Геометрия
7 класс
Урок № 14
Второй и третий признаки равенства треугольников
Перечень рассматриваемых вопросов:
- Доказательство и формулировка второго и третьего равенства треугольников.
- Решение задач на доказательство равенства треугольников с использованием признаков.
Тезаурус:
Теорема ‑ утверждение, справедливость которого устанавливается путём рассуждений в данной системе аксиом.
Второй признак равенства треугольников.
Теорема.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Третий признак равенства треугольников.
Теорема.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Основная литература
- Атанасян Л. С. Геометрия: 7–9 класс. // Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. – М.: Просвещение, 2017. – 384 с.
Дополнительная литература:
- Атанасян Л. С. Геометрия: Методические рекомендации 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А. и др. – М.: Просвещение, 2019. – 95 с.
- Зив Б.Г. Геометрия: Дидактические материалы 7 класс. // Зив Б. Г., Мейлер В. М. – М.: Просвещение, 2019. – 127 с.
- Мищенко Т.М. Дидактические материалы и методические рекомендации для учителя по геометрии 7 класс. // Мищенко Т.М., – М.: Просвещение, 2019. – 160 с.
- Атанасян Л. С. Геометрия: Рабочая тетрадь 7 класс. // Атанасян Л. С., Бутузов В. Ф., Глазков Ю. А., Юдина И. И. – М.: Просвещение, 2019. – 158 с.
- Иченская М.А. Геометрия: Самостоятельные и контрольные работы 7–9 классы.// Иченская М.А. – М.: Просвещение, 2019. – 144 с.
Теоретический материал для самостоятельного изучения.
Ранее мы узнали, как определить, являются ли треугольники равными. Для этого мы использовали способ наложения или первый признак равенства треугольников.
Сегодня мы рассмотрим ещё два признака равенства треугольников.
Второй признак равенства треугольников.
Теорема.
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Дано:∆ABC, ∆А1В1С1,
АC = А1C1,
∠А =∠А1
∠C=∠C1
Доказать: ∆АВС = ∆А1В1С1.
Доказательство
- Наложим треугольник ∆ABC на ∆А1В1С1, так чтобы вершина A совместилась с вершиной A1, вершины B и B1лежали по одну сторону от A1C1.
Так как ∠А =∠А1, ∠C=∠C1, то AB наложится на луч A1B1, BC наложится на луч B1C1 (по аксиоме откладывания угла).
- Вершина B – с вершиной B1 (по аксиоме откладывания отрезка).
- Стороны треугольников BС и B1С1, АВ и А1В1совместятся (по аксиоме откладывания отрезка).
- Треугольник ABC и треугольник А1В1С1 полностью совместится →∆АВС = ∆А1В1С1
Теорема доказана.
Третий признак равенства треугольников.
Докажем третий признак равенства треугольников.
Теорема.
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Дано: ∆ABC, ∆А1В1С1,
АC = А1C1,
АB = А1B1
CB = C1B1
Доказать: ∆АВС = ∆А1В1С1.
Доказательство.
- Приложим треугольник ∆ ABC к ∆ А1В1С1, так чтобы вершина A совместилась с вершиной A1, вершина B с B1, вершины C и C1лежали по разные стороны от прямой A1B1.
- Так как АC = А1C1, BC = B1C1 (по аксиоме откладывания отрезка), =>∆ А1C1С и ∆ В1С1C – равнобедренные.
- ∠1=∠2, ∠3=∠4 (по свойству равнобедренного треугольника) → ∠A1CB1 = ∠А1С1В1.
АC = А1C1,BC = B1C1 , ∠C = ∠C1→ ∆АВС = ∆А1В1С1 ( по 1 признаку равенства треугольников).
Итак, сегодня мы доказали второй и третий признаки равенства треугольников.
Рассмотрим ещё один случай доказательства третьего признака равенства треугольников.
Дано: ∆ABC, ∆А1В1С1,
АC = А1C1,
АB = А1B1
CB = C1B1
Доказать: ∆ АВС = ∆ А1В1С1.
Доказательство.
- Приложим треугольник ABC к треугольнику А1В1С1, так чтобы вершина A совместилась с вершиной A1, вершина B с B1, вершины C и C1лежали по разные стороны от прямой A1B1.
- Так как АC = А1C1,→∆АC1С – равнобедренный (по определению равнобедренного треугольника. ∠C =∠С1. (по свойству равнобедренного треугольника).
- АC = А1C1, BC = B1C1 (по условию), ∠C = ∠C1→∆АВС = ∆А1В1С1 (по 1 признаку равенства треугольников).
Теорема доказана.
Разбор заданий тренировочного модуля.
№ 1. На рисунке изображены треугольники ABH и BHА1, ∠1 = ∠2, ∠АВH =∠А1ВH. Будут ли треугольники ABH и BHА1 равными?
По условию в треугольниках ABH и BHА1, ∠1 = ∠2, ∠АВH = ∠А1ВH, BH ‑ общая сторона.
Следовательно, ∆ABH = ∆BHА1 (по второму признаку равенства треугольников: если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.)
Ответ: ∆ABH = ∆BHА1.
№ 2. Периметр треугольника AOR равен 21 см, периметр четырёхугольника AORF равен 22 см. При этом AO = RF, OR = AF. Найти AR.
Для решения задачи, нужно вспомнить формулу периметра треугольника и четырёхугольника.
Р∆ AOR = АО + OR + AR = 21 см
РAORF = АО + OR + RF + AF = 22 см
По условию AO = RF, OR = AF, AR ‑ общая сторона →∆AOR = ∆ARF (по 3 признаку равенства треугольников: если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны).
Т.к. AO = RF, OR = AF.
РAORF = АО + OR + АО + OR = 2 · АО + 2 · OR = 22 см;
АО + OR = 22 : 2 = 11 см
Р∆ AOR = 11см + AR = 21 см
AR = 21см – 11см =10 см
Ответ: AR = 10 см.
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Треугольники
- Второй признак равенства треугольников
Теорема
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны
Пример:
ABC = A1B1C1, так как AB = A1B1, A = A1, B = B1.
Доказательство:
Дано: ABC, A1B1C1, AB = A1B1, A = A1, B = B1.
Доказать: ABC = A1B1C1
Доказательство:
Рассмотрим ABC и A1B1C1. Наложим их друг на друга так, чтобы совместились: вершины A и A1 и равные стороны AB и A1B1. При этом вершины C и C1 должны быть по одну сторону от прямой A1B1.
Поскольку A = A1 и B = B1, то сторона AC наложится на луч A1C1, а сторона BC – на луч B1C1. Поэтому общая точка сторон AC и BC, вершина C, окажется лежащей как на луче A1C1, так и на луче B1C1 и, следовательно, совместится с общей точкой этих лучей – вершиной C1. Значит, совместятся стороны AC и A1C1, BC и B1C1.
Таким образом, ABC и A1B1C1 полностью совместятся, поэтому они равны, что и требовалось доказать.
Советуем посмотреть:
Треугольник
Равенство треугольников
Первый признак равенства треугольников
Перпендикуляр к прямой
Медианы треугольника
Биссектрисы треугольника
Высоты треугольника
Равнобедренный треугольник
Свойства равнобедренного треугольника
Третий признак равенства треугольников
Окружность
Построения циркулем и линейкой
Треугольники
Правило встречается в следующих упражнениях:
7 класс
Задание 123,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 125,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 131,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 132,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 141,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 162,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 169,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 170,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 384,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 10,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Теорема
(Второй признак равенства треугольников — по стороне и двум прилежащим к ней углам)
Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника то такие треугольники равны.
Дано:
ΔABC,
ΔA1B1C1,
AB=A1B1, ∠A=∠A1, ∠B=∠B1.
Доказать:
ΔABC= ΔA1B1C1
Доказательство:
Так как AB=A1B1, то треугольник A1B1C1 можно наложить на треугольник ABC так, чтобы
- сторона A1B1 совместилась со стороной AB,
- точки C1 и С лежали по одну сторону от прямой AB.
Поскольку ∠A=∠A1, сторона A1С1 при этом наложится на луч AC.
Так как ∠B=∠B1, сторона B1C1 наложится на сторону BC.
Точка С1 принадлежит как стороне A1С1, так и стороне B1C1, поэтому С1 лежит и на луче AC, и на луче CB.
Лучи AC и CB пересекаются в точке C. Следовательно, точка С1 совместится с точкой C.
Значит, сторона A1С1 совместится со стороной AC, а сторона B1C1 — со стороной BC.
Таким образом, при наложении треугольники ABC и A1B1C1 полностью совместятся.
А это означает, что ΔABC= ΔA1B1C1 (по определению).
Что и требовалось доказать.
Второй признак равенства треугольников
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Рис. (1). Второй признак равенства треугольников.
MN=PR;∠N=∠R;∠M=∠P.
Как и в доказательстве первого признака, нужно убедиться, достаточно ли этого для равенства треугольников, можно ли их полностью совместить?
1. Так как
MN=PR
, то эти отрезки совмещаются, если совместить их конечные точки.
2. Так как
∠N=∠R
и
∠M=∠P
, то лучи (MK) и (NK) наложатся соответственно на лучи (PT) и (RT).
3. Если совпадают лучи, то совпадают точки их пересечения (K) и (T).
4. Совмещены все вершины треугольников, то есть
ΔMNK
и
ΔPRT
полностью совместятся, значит, они равны.
Третий признак равенства треугольников
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
Рис. (2). Третий признак равенства треугольников.
MN=PR;KN=TR;MK=PT.
Опять попробуем совместить треугольники
ΔMNK
и
ΔPRT
наложением и убедиться, что соответственно равные стороны гарантируют и равенство соответственных углов этих треугольников, и они полностью совпадут.
Рис. (3). Доказательство третьего признака равенства треугольников.
Совместим, например, одинаковые отрезки (MK) и (PT). Допустим, что точки (N) и (R) при этом не совмещаются.
Пусть (O) — середина отрезка (NR). Соответственно данной информации
MN=PR
,
KN=TR
. Треугольники (MNR) и (KNR) равнобедренные с общим основанием (NR).
Поэтому их медианы (MO) и (KO) являются высотами, значит, перпендикулярны (NR). Прямые (MO) и (KO) не совпадают, так как точки (M), (K), (O) не лежат на одной прямой. Но через точку (O) прямой (NR) можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию.
Доказано, что должны совместиться и вершины (N) и (R).
Третий признак позволяет назвать треугольник очень сильной, устойчивой фигурой, иногда говорят, что треугольник — жёсткая фигура. Если длины сторон не меняются, то углы тоже не меняются. Например, у четырёхугольника такого свойства нет. Поэтому разные поддержки и укрепления делают треугольными.
Рис. (4). Буровая вышка.
Но своеобразную устойчивость, стабильность и совершенство числа (3) люди оценивали и выделяли давно.
Об этом говорят сказки.
Там мы встречаем «Три медведя», «Три ветра», «Три поросёнка», «Три товарища», «Три брата», «Три счастливца», «Трое умельцев», «Три царевича», «Три друга», «Три богатыря» и др.
Там даются «три попытки», «три совета», «три указания», «три встречи», исполняются «три желания», нужно потерпеть «три дня», «три ночи», «три года», пройти через «три государства», «три подземных царства», выдержать «три испытания», проплыть через «три моря».
И в заключение ещё раз вспомним все признаки равенства треугольников.
1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
3. Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
Треугольники. Признаки равенства треугольников
Треугольник − это геометрическая фигура, образованная соединением отрезками трех, не лежащих на одной прямой точек .
Эти точки называются вершинами треугольника. Отрезки, соединяющие эти точки называются сторонами треугольника.
Треугольник обозначается знаком ⊿. Например треугольник ABC обозначается так: ⊿ABC. Этот же треугольник можно обозначать так: ⊿BAC, ⊿CBA и т.д.
Углы треугольника обозначают так ∠BAC, ∠ABC, ∠BCA. Эти же углы коротко обозначают также ∠A, ∠B, ∠C, соответственно. Углы треугольника принято также обозначать греческими буквами α, β, γ и т.д. Стороны тркеугольника обозначают так AB, BC, AC. Принято также стороны обозначать одной строчной буквой, причем сторона напротив угла A ,обозначается буквой a, сторона напротив угла B− b, сторона напротив угла C− c. Сумма трех сторон треугольника называется периметром треугольника.
Как известно, две треугольники называются равными, если при наложении друг на друга их можно совместить. На Рис.2 представлены два треугольника ABC и A1B1C1. Треугольник ABC можно наложить на треугольник A1B1C1 так, чтобы вершины и стороны этих треугольников попарно совместились. Очевидно, что при этом совместятся и соответствующие углы.
Вышеизложенное можно сформулировать так:
Если два треугольника равны, то элементы (стороны и углы) одного треугольника соответственно равны элементам другого треугольника. Равенство треугольников ABC и A1B1C1 обозначается так:
Первый признак равенства треугольников
Теорема 1. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1C1 (Рис.3). Пусть AB=A1B1, AС=A1С1 и ∠A=∠A1. Докажем, что .
Так как ∠A=∠A1, то треугольник ABC можно наложить на треугольник A1B1C1 так, чтобы вершины A и A1 совпадали, а стороны AB и AС наложились на лучи A1B1 и A1C1, соответственно.
Так как по условию теоремы AB=A1B1, AС=A1С1, то сторона AB совместится со стороной A1B1, а сторона AС − со стороной A1С1.Тогда совместятся B и B1, C и С1. Следовательно сторона BC совместится со стороной B1C1. То есть треугольники ABC и A1B1C1 полностью совместятся. Теорема доказана.
Второй признак равенства треугольников
Теорема 2. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1С1 (Рис.4). Пусть AB=A1B1, ∠A=∠A1, ∠B=∠B1. Докажем, что .
Наложим треугольник ABC на треугольник A1B1С1 так, чтобы вершина A совмещалась с вершиной A1, сторона AB − со стороной A1B1 (по условию теоремы AB=A1B1), а вершины C и С1 оказались по одну сторону от прямой A1B1.
Так как ∠A=∠A1 и ∠B=∠B1, то сторона AС наложится на луч A1C1 а сторона BС − на луч B1С1. Тогда вершина C окажется на луче A1C1 и на луче B1C1. Т.е. она окажется на пересечении этих лучей и, следовательно, вершина C совместится с общей точкой лучей A1C1 и B1C1, т.е. с вершиной C1. Таким образом совместятся стороны AC и A1C1, BC и B1C1. То есть треугольники ABC и A1B1С1 полностью совместятся, поэтому они равны. Теорема доказана.
Третий признак равенства треугольников
Теорема 3. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то эти треугольники равны.
Доказательство. Рассмотрим треугольники ABC и A1B1С1. Пусть AB=A1B1, AC=A1C1 и BC=B1C1. Докажем, что . Приложим треугольник ABC к треугольнику A1B1С1 так, чтобы вершина A совмещалась с вершиной A1, вершина B совмещалась с вершиной B1, а вершины С и С1 находились по разные стороны от прямой A1B1.
Возможны три варианта: луч CC1 проходит внутри угла ACB(Рис.6); луч CC1 совпадает с одной из сторон угла ACB (Рис.7); луч CC1 проходит вне угла ACB(Рис.8). Рассмотрим эти три случая по отдельности.
Вариант 1 (Рис.6). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольники AСС1 и BСС1 равнобедренные. Тогда ∠1=∠2 и ∠3=∠4 и, следовательно:
Имеем AC=A1C1, BC=B1C1 ∠ACB=∠A1C1B1 и по первому признаку равенства треугольников . Теорема доказана.
Вариант 2 (Рис.7). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольник BСС1 равнобедренный. Тогда ∠1=∠2. Имеем: AC=A1C1, BC=B1C1, ∠1=∠2 и по первому признаку равенства треугольников . Теорема доказана.
Вариант 3 (Рис.8). Так как по условию теоремы AC=A1C1 и BC=B1C1, то треугольники AСС1 и BСС1 равнобедренные. Тогда ∠1=∠2 и и, следовательно:
Имеем AC=A1C1, BC=B1C1 и по первому признаку равенства треугольников . Теорема доказана.
Задачи и решения
Задача 1. На сторонах угла CAD отмечены точки B и E так, что точка B лежит на отрезке AC, а точка E − на отрезке AD, причем AC=AD и AB=AE. Докажите, что ∠CBD=∠DEC (Рис.9).
Доказательство. AC=AD, AE=AB, ∠CAD общий для треугольников CAE и DAB. Тогда, по первому признаку равенства треугольников (теорема 1) ⊿ACE=⊿ADB. Следовательно ∠DBA=∠AEC. Поскольку углы CBD и DBA смежные, то CBD=180°−∠DBA. Аналогично CED=180°-∠AEC. То есть ∠CBD=∠DEC. Конец доказательства.
Задача 2. По данным рисунка рис.10 докажите, что OP=OT, ∠P=∠T
Доказательство. OC=OB, ∠TCO=∠PBO=90°. Углы TOC и POB вертикальные (следовательно равны) тогда, повторому признаку равенства треугольников (теорема 2), ⊿TCO=⊿PBO. Конец доказательства.