Чтобы понять частные производные, сначала нужно разобраться с обычными. И не нужно ничего искать: в нашей отдельной статье мы уже подготовили все для того, чтобы у вас это получилось. А сейчас речь пойдет о частных производных.
Добро пожаловать на наш телеграм-канал за полезной рассылкой и актуальными студенческими новостями.
Функция двух и более переменных
Прежде чем говорить о частных производных, нужно затронуть понятие функции нескольких переменных, без которого нет смысла в частной производной. В школе мы привыкли иметь дело с функциями одной переменной:
Производными таких функций мы и считали раньше. График функции одной переменной представляет собой линию на плоскости: прямую, параболу, гиперболу и т.д.
А что, если добавить еще одну переменную? Получится такая функция:
Это – функция двух независимых переменных x и y. График такой функции представляет собой поверхность в трехмерном пространстве: шар, гиперболоид, параболоид или еще какой-нибудь сферический конь в вакууме. Частные производные функции z по иксу и игреку соответственно записываются так:
Существуют также функции трех и более переменных. Правда, график такой функции нарисовать невозможно: для этого понадобилось бы как минимум четырехмерное пространство, которое невозможно изобразить.
Частная производная первого порядка
Запоминаем главное правило:
При вычислении частной производной по одной из переменных, вторая переменная принимается за константу. В остальном правила вычисления производной не меняются.
То есть, частная производная по сути ничем не отличается от обычной. Так что, держите перед глазами таблицу производных элементарных функций и правила вычисления обычных производных. Рассмотрим пример, чтобы стало совсем понятно. Допустим, нужно вычислить частные производные первого порядка следующей функции:
Сначала возьмем частную производную по иксу, считая игрек обычным числом:
Теперь считаем частную производную по игреку, принимая икс за константу:
Как видите, ничего сложного в этом нет, а успех с более сложными примерами – лишь дело практики.
Частная производная второго порядка
Как находится частная производная второго порядка? Так же, как и первого. Чтобы найти частные производные второго порядка, нужно просто взять производную от производной первого порядка. Вернемся к примеру выше и посчитаем частные производные второго порядка.
По иксу:
По игреку:
Частные производные третьего и высших порядков не отличаются по принципу вычисления. Систематизируем правила:
- При дифференцировании по одной независимой переменной, вторая принимается за константу.
- Производная второго порядка – это производная от производной первого порядка. Третьего порядка – производная от производной второго порядка и т.д.
Частные производные и полный дифференциал функции
Частый вопрос в практических заданиях – нахождение полного дифференциала функции. Для функции нескольких переменных полный дифференциал определяется, как главная линейная часть малого полного приращения функции относительно приращений аргументов.
Определение звучит громоздко, но с буквами все проще. Полный дифференциал первого порядка функции нескольких переменных выглядит так:
Зная, как считаются частные производные, нет никакой проблемы вычислить и полный дифференциал.
Частные производные – не такая уж и бесполезная тема. Например, дифференциальные уравнения в частных производных второго порядка широко используются для математического описания реальных физических процессов.
Здесь мы дали лишь общее, поверхностное представление о частных производных первого и второго порядка. Вас интересует эта тема или остались конкретные вопросы? Задавайте их в комментариях и обращайтесь к экспертам профессионального студенческого сервиса за квалифицированной и скорой помощью в учебе. С нами вы не останетесь один на один с проблемой!
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Простое объяснение принципов решения частных производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.
Алгоритм решения частных производных
Вычисление частной производной функции из нескольких переменных осуществляется по тем же правилам, что и функций с одной переменной. Разница лишь той, что другие переменные не участвуют дифференцировании (вычислении производной).
Проще говоря, чтобы найти частную производную функции по переменной ,переменную будем считать константой (производная константы равна нулю), после чего находим производную функции по с помощью таблицы производных элементарных функций – . Готово!
Нужна помощь в написании работы?
Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Цена работы
Примеры решения частных производных
Задача
Найти частные производные функции .
Решение
Частная производная функции по независимой переменной :
Производная суммы равна сумме производных. Производная от вычисляется по правилам вычислений производных функций одного аргумента, производная от слагаемого вычисляется как производная от функции двух аргументов. При этом аргумент считается константой. Производная от слагаемого вычисляется как производная от константы.
.
Частная производная функции по независимой переменной :
Здесь вычисления также происходят по правилам вычисления производной суммы. Производная от вычисляется как производная от константы (независимым аргументом при этом считается ). Производная от слагаемого вычисляется как производная от функции двух аргументов. При этом аргумент считается константой, а – независимым аргументом. Вычисление производной от слагаемого осуществляется по правилам вычисления производных функций с одним аргументом.
.
Ответ
.
Задача
Найти частные производные функции .
Решение
Найдём частную производную функции по независимой переменной :
Функция является сложной. Производной показательной функции с основанием является сама функция. Производная показателя степени вычисляется в при условии, что является константой и равна . Производная функции равна произведению и . В результате получаем:
.
Найдём частную производную функции по независимой переменной :
По аналогии с предыдущим случаем производная функции будет равна произведению производных от функции и показателя её степени :
Считая постоянной величиной, находим производную по независимому аргументу :
.
Ответ
.
Задача
Найти частные производные функции .
Решение
Частная производная функции по независимой переменной будет равна производной от . Производная от слагаемого при этом будет равна нулю как производная от константы.
Частная производная функции по независимой переменной находится аналогичным образом, при этом предполагается, что является константой.
Ответ
Задача
Найти частные производные функции .
Решение
Частная производная функции по независимой переменной определяется слагаемым . Производная второго слагаемого – равна нулю, как производная от константы.
В свою очередь, частная производная функции по независимой переменной будет определяться обоими слагаемым:
Таким образом, окончательно получаем:
Ответ
Задача
Найти частные производные функции .
Решение
При нахождении производной по независимой переменной , функцию следует рассматривать как степенную. По правилу нахождения производной степенной функции получаем:
Производная по независимой переменной находится по правилу вычисления производной показательной функции, которая, в свою очередь, определяется по правилам нахождения производных сложных функций, т.к. переменная входит в показатель степени виде функции .
Производная показательной функции равна:
Производная показателя степени равна:
В результате получаем:
Ответ
Задача
Найти частные производные функции .
Решение
Частная производная по независимой переменной находится как сумма слагаемых:
Частная производная по независимой переменной находится как сумма слагаемых:
Ответ
Задача
Найти частные производные функции .
Решение
По правилу нахождения производной квадратного корня получаем, рассматривая как независимый аргумент:
Т.к. функция является сложной, то результат вычисления производной от квадратного корня – следует домножить на производную подкоренного выражения: .
Рассматривая в качестве независимого аргумента, получаем:
По аналогии с предыдущим случаем, результат вычисления производной от квадратного корня – следует домножить на производную подкоренного выражения: .
Ответ
Задача
Найти частные производные функции .
Решение
Данная функция является сложной, поэтому процесс нахождения производной данной функции целесообразно производить в несколько этапов.
Производная показательной функции с основанием равна самой себе. Далее необходимо найти производную показателя степени: . В свою очередь аргумент функции арктангенс в данном случае также представляет собой сложную функцию: . Результирующая производная будет равна произведению производных трёх функций: и .
Нахождение частной производной функции по аргументу :
Нахождение частной производной функции по аргументу :
Ответ
Задача
Найти частные производные первого и второго порядков функции .
Решение
Найдём частную производную первого порядка по аргументу :
Найдём частную производную второго порядка по аргументу :
Найдём частную производную первого порядка по аргументу :
Найдём частную производную второго порядка по аргументу :
Ответ
Задача
Найти частные производные первого и второго порядков функции .
Решение
Найдём частную производную первого порядка по аргументу :
Найдём частную производную второго порядка по аргументу :
Найдём частную производную первого порядка по аргументу :
Найдём частную производную второго порядка по аргументу :
Ответ
Частные производные
Частные производные применяются в заданиях с функциями нескольких переменных. Правила нахождения точно такие же как и для функций одной переменной, с разницей лишь в том, что одну из переменных нужно считать в момент дифференцирования константой (постоянным числом).
Формула
Частные производные для функции двух переменных $ z(x,y) $ записываются в следующем виде $ z’_x, z’_y $ и находятся по формулам:
Частные производные первого порядка
$$ z’_x = frac{partial z}{partial x} $$
$$ z’_y = frac{partial z}{partial y} $$
Частные производные второго порядка
$$ z”_{xx} = frac{partial^2 z}{partial x partial x} $$
$$ z”_{yy} = frac{partial^2 z}{partial y partial y} $$
Смешанная производная
$$ z”_{xy} = frac{partial^2 z}{partial x partial y} $$
$$ z”_{yx} = frac{partial^2 z}{partial y partial x} $$
Частная производная сложной функции
а) Пусть $ z (t) = f( x(t), y(t) ) $, тогда производная сложной функции определяется по формуле:
$$ frac{dz}{dt} = frac{partial z}{partial x} cdot frac{dx}{dt} + frac{partial z}{partial y} cdot frac{dy}{dt} $$
б) Пусть $ z (u,v) = z(x(u,v),y(u,v)) $, тогда частные производные функции находится по формуле:
$$ frac{partial z}{partial u} = frac{partial z}{partial x} cdot frac{partial x}{partial u} + frac{partial z}{partial y} cdot frac{partial y}{partial u} $$
$$ frac{partial z}{partial v} = frac{partial z}{partial x} cdot frac{partial x}{partial v} + frac{partial z}{partial y} cdot frac{partial y}{partial v} $$
Частные производные неявно заданной функции
а) Пусть $ F(x,y(x)) = 0 $, тогда $$ frac{dy}{dx} = -frac{f’_x}{f’_y} $$
б) Пусть $ F(x,y,z)=0 $, тогда $$ z’_x = – frac{F’_x}{F’_z}; z’_y = – frac{F’_y}{F’_z} $$
Примеры решений
Пример 1 |
Найти частные производные первого порядка $ z (x,y) = x^2 – y^2 + 4xy + 10 $ |
Решение |
Для нахождения частной производной по $ x $ будем считать $ y $ постоянной величиной (числом): $$ z’_x = (x^2-y^2+4xy+10)’_x = 2x – 0 + 4y + 0 = 2x+4y $$ Для нахождения частной производной функции по $ y $ определим $ y $ константой: $$ z’_y = (x^2-y^2+4xy+10)’_y = -2y+4x $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ z’_x = 2x+4y; z’_y = -2y+4x $$ |
Пример 2 |
Найти частные производные функции второго порядка $ z = e^{xy} $ |
Решение |
Сперва нужно найти первый производные, а затем зная их можно найти производные второго порядка. Полагаем $ y $ константой: $$ z’_x = (e^{xy})’_x = e^{xy} cdot (xy)’_x = ye^{xy} $$ Положим теперь $ x $ постоянной величиной: $$ z’_y = (e^{xy})’_y = e^{xy} cdot (xy)’_y = xe^{xy} $$ Зная первые производные аналогично находим вторые. Устанавливаем $ y $ постоянной: $$ z”_{xx} = (z’_x)’_x = (ye^{xy})’_x = (y)’_x e^{xy} + y(e^{xy})’_x = 0 + ye^{xy}cdot (xy)’_x = y^2e^{xy} $$ Задаем $ x $ постоянной: $$ z”_{yy} = (z’_y)’_y = (xe^{xy})’_y = (x)’_y e^{xy} + x(e^{xy})’_y = 0 + x^2e^{xy} = x^2e^{xy} $$ Теперь осталось найти смешанную производную. Можно продифференцировать $ z’_x $ по $ y $, а можно $ z’_y $ по $ x $, так как по теореме $ z”_{xy} = z”_{yx} $ $$ z”_{xy} = (z’_x)’_y = (ye^{xy})’_y = (y)’_y e^{xy} + y (e^{xy})’_y = ye^{xy}cdot (xy)’_y = yxe^{xy} $$ |
Ответ |
$$ z’_x = ye^{xy}; z’_y = xe^{xy}; z”_{xy} = yxe^{xy} $$ |
Пример 3 |
Найти частную производную сложной функции $ z = x^2 + y^2, x = sin t, y = t^3 $ |
Решение |
Находим $ frac{partial z}{partial x} $: $$ frac{partial z}{partial x} = (x^2+y^2)’_x = 2x $$ Находим $ frac{partial z}{partial y} $: $$ frac{partial z}{partial y} = (x^2+y^2)’_y = 2y $$ Теперь ищем $ frac{dx}{dt} $ и $ frac{dy}{dt} $: $$ frac{dx}{dt} = frac{d(sin t)}{dt} = cos t $$ $$ frac{dy}{dt} = frac{d(t^3)}{dt} = 3t^2 $$ Подставляем всё это в формулу и записываем ответ: $$ frac{dz}{dt} = frac{partial z}{partial x} cdot frac{dx}{dt} + frac{partial z}{partial y} cdot frac{dy}{dt} $$ $$ frac{dz}{dt} = 2x cdot cos t + 2y cdot 3t^2 $$ |
Ответ |
$$ frac{dz}{dt} = 2x cdot cos t + 2y cdot 3t^2 $$ |
Пример 4 |
Пусть $ 3x^3z – 2z^2 + 3yz^2-4x+z-5 = 0 $ задаёт неявную функцию $ F(x,y,z) = 0 $. Найти частные производные первого порядка. |
Решение |
Записываем функцию в формате: $ F(x,y,z) = 3x^3z – 2z^2 + 3yz^2-4x+z-5 = 0 $ и находим производные: $$ z’_x (y,z – const) = (x^3 z – 2z^2 + 3yz^2-4x+z-5)’_x = 3 x^2 z – 4 $$ $$ z’_y (x,y – const) = (x^3 z – 2z^2 + 3yz^2-4x+z-5)’_y = 3z^2 $$ |
Ответ |
$$ z’_x = 3x^2 z – 4; z’_y = 3z^2; $$ |
Частные производные второго порядка
Содержание:
- Примеры с решением
Предположим, что функция определена в области D и имеет в этой области частные производные и . Эти частные производные являются функциями двух переменных, определенными в области D.
Частными производными второго порядка функции называются частные производные от ее частных производных первого порядка.
Частных производных второго порядка четыре. Они обозначаются следующим образом:
Аналогично определяются и обозначаются частные производные третьего, четвертого и более высоких порядков. Например, для функции имеем: и т.д. А запись означает, что функция продифференцирована раз по переменной , а затем раз по переменной .
Частные производные второго или более высокого порядка, взятые по различным переменным, называются смешанными частными производными. Для функции таковыми, например, являются производные , и .
Аналогично определяются частные производные высших порядков и для функции большего числа переменных.
Если первая производная переменной найдена, получите вторую производную функции, взятую дважды для переменной.
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Примеры с решением
Пример 1.
Найти частные производные второго порядка функции
Решение:
Частные производные первого порядка для данной функции имеют вид:
Тогда
Возможно вам будут полезны данные страницы:
Пример 2.
Найти функции .
Решение:
Имеем, тогда .
Дифференцируя в обратном порядке, приходим к такому же результату:
В этих двух примерах смешанные частные производные , и равны.
Но, вообще говоря, значения смешанных производных зависят от того, в каком порядке производится дифференцирование. Ответ на вопрос, при каких условиях смешанные производные не зависят от того, в каком порядке производится дифференцирование, дает следующая теорема.
Теорема 1. Если производные и определены в некоторой окрестности точки и непрерывны в самой точке , то они равны в этой точке: .
Следствие. Если производные и . определены и непрерывны в некоторой области, то они равны в этой области.
Аналогичное утверждение справедливо и для частных производных более высокого порядка.
Теорема 2 (Шварц). Если частные производные любого порядка непрерывны в некоторой области, то смешанные производные одного порядка, отличающиеся лишь порядком дифференцирования, равны в этой области.
Доказательство. Пусть функция определена в области D и имеет в этой области непрерывные частные производные и
Возьмем любые точки и из этой области. Рассмотрим выражение
. Введем вспомогательную функцию.
Тогда А запишется в виде. Применив к этой разности теорему Лагранжа, получим
, где . Разность в скобке можно рассматривать как приращение функции одной переменной на отрезке с концами в точках ,. Применив еще раз теорему Лагранжа (уже по переменной ), получим
С другой стороны, А можно переписать в виде
. Введя вспомогательную функцию и рассуждая аналогично, получим
Сравнив выражения для А, получим
или
Переходя в этом равенстве к пределу при и учитывая непрерывность производных второго порядка в области D (в частности, в точке ), получим
,
то есть
Методом математической индукции доказанное утверждение можно распространить на частные производные любого порядка.
Лекции:
- Тройной интеграл
- Равномерное распределение
- Признак Даламбера: пример решения
- Производящие функции
- Сложение и вычитание пределов
- Векторы и операции с ними
- Таблица истинности логических выражений
- Элементы векторной алгебры
- Асимптоты графика функции
- Разложение в ряд маклорена
Частные производные. Примеры решений
На
данном уроке мы познакомимся с понятием
функции двух переменных, а также подробно
рассмотрим наиболее распространенное
задание – нахождение частных
производныхпервого
и второго порядка, полного дифференциала
функции. Студенты-заочники, как правило,
сталкиваются с частными производными
на 1 курсе во 2 семестре. Причем, по моим
наблюдениям, задание на нахождение
частных производных практически всегда
встречается на экзамене.
Для
эффективного изучения нижеизложенного
материала Вам необходимо уметь
более или менее уверенно находить
«обычные» производные функции одной
переменной. Научиться правильно
обращаться с производными можно на
уроках Как
найти производную? иПроизводная
сложной функции.
Также нам потребуется таблица производных
элементарных функций и правил
дифференцирования, удобнее всего, если
она будет под рукой в распечатанном
виде. Раздобыть справочный материал
можно на страницеМатематические
формулы и таблицы.
Начнем
с самого понятия функции двух переменных,
я постараюсь ограничиться минимумом
теории, так как сайт имеет практическую
направленность. Функция двух переменных
обычно записывается как ,
при этом переменные , называются независимыми
переменными или аргументами.
Пример: –
функция двух переменных.
Иногда
используют запись .
Также встречаются задания, где вместо
буквы используется
буква .
Полезно
знать геометрический смысл функций.
Функции одной переменной соответствует
определенная линия на плоскости,
например, –
всем знакомая школьная парабола. Любая
функция двух переменных с
геометрической точки зрения представляет
собой поверхность в трехмерном
пространстве (плоскости, цилиндры,
шары, параболоиды и т.д.). Но, собственно,
это уже аналитическая геометрия, а у
нас на повестке дня математический
анализ, который никогда
не давал списывать мой вузовский
преподаватель является
моим «коньком».
Переходим
к вопросу нахождения частных производных
первого и второго порядков. Должен
сообщить хорошую новость для тех, кто
выпил несколько чашек кофе и настроился
на невообразимо трудный материал: частные
производные – это почти то же самое,
что и «обычные» производные функции
одной переменной.
Для
частных производных справедливы все
правила дифференцирования и таблица
производных элементарных функций. Есть
только пара небольших отличий, с которыми
мы познакомимся прямо сейчас.
Пример
1
Найти
частные производные первого и второго
порядка функции
Сначала
найдем частные производные первого
порядка. Их две.
Обозначения:
или –
частная производная по «икс»
или –
частная производная по «игрек»
Начнем
с . Когда
мы находим частную производную по
«икс», то переменная считается
константой (постоянным числом).
Решаем.
На данном уроке я буду приводить полное
решение сразу, а комментарии давать
ниже.
Комментарии
к выполненным действиям:
(1)
Первое, что мы делаем при нахождении
частной производной – заключаем всю функцию
в скобки под штрих с
подстрочным индексом.
Внимание,
важно! Подстрочные
индексы НЕ ТЕРЯЕМ по ходу решения. В
данном случае, если Вы где-нибудь
нарисуете «штрих» без ,
то преподаватель, как минимум, может
поставить рядом с заданием (сразу
откусить часть балла за невнимательность).
Далее
данный шаг комментироваться не будет,
все сделанные замечания справедливы
для любого примера по рассматриваемой
теме.
(2)
Используем правила дифференцирования , .
Для простого примера, как этот, оба
правила вполне можно применить на одном
шаге. Обратите внимание на первое
слагаемое: так как считается
константой, а любую константу можно
вынести за знак производной,
то мы
выносим за скобки. То есть в данной
ситуации ничем
не лучше обычного числа. Теперь посмотрим
на третье слагаемое :
здесь, наоборот, выносить нечего. Так
как константа,
то –
тоже константа, и в этом смысле она
ничем не лучше последнего слагаемого
– «семерки».
(3)
Используем табличные производные и .
(4)
Упрощаем, или, как я люблю говорить,
«причесываем» ответ.
Теперь . Когда
мы находим частную производную по
«игрек», то переменная считается
константой (постоянным числом).
(1)
Используем те же правила
дифференцирования , .
В первом слагаемом выносим константу за
знак производной, во втором слагаемом
ничего вынести нельзя поскольку –
уже константа.
(2)
Используем таблицу производным
элементарных функций. Мысленно
поменяем в таблице все «иксы» на
«игреки». То есть данная таблица рАвно
справедлива и для (да
и вообще почти для любой буквы). В
частности, используемые нами формулы
выглядят так: и .
Итак,
частные производные первого порядка
найдены
Подведем
итог, чем же отличается нахождение
частных производных от нахождения
«обычных» производных функции одной
переменной:
1)
Когда мы находим частную
производную , переменная считается
константой.
2)
Когда мы находим частную
производную , переменная считается
константой.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #