0;
  • теперь возможно сделать перенос двух последних слагаемых в правую часть, сменив знак на противоположный, после чего получаем: x+b2·a2=b2·a2-ca;
  • наконец, преобразуем выражение, записанное в правой части последнего равенства:
    b2·a2-ca=b24·a2-ca=b24·a2-4·a·c4·a2=b2-4·a·c4·a2.

Таким образом, мы пришли к уравнению x+b2·a2=b2-4·a·c4·a2, равносильному исходному уравнению a·x2+b·x+c=0.

Решение подобных уравнений мы разбирали в предыдущих пунктах (решение неполных квадратных уравнений). Уже полученный опыт дает возможность сделать вывод касательно корней уравнения x+b2·a2=b2-4·a·c4·a2:

  • при b2-4·a·c4·a2<0 уравнение не имеет действительных решений;
  • при b2-4·a·c4·a2=0 уравнение имеет вид x+b2·a2=0, тогда x+b2·a=0.

Отсюда очевиден единственный корень x=-b2·a;

  • при b2-4·a·c4·a2>0 верным будет: x+b2·a=b2-4·a·c4·a2 или x=b2·a-b2-4·a·c4·a2, что то же самое, что x+-b2·a=b2-4·a·c4·a2 или x=-b2·a-b2-4·a·c4·a2,  т.е. уравнение имеет два корня.

Возможно сделать вывод, что наличие или отсутствие корней уравнения x+b2·a2=b2-4·a·c4·a2 (а значит и исходного уравнения) зависит от знака выражения b2-4·a·c4·a2, записанного в правой части. А знак этого выражения задается знаком числителя, (знаменатель 4·a2 всегда будет положителен), то есть, знаком выражения b2−4·a·c. Этому выражению b2−4·a·c дано название – дискриминант квадратного уравнения и определена в качестве его обозначения буква D. Здесь можно записать суть дискриминанта – по его значению и знаку делают вывод, будет ли квадратное уравнение иметь действительные корни, и, если будет, то каково количество корней – один или два.

Вернемся к уравнению x+b2·a2=b2-4·a·c4·a2. Перепишем его, используя обозначение дискриминанта:  x+b2·a2=D4·a2.

Вновь сформулируем выводы:

Определение 9
  • при D<0 уравнение не имеет действительных корней;
  • при D=0 уравнение имеет единственный корень x=-b2·a;
  • при D>0 уравнение имеет два корня: x=-b2·a+D4·a2 или x=-b2·a-D4·a2. Эти корни на основе свойства радикалов возможно записать в виде: x=-b2·a+D2·a или -b2·a-D2·a. А, когда раскроем модули и приведем дроби к общему знаменателю, получим: x=-b+D2·a, x=-b-D2·a.

Так, результатом наших рассуждений стало выведение формулы корней квадратного уравнения:

x=-b+D2·a, x=-b-D2·a, дискриминант D вычисляется по формуле D=b2−4·a·c.

Данные формулы дают возможность при дискриминанте больше нуля определить оба действительных корня. Когда дискриминант равен нулю, применение обеих формул даст один и тот же корень, как единственное решение квадратного уравнения. В случае, когда дискриминант отрицателен, попытавшись использовать формулу корня квадратного уравнения, мы столкнемся с необходимостью извлечь квадратный корень из отрицательного числа, что выведет нас за рамки действительных чисел. При отрицательном дискриминанте у квадратного уравнения не будет действительных корней, но возможна пара комплексно сопряженных корней, определяемых теми же полученными нами формулами корней.

Алгоритм решения квадратных уравнений по формулам корней

Решить квадратное уравнение возможно, сразу задействуя формулу корней, но в основном так поступают при необходимости найти комплексные корни.

В основной же массе случаев обычно подразумевается поиск не комплексных, а действительных корней квадратного уравнения. Тогда оптимально перед тем, как использовать формулы корней квадратного уравнения, сначала определить дискриминант и удостовериться, что он не является отрицательным (в ином случае сделаем вывод, что у уравнения нет действительных корней), а после приступить к вычислению значения корней.

Рассуждения выше дают возможность сформулировать  алгоритм решения квадратного уравнения.

Определение 10

Чтобы решить квадратное уравнение a·x2+b·x+c=0, необходимо:

  • по формуле D=b2−4·a·c найти значение дискриминанта;
  • при D<0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • при D=0 найти единственный корень уравнения по формуле x=-b2·a;
  • при D>0 определить два действительных корня квадратного уравнения по формуле x=-b±D2·a.

Отметим, что, когда дискриминант есть нуль, можно использовать формулу x=-b±D2·a, она даст тот же результат, что и формула x=-b2·a.

Рассмотрим примеры.

Примеры решения квадратных уравнений

Приведем решение примеров при различных значениях дискриминанта.

Пример 6

Необходимо найти корни уравнения x2+2·x−6=0.

Решение

Запишем числовые коэффициенты квадратного уравнения: a=1, b=2 и c=−6. Далее действуем по алгоритму, т.е. приступим к вычислению дискриминанта, для чего подставим коэффициенты a, b и c в формулу дискриминанта: D=b2−4·a·c=22−4·1·(−6)=4+24=28.

Итак, мы получили D>0, а это означает, что исходное уравнение будет иметь два действительных корня.
Для их нахождения используем формулу корня x=-b±D2·a и, подставив соответствующие значения, получим: x=-2±282·1. Упростим полученное выражение, вынеся множитель за знак корня с последующим сокращением дроби:

x=-2±2·72

x=-2+2·72 или x=-2-2·72

x=-1+7 или x=-1-7

Ответ: x=-1+7​​​​​​, x=-1-7.

Пример 7

Необходимо решить квадратное уравнение −4·x2+28·x−49=0.

Решение 

Определим дискриминант: D=282−4·(−4)·(−49)=784−784=0. При таком значении дискриминанта исходное уравнение будет иметь лишь один корень, определяемый по формуле x=-b2·a.

Тогда:

x=-282·(-4)x=3,5

Ответ: x=3,5.

Пример 8

Необходимо решить уравнение 5·y2+6·y+2=0

Решение

Числовые коэффициенты этого уравнения будут: a=5, b=6 и c=2. Используем эти значения для нахождения дискриминанта: D=b2−4·a·c=62−4·5·2=36−40=−4. Вычисленный дискриминант отрицателен, таким образом, исходное квадратное уравнение не имеет действительных корней.

В случае, когда стоит задача указать комплексные корни, применим формулу корней, выполняя действия с комплексными числами:

x=-6±-42·5,

x=-6+2·i10 или x=-6-2·i10,

x=-35+15·i  или x=-35-15·i.

Ответ: действительные корни отсутствуют; комплексные корни следующие: -35+15·i, -35-15·i.

В школьной программе стандартно нет требования искать комплексные корни, поэтому, если в ходе решения дискриминант определен как отрицательный, сразу записывается ответ, что действительных корней нет.

Формула корней для четных вторых коэффициентов

Формула корней x=-b±D2·a (D=b2−4·a·c) дает возможность получить еще одну формулу, более компактную, позволяющую находить решения квадратных уравнений с четным коэффициентом при x (либо с коэффициентом вида 2·n, к примеру, 2 · 3 или 14·ln5=2·7·ln5). Покажем, как выводится эта формула.

Пусть перед нами стоит задача найти решение квадратного уравнения a·x2+2·n·x+c=0. Действуем по алгоритму: определяем дискриминантD=(2·n)2−4·a·c=4·n2−4·a·c=4·(n2−a·c), а затем используем формулу корней:

x=-2·n±D2·a,x=-2·n±4·n2-a·c2·a,x=-2·n±2n2-a·c2·a,x=-n±n2-a·ca.

Пусть выражение n2−a·c будет обозначено как D1 (иногда его обозначают D’). Тогда формула корней рассматриваемого квадратного уравнения со вторым коэффициентом 2·n примет вид:

 x=-n±D1a, где D1=n2−a·c.

Легко увидеть, что что D=4·D1, или D1=D4. Иначе говоря, D1 – это четверть дискриминанта. Очевидно, что знак D1 такой же, как знак D, а значит знак D1 также может служить индикатором наличия или отсутствия корней квадратного уравнения.

Определение 11

Таким образом, чтобы найти решение квадратного уравнения со вторым коэффициентом  2 · n , необходимо: 

  • найти D1=n2−a·c;
  • при D1<0 сделать вывод, что действительных корней нет;
  • при D1=0 определить единственный корень уравнения по формуле x=-na;
  • при D1>0 определить два действительных корня по формуле x=-n±D1a.
Пример 9

Необходимо решить квадратное уравнение 5·x2−6·x−32=0.

Решение

Второй коэффициент заданного уравнения можем представить как 2·(−3). Тогда перепишем заданное квадратное уравнение как 5·x2+2·(−3)·x−32=0, где a=5, n=−3 и c=−32.

Вычислим четвертую часть дискриминанта: D1=n2−a·c=(−3)2−5·(−32)=9+160=169. Полученное значение положительно, это означает, что уравнение имеет два действительных корня. Определим их по соответствующей формуле корней:

x=-n±D1a,x=–3±1695,x=3±135,

x=3+135 или x=3-135

x=315 или x=-2

Возможно было бы произвести вычисления и по обычной формуле корней квадратного уравнения, но в таком случае решение было бы более громоздким.

Ответ: x=315 или x=-2.

Упрощение вида квадратных уравнений

Иногда существует возможность оптимизировать вид исходного уравнения, что позволит упростить процесс вычисления корней.

К примеру, квадратное уравнение 12·x2−4·x−7=0 явно удобнее для решения, чем 1200·x2−400·x−700=0.

Чаще упрощение вида квадратного уравнения производится действиями умножения или деления его обеих частей на некое число. К примеру, выше мы показали упрощенную запись уравнения 1200·x2−400·x−700=0, полученную делением обеих его частей на 100.

Такое преобразование возможно, когда коэффициенты квадратного уравнения не являются взаимно простыми числами. Тогда обычно осуществляют деление обеих частей уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Как пример используем квадратное уравнение 12·x2−42·x+48=0. Определим НОД абсолютных величин его коэффициентов: НОД(12, 42, 48)=НОД(НОД(12, 42), 48)=НОД(6, 48)=6. Произведем деление обеих частей исходного квадратного уравнения на 6 и получим равносильное ему квадратное уравнение 2·x2−7·x+8=0.

Умножением обеих частей квадратного уравнения обычно избавляются от дробных коэффициентов. При этом умножают на наименьшее общее кратное знаменателей его коэффициентов. К примеру, если каждую часть квадратного уравнения 16·x2+23·x-3=0 перемножить с НОК(6, 3, 1)=6, то оно станет записано в более простом виде x2+4·x−18=0.

Напоследок отметим, что почти всегда избавляются от минуса при первом коэффициенте квадратного уравнения, изменяя знаки каждого члена уравнения, что достигается путем умножения (или деления) обеих частей на −1. К примеру, от квадратного уравнения −2·x2−3·x+7=0 можно перейти к упрощенной его версии 2·x2+3·x−7=0.

Связь между корнями и коэффициентами

Уже известная нам формула корней квадратных уравнений x=-b±D2·a выражает корни уравнения через его числовые коэффициенты. Опираясь на данную формулу, мы имеем возможность задать другие зависимости между корнями и коэффициентами.

Самыми известными и применимыми являются формулы теоремы Виета:

x1+x2=-ba и x2=ca.

В частности, для приведенного квадратного уравнения сумма корней есть второй коэффициент с противоположным знаком, а произведение корней равно свободному члену. К примеру, по виду квадратного уравнения 3·x2−7·x+22=0 возможно сразу определить, что сумма его корней равна 73, а произведение корней – 223.

Также можно найти ряд прочих связей между корнями и коэффициентами квадратного уравнения. Например, сумма квадратов корней квадратного уравнения может быть выражена через коэффициенты:

x12+x22=(x1+x2)2-2·x1·x2=-ba2-2·ca=b2a2-2·ca=b2-2·a·ca2.

Почему я сейчас пишу эту статью?

Потому, что, наблюдая за детьми, когда они сражаются сами с собой, вычисляя дискриминант с многозначными числовыми коэффициентами, мне становится их жалко. Они знают лишь один способ решения квадратного уравнения – по формулам (см. картинку 1 ниже). В своей статье я расскажу ещё о девяти способах нахождения его корней.

Хитом среди способов решения квадратного уравнения (и он занимает первое место в нашем списке) становится способ решения квадратного уравнения по готовым формулам.

Картинка 1
Картинка 1

Но сможете ли Вы с лёгкостью решить этим способом, например, такие уравнения, как на картинке 2 (см. ниже)?

Картинка 2
Картинка 2

Удивительное рядом: применяя формулы для отыскания корней квадратного уравнения, ученики не могут объяснить, откуда они берутся. Я не стану в этой статье их выводить, а для пытливых посоветую обратиться к учебникам и хотя бы один раз прочитать теоретический материал. Но если всё же кому-то понадобится моя помощь, то вывод формул могу прикрепить в комментариях.

Итак, какой же способ решения квадратного уравнения стоит на втором месте по частоте его применения? Нет, не так, по остаточным воспоминаниям о нём?

Второе место присуждается способу отыскания корней квадратного уравнения по обратной теореме Виета (см. картинку 3).

Картинка 3
Картинка 3

Замечу, что большинству школьников он кажется слишком “мудрёным”, поэтому его используют реже, чем первый (см. картинку 4).

Третьим по популярности способом решения квадратного уравнения является метод разложения на множители. Он успешно применяется в неполных квадратных уравнениях, когда b=0 или с=0 (картинки 5,6). Интересен следующий факт: в “решебниках” из интернета часто используется именно третий способ, причём даже тогда, когда уравнение содержит полный набор слагаемых.

Картинка 5
Картинка 5
Картинка 6
Картинка 6

Следующий способ решения квадратного уравнения, занимающий четвёртую позицию в списке, – это метод извлечения квадратного корня из обеих частей уравнения. К сожалению, применяя его, ученики часто допускают ошибки. Думаю, это происходит потому, что они не знают свойств квадратного корня, модуля и свойств неравенств. На картинках 7 и 8 я покажу, для каких квадратных уравнений его стоит применять, и как это делать правильно.

Картинка 7
Картинка 7
Картинка 8
Картинка 8

Пятая строчка нашего списка отдаётся способу решения квадратного уравнения, имеющего чётное значение коэффициента b (картинка 9). Я считаю этот способ решения весьма эффективным, особенно в тех случаях, когда нельзя применить способы 6 и 7 (о них будет рассказано ниже), а значения коэффициентов уравнения представляются многозначными числами . При нахождении корней этим способом мы извлекаем двойную выгоду: 1) находим дискриминант в 4 раза меньший, чем “обычный”, 2) нам не приходится сначала выносить из-под корня числа, затем раскладывать на множители числитель и “сокращать” дробь.

Картинка 9
Картинка 9
Картинка 10
Картинка 10

Шестой и седьмой способы решения квадратного уравнения опираются на следствия к обратной теореме Виета.

Назову шестым способ решения квадратного уравнения с нулевым значением суммы всех его коэффициентов (картинка 11).

Картинка 11
Картинка 11

На седьмом месте находится способ решения квадратного уравнения с коэффициентом b, равным сумме a и с (картинка 12).

Картинка 12
Картинка 12

Восьмое место отдаётся способу решения квадратного уравнения методом подбора. Этот не очень популярный метод оказывается весьма полезным, если ученик может делить многочлены “уголком” на линейные многочлены. Метод решения опирается на следствие к теореме Безу (см. картинку 13). Первый корень находится подбором, затем многочлен делится “уголком” на разность (х-найденный корень).

Картинка 13
Картинка 13

В каких задачах можно применять восьмой способ решения? Показываю на картинке 14.

Картинка 14
Картинка 14

Отдадим девятое место одному из самых трудных для понимания способов решения квадратного уравнения – методу выделения полного квадрата. Как он работает, покажу на картинке 15.

Топ-10 способов решения квадратного уравнения завершает самый не популярный способ его решения – графический. Я не могла не упомянуть о нём, так как он часто используется при решении задач с параметрами на экзаменах и в 9-ом и в 11-ом классе. Рассмотрим его на примере.

Надеюсь, что статья оказалась Вам полезной.

С уважением, автор.

План урока:

Определение квадратного уравнения

Решение квадратного уравнения

Уравнения, сводящиеся к квадратным

Задачи, решаемые с помощью квадратных уравнений

Теорема Виета

Разложение квадратного трехчлена на множители

Дробно-рациональные уравнения

Определение квадратного уравнения

Изучая понятие многочленов, мы познакомились с квадратными трехчленами. Так называют полином 2-ой степени, содержащий только одну переменную. Если его приравнять к нулю, то получится квадратное уравнение. Дадим определение квадратному уравнению:

8 4 1

Приведем несколько конкретных примеров:

  • 2 + 4х + 7 = 0
  • – 3х2 + х – 1,5 = 0
  • 0,05х2 + 99,568х – 47,21 = 0

Числа a, и с называют коэффициентами квадратного уравнения. Отметим, что числа и могут равняться нулю, и в этом случае соответствующее слагаемое просто не записывается:

  • 2 + 5х = 0
  • 17х2 – 34 = 0

Эти уравнения именуют неполными.

8 4 2

Если же коэффициент а=0, то получается линейное уравнение, которое мы уже умеем решать:

  • 6х – 2 = 0
  • 67х + 89 = 0

Естественно, что для обозначения переменной может использоваться любая буква, а не только х:

  • у2 + 3,5х – 93 = 0
  • – 32z2 + 11z – 78 = 0

Для обозначения коэффициентов могут использоваться специальные термины:

  • а – старший коэффициент;
  • b– второй коэффициент;
  • с – свободный член.

Неполные квадратные уравнения можно очень легко решить. Сначала рассмотрим пример, в котором b = 0:

2 – 45 = 0

Перенесем вправо свободный коэффициент:

2 = 45

Далее поделим на старший коэффициент обе части равенства:

х2 = 9

Понятно, что х равен квадратному корню из 9. Напомним, что у каждого положительного числа есть два квадратных корня! Один из них является положительным числом и называется арифметическим, а другой противоположен ему по знаку. Поэтому можно записать, что

3gdfg

Иногда используют более короткую запись:

х = ± 3

Не любое квадратное уравнение, у которого нет второго коэффициента b, будет иметь решение. Рассмотрим уравнение

2 + 75 = 0

Будем решать его таким же путем, перенося свободный коэффициент c вправо и деля уравнение на старший коэффициент a:

2 + 75 = 0

2 = – 75

х2 = – 25

Квадрат действительного числа не может быть отрицательным. Значит, данное уравнение не будет иметь корней.

Сформулируем общий алгоритм решения неполных квадратных уравнений такого типа:

4hguy

Теперь изучим неполные уравнения, в которых нет свободного слагаемого с. Рассмотрим их на примере:

2 + 21х = 0

Слева вынесем переменную х за скобки:

х(7х + 21) = 0

Теперь слева находится произведение двух множителей, а справа – ноль. Очевидно, что произведение может равняться нулю лишь в том случае, когда один из составляющих его множителей (х или 7х + 21) является нулем.

5nhghj

Зная это, запишем:

х = 0 или 7х + 21 = 0

Получили корень х = 0 и ещё одно линейное уравнение, которое легко решить:

7х + 21 = 0

7х = – 21

х = – 3

В результате имеем два корня: 0 и – 3

Опишем общий алгоритм решения этих неполных уравнений:

6sdfs

Решение квадратного уравнения

Найти решение квадратного уравнения, если оно полное, достаточно тяжело. Нам поможет формула квадрата суммы:

(а + b)2 = a2 + 2ab + b2

Напомним, что с ее помощью можно разложить на множители некоторые квадратные полиномы:

х2 + 8х + 16 = х2 + 2•4•х + 42 = (х + 4)2

Конечно, здесь нам повезло с квадратным трехчленом – его коэффициенты позволяли воспользоваться формулой квадрата суммы. Однако похожие преобразования можно выполнить и тогда, когда коэффициенты не такие удобные:

х2 + 8х + 20 = х2 + 8х + 16 + 4 =(х2 + 8х + 16) + 4 = (х2 + 2•4•х + 42) + 4 =

= (х + 4)2 + 4

Здесь мы разложили число 20 на сумму 16 + 4, чтобы можно было часть выражения «свернуть» формулой квадрата суммы. Такой прием можно применить вообще к любому квадратному трехчлену:

2 + 10х + 4 = (2х)2 + 2•2х•2,5 + 2,52 – 2,52 + 4 = (2х + 2,5)2 – 2,52 + 4 =

= (2х + 2,5)2 – 6,25 + 4 = (2х + 2,5)2 – 2,25

Здесь мы добавили к трехчлену слагаемое 2,52 и тут же его отняли. Оно было необходимо для получения формулы квадрата суммы.

Отметим, что подобное свертывание можно использовать для решения квадратного уравнения. Действительно, пусть дано уравнение

2 + 10х + 4 = 0

Выше мы уже преобразовали трехчлен, стоящий слева. Произведем замену:

(2х + 2,5)2 – 2,25 = 0

Имеем уравнение, очень похожее на неполное, где отсутствует коэффициент b. Попробуем его решить аналогичным путем:

7jgdd

Из этой записи мы получили два линейных уравнения:

2х + 2,5 = – 1,5 или 2х + 2,5 = 1,5

Решая их, находим два корня:

2х = – 1,5 – 2,5 или 2х = 1,5 – 2,5

2х = – 4 или 2х = – 1

х = – 2 или х = – 0,5

Аналогично можно решить и любое другое полное квадратное уравнение. Однако проще пользоваться специальными формулами, в которые надо подставлять значения коэффициентов a, b, с и получать корни квадратного уравнения. Выведем эти формулы.

Пусть есть уравнение

ах2 + bх + с = 0

Поделим обе части уравнения на коэффициент а:

8nghjd

Далее надо выделить квадрат суммы, что бы потом свернуть его по формуле сокращенного умножения:

9dsf

Далее обозначим числитель в правой части (b2 – 4ac) буквой D. Эту величину называют дискриминантом квадратного уравнения.

10gdfg

Перепишем уравнение с учетом этой замены:

11fsdfs

Далее рассмотрим три случая:

  1. D< 0. Если D отрицателен, то и вся дробь справа меньше нуля (так как в знаменателе стоит 4а2 – заведомо положительное число). Слева стоит квадрат выражения, а он никак не может оказаться отрицательным. В итоге имеем, что при отрицательном дискриминанте у уравнения отсутствуют корни.
  2. D = 0. При таком варианте справа получается ноль:

12jgks

Квадрат только одного числа равен нулю – самого нуля, поэтому

13nhgj

Итак, при нулевом дискриминанте у уравнения есть только один корень.

  1. D> 0. В этом варианте дробь справа оказывается положительным числом, а потому у нее есть два квадратных корня. Решение будет выглядеть так:

14vfdfg

Полученное выражение называют основной формулой корней квадратного уравнения.

15bgfh

Если дискриминант – положительное число, то уравнение существует два корня. Для вычисления первого из них надо в формуле квадратного уравнения вместо знака ± поставить минус, а для вычисления второго – знак плюс. Часто 1-ый корень обозначают как х1, а 2-ой – как х2. Заметим, что если D = 0, то при подстановке в основную формулу будет получаться один и тот же корень независимо от выбора знака плюс или минус.

Пример. Решите уравнение

2 – 5х – 3 = 0

Решение. Выпишем коэффициенты уравнения

a = 2

b = – 5

c = – 3

Вычислим значение дискриминанта:

D = b2 – 4ас = (– 5)2 – 4•2•(– 3) = 25 + 24 = 49

Так как он больше нуля, то должно получиться два корня. Их можно найти по основной формуле квадратного уравнения:

16bgfjg

Ответ: – 0,5; 3

Пример. Найдите все корни уравнения

2 + 6х + 5 = 0

Решение. Найдем дискриминант:

D = b2 – 4ас = 62 – 4•3•5 = 36 – 60 = – 24

Дискриминант оказался отрицательным, значит, и корней у уравнения нет.

Ответ: нет корней.

Пример. Найдите значения х, при которых выполняется равенство

2 – 12х + 9 = 0

Решение. Вычислим дискриминант:

D = (– 12)2 – 4•4•9 = 144 – 144 = 0

Так как D = 0, существует лишь один корень:

17fsdgf

Ответ: 1,5

Пример. Найдите значения у, при которых справедливо равенство

2 + 4у + 9 = у2 + 11у + 3

Решение. На первый взгляд это уравнение не похоже на изучавшие до этого квадратные уравнения. Однако слагаемые, записанные справа, можно перенести влево, после чего можно будет привести подобные слагаемые:

2 + 4у + 9 = у2 + 11у + 3

2 + 4у+ 9–у2– 11у– 3 = 0

у2 – 7у + 6 = 0

Получили классическое квадратное уравнение, для которого можно рассчитать дискриминант:
D = b2 – 4ас = (– 7)2 – 4•1•6 = 49 – 24 = 25

Найдем значения двух корней:

18hyt

Ответ: 1; 6

Уравнения, сводящиеся к квадратным

Так как любое квадратное уравнение решается довольно легко, то другие, более сложные уравнения, часто пытаются свести к квадратным. Сначала рассмотрим так называемые биквадратные уравнения. Пусть надо решить уравнение

4–26х2 + 72 = 0

На первый взгляд в левой части стоит полином четвертой, а не второй степени, то есть это уравнение не является квадратным. Введем переменную t, равную х2:

t = х2

Если это выражение возвести в квадрат, то получим

t2 = (х2)2 = х4

Теперь заменим в исходном уравнении х4 на t2, а х2 на t:

2t2–26t + 72 = 0

Получили квадратное уравнение, из которого можно найти значение t. Посчитаем дискриминант:

D = (– 26)2– 4•2•72 = 676 – 576 = 100

Можно найти два значения t:

19mjhg

Однако нам надо найти значение х, а не t. Вспомним, что мы проводили замену

х2 = t

Подставляя вместо найденные корни 4 и 9, получим ещё два уравнения:

х2 = 4

х2 = 9

Первое имеет корни (– 2) и 2, а второе (– 3) и 3. Все эти 4 числа являются корнями исходного уравнения

4 – 26х2 + 72 = 0

Уравнения, которые можно свести к квадратному заменой переменных t = x2, называют биквадратными уравнениями.

8 4 38 4 4

Мы рассмотрели пример, в котором биквадратное уравнение имело 4 корня. Однако порою их может быть и меньше.

Пример. Укажите все корни уравнения

у4 + 4у2 – 5 = 0

Решение. Данное уравнение подходит под определение биквадратного, а потому произведем замену t = y2:

t2 + 4t – 5 = 0

Решаем его:

D = 42– 4•1•(– 5) = 16 – (– 20) = 36

22gfdhd

далее проводим обратную замену и получаем уравнения:

у2 = – 5

у2 = 1

Первое из них не имеет решения, ведь квадрат числа – это неотрицательное число. Поэтому решать придется только второе уравнение:

у2 = 1

у = –1 и у = 1

Ответ –1 и 1.

Подстановка t = xсамая простая и очевидная, однако, порою нужно выполнять более сложные подстановки.

Пример. Найдите все z, для которых выполняется условие

(z – 2)(z – 3)(z – 4)(z – 5) = 24

Решение.Замена неочевидна, и всё же попробуем такой вариант:

t = z– 3,5

Тогда содержимое каждой скобки примет вид:

z– 2 = z– 3,5 + 1,5 = t + 1,5

z– 3 = z– 3,5 + 0,5 = t + 0,5

z– 4 = z– 3,5 – 0,5 = t–0,5

z– 5 = z – 3,5 – 1,5 = t–1,5

Уравнение примет вид:

(t + 1,5)(t + 0,5)(t – 0,5)(t – 1,5) = 24

Поменяем местами скобки:

(t – 0,5)(t + 0,5)(t – 1,5)(t + 1,5) = 24

Можно заметить, что в соседние скобки можно переписать, используя формулу разности квадратов:

(t2– 0,52)(t2– 1,52) = 24

Для удобства произведем ещё одну замену s = t2:

(s– 0,52)(s– 1,52) = 24

(s– 0,25)(s– 2,25) = 24

Раскроем скобки в левой части:

s2– 2,25s– 0,25s + 0,5625 = 24

s2– 2,5s + 0,5625– 24 = 0

s2– 2,5s– 23,4375 = 0

Получили классическое квадратное уравнение, которое решается через дискриминант:

D = (– 2,5)2 – 4•1•(– 23,4375) = 6,25 + 93,75 = 100

23gdfg

Произведем 1-ую обратную замену t2 = s:

t2 = – 3,75

t2 = 6,25

Первое уравнение решений не имеет, а у второго ровно 2 корня:

24nghj

Пришло время второй замены z– 3,5 = t, из которой получаем два уравнения:

z– 3,5 = – 2,5 или z– 3,5 = 2,5

z= – 2,5 + 3,5 или z= 2,5 + 3,5

z = – 1 или z = 6

Ответ: – 1 и 6.

Задачи, решаемые с помощью квадратных уравнений

При рассмотрении задач, связанных с геометрией, свойствами чисел, движением тел, очень часто возникают квадратные уравнения.

Пример. Площадь прямоугольника составляет 126 см2, а одна из его сторон на 5 см длиннее другой. Каковы длины сторон этого прямоугольника?

Решение. Обозначим как длину той стороны прямоугольника, которая меньше. Тогда протяженность второй стороны будет равна k + 5 см. Площадь прямоугольника – это произведение его сторон, а потому можно записать:

k(k + 5) = 126

Решим это уравнение:

k(k + 5) – 126 = 0

k2 + 5k – 126 = 0

D = 52– 4•1•(– 126) = 25 + 504 = 529

25gfghd

Первый корень равен (– 14). Однако ясно, что длина стороны прямоугольника не может измеряться отрицательным числом, поэтому этот корень надо отбросить. Остается только k = 9. То есть длина первой стороны равна 9 см. Вторая сторона равна k + 5, то есть 9 + 5 = 14 см.

Ответ: 9 и 14 см.

Пример. Сумма квадратов двух последовательных нечетных чисел составляет 290. Что это за числа?

Решение. Обозначим первое число как n. Нечетные числа чередуются с четными, поэтому следующим нечетным числом будет n + 2. Перепишем условие задачи в виде уравнения и найдем его корни:

n2 + (n + 2)2 = 290

n2 + n2 + 4n + 4 – 290 = 0

2n2 + 4n – 286 = 0

D = 42– 4•2•(– 286) = 16 + 2288 = 2304

26nhgd

Получили два решения. Если первое число равно – 13, то второе составит n + 2 = – 11. Если же n = 11, то второе число будет равно 13.

Ответ: – 13 и 11, либо 11 и 13.

Теорема Виета

Большое значения имеют уравнения, у которых старшим коэффициентом является единица. Математики называют их приведенными уравнениями.

8 4 5

Дадим несколько примеров приведенных квадратных уравнений:

  • х2 + 6х + 29 = 0
  • у2 – 7,54у + 87 = 0
  • z2 + 21z + 112 = 0

Название «приведенное» возникло из-за того, что каждое квадратное уравнение можно сделать приведенным, если поделить его части на коэффициент перед х2. Пусть есть уравнение

2 + 5х + 6 = 0

Поделим на 4 обе его части:

х2 + 1,25х + 1,5 = 0

Для приведенного уравнения сформулирована теорема Виета, которая указывает на взаимосвязь его корней и коэффициентов:

28grte

Доказать это очень легко. Если у уравнения

х2 + px + q = 0

существует два корня, то они вычисляются по формулам:

29nfduy

Найдем их сумму:

30werq

Аналогично можно посчитать и их произведение:

31vfds

Естественно, если у уравнения не существует корней (D< 0), то теорема к нему неприменима. Если же корень есть ровно один корень, тогда надо считать, что у уравнения два одинаковых корня.

Удостоверимся в верности этой теоремы на примерах.

  1. х2– 8х + 15 = 0; корни (х1 и х2) равны 3 и 5, в чем можно убедиться подстановкой:

32 – 8•3 + 15 = 0

52 – 8•5 + 15 = 0

Перемножим корни и получим 3•5 = 15 (свободный член), при сложении корней получается 3 + 5 = 8 (второй коэффициент без минуса);

  1. у2 + 13у + 42= 0, корни (– 6) и (– 7), произведение корней 42, сумма корней – 13;
  2. х2 + 2х – 8 = 0, корни (– 4) и 2, их сумма равна (– 2), а произведение (– 8).

Справедливо и утверждение, известное как обратная теорема Виета:

32nhdf

Возьмем числа 4 и 9. Их сумма равна 13, а произведение 36, поэтому они являются корнями уравнения:

х2 – 13х + 36 = 0

в чем можно убедиться, подставив их вместо х.

Пример. Учитель математики перед уроком составляет квадратные уравнения, причем стремится к тому, чтобы у них были целые корни (чтобы детям было просто считать). Подскажите ему пример уравнения, чьи корни равны 3 и 8.

Решение. Перемножим и сложим числа 3 и 8:

3•8 = 24

3 + 8 = 11

Соответственно, уравнением с корнями 3 и 8 будет

х2 – 11х + 24 = 0

Ответ: х2 – 11х + 24 = 0

Разложение квадратного трехчлена на множители

При решении уравнения

ах2 + bх + с = 0

мы находим его корни. Однако отдельно выделяют и такое понятие, как корень многочлена. Так называют значение переменной, которая обращает полином в ноль.

33bgfyu

Понятно, что для нахождения корней полинома второй степени следует решить квадратное уравнение.

34jkds

Сначала рассмотрим трехчлены, у которых коэффициент при х2а равен 1. Предположим, что нам удалось разложить его на произведение двух линейных полиномов:

х2 + bх + с = (х –s)(х –k)

где s и k– какие-то произвольные числа.

Выражение справа является произведением, а потому обращается в ноль только тогда, когда нулю равен один из множителей:

х – s = 0 или х – k = 0

х = s или х = k

Так как при х = s или х = k в ноль обращается правая часть тождества, то также должна обращаться и левая часть. Получается, что числа s и k – это корни трехчлена х2 + bх + с.

Убедимся в этом, раскрыв скобки в правой части тождества:

(х –s)(х –k) = х2–kx–sx + sk = х2– (k + s)х + sk

подставим это выражение в исходное равенство:

х2 + bх + с = (х – s)(х – k) = х2 – (k + s)х + sk

х2 + bх + с = х2 – (k + s)х + sk

Получается, произведение и дает свободный член, а их сумма в точности равна коэффициенту при х, взятому со знаком минус. Значит, по теореме Виета, они являются корнями уравнения!

Обозначим корни уравнения как х1 и х2. Если у трехчлена коэффициент а отличен от единицы, то эта формула (ее называют формулой разложения квадратного трехчлена на множители) примет несколько иной вид:

ах2 + bx + c = а(х – х1)(х – х2)

То есть справедливо утверждение:

35bghss

А теперь и докажем его.

Пусть есть уравнение ах2 + bx + c = 0 с корнями х1 и х2. Поделим его на а:

х2 + (b/a)х + с/а = 0

по теореме Виета можно записать:

х1+ х2 = – b/a

х1•х2 = с/а

Умножив первое тождество на (– а), а второе наа, получим

– а(х1 + х2) = b

ах1•х2 = с

Осталось подставить эти равенства в исходный многочлен:

ах2 + bx + c = ах2– а(х1 + х2)х + ах1•х2= а(х2– хх1–хх2 + х1•х2) =

= а(х(х – х1) – х2(х – х1)) = а(х – х1)(х – х2)

Для чего же мы доказывали эту теорему? С ее помощью можно выполнить разложение квадратного трехчлена на множители. Проиллюстрируем это на примерах.

Пример. Разложите полином

2 + 12х – 14

на множители.

Решение. Для начала следует решить уравнение 2х2 + 12х – 14 = 0:

D = 122– 4•2•(– 14) = 144 + 112 = 256

36mjkgs

Найдя х1 и х2, можем выполнить и разложение:

2 + 12х – 14 = 2(х – 1)(х – (– 7)) = 2(х – 1)(х + 7)

Ответ: 2(х – 1)(х + 7)

Пример. Упростите выражение

37mjksd

Решение. На первый взгляд кажется, что сокращать нечего. Однако и в числителе, и в знаменателе находятся квадратные трехчлены. Разложим их на множители, решив соответствующие уравнения:

h2+ 2h– 15 = 0

D = 22 – 4•1•(– 15) = 4 + 60 = 64

38nhgds

Получаем, что

h2– 2h– 15 = (h+ 5)(h– 3)

Теперь раскладываем второй полином:

h2– 9h +18 = 0

D = (– 9)2 – 4•1•18 = 81 – 72 = 9

39mjlf

Соответственно, можно записать:

h2– 9h +18 = (h– 3)(h– 6)

А теперь подставим в исходную дробь полученные выражения:

40sdfh

Отметим, что если у полинома второй степени нет корней, то и разложить его на множители не получится.

Дробно-рациональные уравнения

Периодически приходится сталкиваться с уравнениями, где переменные присутствуют в знаменателе какой-нибудь дроби. Их называют дробно-рациональными уравнениями. Обычно их можно свести к более простому виду, но при этом следует учитывать ту особенность, что корень уравнения не должен обращать знаменатель в ноль.

Пример. Найдите решение дробно-рационального уравнения

41bgfh

Решение. Для начала перенесем дробь из правой части в левую, а потом приведем дроби к общему знаменателю:

42ghfgj

Умножим уравнение на величину (х – 2)(х + 3)

(х + 1)(х – 2) + 10х – 4(х + 3) = 0

х2 – 2х + х – 2 + 10х – 4х – 12 = 0

х2 + 5х – 14 = 0

D = 52– 4•1•(– 14) = 25 + 56 = 81

43gbdfgh

Казалось бы, мы нашли два корня: 2 и (– 7). Однако в исходном уравнении в знаменателе стоит выражение (х – 2)(х – 3). При х = 2 оно обращается в нуль, то есть дробь потеряет смысл. Поэтому корень 2 следует отбросить, и остается лишь корень (– 7)

Ответ: – 7

Добавить комментарий