Как найти вторую половину вектора

Уважаемые студенты!
Срочно заказать решение своих задач можно здесь всего за 10 минут.

Векторное произведение векторов

Определение

Определение

Векторным произведением векторов $ overline{a} $ и $ overline{b} $ является вектор $ overline{c} $, который расположен перпендикулярно к плоскости, образуемой векторами $ overline{a} $ и $ overline{b} $. Само произведение обозначается как $ [overline{a},overline{b}] $, либо $ overline{a} times overline{b} $.

векторное произведение векторов

Векторное произведение векторов, формула которого зависит от исходных данных задачи, можно найти двумя способами.

Формула

Формула 1

Если известен синус угла между векторами $ overline{a} $ и $ overline{b} $, то найти векторное произведение векторов можно по формуле:

$$ [overline{a},overline{b}] = |overline{a}| cdot |overline{b}| cdot sin (overline{a},overline{b}) $$

Формула 2

В случае когда векторы $ overline{a} $ и $ overline{b} $ заданы в координатной форме, то их произведение определяется по формуле:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 end{vmatrix} $$

где векторы $ overline{i},overline{j},overline{k} $ называются единичными векторами соответствующих осей $ Ox, Oy, Oz $.

Определитель во второй формуле можно раскрыть по первой строке:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 end{vmatrix} = overline{i} (a_2 b_3 – a_3 b_2) – overline{j} (a_1 b_3 – a_3 b_1) + overline{k} (a_1 b_2 – a_2 b_1) $$

Итого вторая формула приобретает окончательный короткий вид:

$$ overline{a} times overline{b} = (a_2 b_3 – a_3 b_2; a_3 b_1 – a_1 b_3; a_1 b_2 – a_2 b_1) $$

Свойства

  1. При изменении порядка множителей меняется знак на противоположный: $$ [overline{a},overline{b}] = -[overline{b},overline{a}] $$
  2. Вынос константы за знак произведения: $$ lambda [overline{a},overline{b}] = [lambda overline{a}, overline{b}] = [overline{a}, lambda overline{b}] $$
  3. $$ [overline{a}+overline{b}, overline{c}] = [overline{a},overline{c}] + [overline{b}, overline{c}] $$

Примеры решений

Пример 1

Найти векторное произведение векторов, заданных координатами

$$ overline{a} = (2,1,-3) $$ $$ overline{b} = (1,2,-1) $$

Решение

Составляем определитель, первая строка которого состоит из единичных векторов, а вторая и третья из координат векторов $ overline{a} $ и $ overline{b} $:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ 2&1&-3\1&2&-1 end{vmatrix} = overline{i} (-1+6) – overline{j}(-2+3) + overline{k}(4-1) = 5overline{i} – overline{j} + 3overline{k} $$

Полученный ответ можно записать в удобном виде:

$$ overline{a} times overline{b} = (5, -1, 3) $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ overline{a} times overline{b} = (5, -1, 3) $$

Геометрический смысл

  • Модуль векторного произведения векторов $ overline{a} $ и $ overline{b} $ в геометрическом смысле равен площади параллелограмма, построенного на этих векторах: $$ S_{parall} = |overline{a} times overline{b}| $$
  • Половина этого модуля это площадь треугольника: $$ S_Delta = frac{1}{2} |overline{a} times overline{b} | $$
  • Если векторное произведение равно нулю $ overline{a} times overline{b} = 0 $, то векторы коллинеарны.

 

    Пример 2
    Найти площадь треугольника по заданным векторам $$ overline{a} = (2,1,3) $$ $$ overline{b} = (-1,2,1) $$
    Решение

    Используя геометрический смысл, в частности вторую формулу находим половину модуля векторного произведения векторов.

    Находим определитель:

    $$ begin{vmatrix} overline{i}&overline{j}&overline{k}\2&1&3\-1&2&1 end{vmatrix} = overline{i}(1-6) – overline{j}(2+3) + overline{k}(4+1) = -5overline{i} – 5overline{j} + 5overline{k} $$

    Вычисляем модуль полученного вектора как корень квадратный из суммы квадратов координат этого вектора:

    $$ |overline{a} times overline{b}| = sqrt{(-5)^2 + (-5)^2 + 5^2} = sqrt{25 + 25 + 25} = sqrt{75} $$

    По формуле нахождения площади треугольника имеем:

    $$ S_Delta = frac{1}{2} |overline{a} times overline{b}| = frac{1}{2} sqrt{75} = 4.33 $$

    Ответ
    $$ S_Delta = 4.33 $$

    Векторное произведение векторов.

    рис. 1

    Формулы вычисления векторного произведения векторов

    Векторное произведение двух векторов a = < ax ; ay ; az > и b = < bx ; by ; bz > в декартовой системе координат – это вектор, значение которого можно вычислить, используя следующие формулы:

    Свойства векторного произведения векторов

    Примеры задач на вычисления векторного произведения векторов

    a × b = i j k =
    1 2 3
    2 1 -2

    = i (2 · (-2) – 3 · 1) – j (1 · (-2) – 2 · 3) + k (1 · 1 – 2 · 2) =

    Решение: Найдем векторное произведение этих векторов:

    a × b = i j k =
    -1 2 -2
    2 1 -1

    = i (2 · (-1) – (-2) · 1) – j ((-1) · (-1) – (-2) · 2) + k ((-1) · 1 – 2 · 2) =

    Из свойств векторного произведения:

    SΔ = 1 2 | a × b | = 1 2 √ 0 2 + 5 2 + 5 2 = 1 2 √ 25 + 25 = 1 2 √ 50 = 5√ 2 2 = 2.5√ 2

    Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

    Добро пожаловать на OnlineMSchool.
    Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

    Векторное произведение векторов

    О чем эта статья:

    11 класс, ЕГЭ/ОГЭ

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

    Определение векторного произведения

    Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

    Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

    Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

    Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

    Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

    Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

    Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

    Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

    Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

    Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

    Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

    Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

    В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

    И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

    Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

    Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

    • он является нулевым, если векторы →a и →b коллинеарны;
    • он перпендикулярен и вектору →a и вектору →b;
    • длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
    • тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.

    Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

    Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

    Векторное произведение векторов →a и →b обозначается как [→a • →b].

    Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

    Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

    Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

    • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
    • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
    • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

    Координаты векторного произведения

    Рассмотрим векторное произведение векторов в координатах.

    Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

    В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

    →i, →j, →k — координатные векторы.

    Это определение показывает нам векторное произведение в координатной форме.

    Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

    Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

    Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

    Свойства векторного произведения

    Векторное произведение в координатах представляется в виде определителя матрицы:

    На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

    1. Антикоммутативность
    2. Свойство дистрибутивности

    Сочетательное свойство

    , где λ произвольное действительное число.

    Для большей ясности докажем свойство антикоммутативности векторного произведения.

    Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

    что доказывает свойство антикоммутативности векторного произведения.

    Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

    Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

    Примеры решения задач

    Пример 1

    а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

    б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

    а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

    Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

    б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

    Пример 2

    Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

    По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

    Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

    Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

    Пример 3

    Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

    Сначала найдём векторы:

    Затем векторное произведение:

    Вычислим его длину:

    Подставим данные в формулы площадей параллелограмма и треугольника:

    Геометрический смысл векторного произведения

    По определению длина векторного произведения векторов равна

    А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

    Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

    Физический смысл векторного произведения

    В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

    Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

    Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

    Векторы в пространстве и метод координат

    Существует два способа решения задач по стереометрии

    Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

    Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

    Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

    Система координат в пространстве

    Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

    Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

    Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

    Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


    Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

    Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

    Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

    Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

    Произведение вектора на число:

    Скалярное произведение векторов:

    Косинус угла между векторами:

    Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

    1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

    Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

    Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

    Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

    Запишем координаты векторов:

    и найдем косинус угла между векторами и :

    2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

    Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

    Координаты точек A, B и C найти легко:

    Из прямоугольного треугольника AOS найдем

    Координаты вершины пирамиды:

    Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

    Найдем координаты векторов и

    и угол между ними:

    Покажем теперь, как вписать систему координат в треугольную призму:

    3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

    Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

    Запишем координаты точек:

    Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
    отрезка.

    Найдем координаты векторов и , а затем угол между ними:

    Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

    Плоскость в пространстве задается уравнением:

    Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

    Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

    Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

    Покажем, как это делается.

    Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

    Уравнение плоскости выглядит так:

    Подставим в него по очереди координаты точек M, N и K.

    То есть A + C + D = 0.

    Аналогично для точки K:

    Получили систему из трех уравнений:

    В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

    Пусть, например, D = −2. Тогда:

    Выразим C и B через A и подставим в третье уравнение:

    Решив систему, получим:

    Уравнение плоскости MNK имеет вид:

    Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

    Вектор — это нормаль к плоскости MNK.

    Уравнение плоскости, проходящей через заданную точку имеет вид:

    Угол между плоскостями равен углу между нормалями к этим плоскостям:

    Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

    Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

    Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

    4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

    Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

    Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

    Итак, первый вектор нормали у нас уже есть:

    Напишем уравнение плоскости AEF.

    Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

    Пусть С = -1. Тогда A = B = 2.

    Уравнение плоскости AEF:

    Нормаль к плоскости AEF:

    Найдем угол между плоскостями:

    5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

    Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» 🙂

    Строим чертеж. Прямую четырехугольную призму можно по-другому назвать “параллелепипед”.

    Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

    «Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

    Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

    Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

    Координаты вектора — тоже:

    Находим угол между плоскостями, равный углу между нормалями к ним:

    Зная косинус угла, находим его тангенс по формуле

    Получим:

    Ответ:

    Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

    Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

    Находим синус угла между прямой m и плоскостью α по формуле:

    6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

    Как всегда, рисуем чертеж и выбираем систему координат

    Находим координаты вектора .

    Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

    Найдем угол между прямой и плоскостью:

    Ответ:

    Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

    7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

    Построим чертеж и выпишем координаты точек:

    Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

    Решим эту систему. Выберем

    Тогда

    Уравнение плоскости A1DB имеет вид:

    Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

    В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

    [spoiler title=”источники:”]

    http://skysmart.ru/articles/mathematic/vektornoe-proizvedenie-vektorov

    http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/

    [/spoiler]

    Содержание:

    Векторная алгебра

    Векторная алгебра – это раздел векторного исчисления, изучающий линейные операции с векторами и их геометрические свойства; часть линейной алгебры, занимающаяся векторными пространствами; различные векторные алгебры XIX века (например, кватернионов, бикватернионов, сплит-кватернионов).

    Векторы и линейные операции над ними

    Займемся теперь таким важным как в самой математике, так и в ее многочисленных приложениях, понятием вектора.

    Определение: Вектором, на плоскости или в пространстве называется отрезок прямой с заданным на нем направлением, т. е. одна из его граничных точек считается начальной, а вторая – конечной.

    Обозначать векторы мы будем строчными латинскими буквами Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Длина отрезка, изображающего векторВекторная алгебра - примеры с решением заданий и выполнением задач называется его длиной и обозначается через Векторная алгебра - примеры с решением заданий и выполнением задач Вектор с совпадающими начальной и конечной точками называется нуль-вектором. Для него используется обозначение Векторная алгебра - примеры с решением заданий и выполнением задач

    По определению, два вектора считаются равными, если один из них можно преобразовать в другой с помощью параллельного переноса.
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Учитывая приведенное определение, всюду в дальнейшем мы без специальных оговорок будем перемещать вектор параллельным переносом в любую удобную для нас точку.

    Два вектора Векторная алгебра - примеры с решением заданий и выполнением задачназываются коллинеарными (обозначение Векторная алгебра - примеры с решением заданий и выполнением задач), если отрезки их изображающие параллельны.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Аналогично, векторы а и b называются ортогональными (обозначение Векторная алгебра - примеры с решением заданий и выполнением задач), если соответствующие отрезки перпендикулярны.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Три вектора называются компланарными, если после приведения их общему началу, они будут расположены в одной плоскости.
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Углом между векторами Векторная алгебра - примеры с решением заданий и выполнением задач приведенными к общему началу, называется меньший из двух углов между соответствующими отрезками. Обозначать угол мы будем строчными греческими буквами Векторная алгебра - примеры с решением заданий и выполнением задач… или через Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Два ненулевых вектора Векторная алгебра - примеры с решением заданий и выполнением задачмы будем считать одинаково направленными, если Векторная алгебра - примеры с решением заданий и выполнением задач и противоположно направленными, если Векторная алгебра - примеры с решением заданий и выполнением задач

    Введем теперь линейные операции над векторами.

    а) Умножение числа на вектор.

    Произведением действительного числа Векторная алгебра - примеры с решением заданий и выполнением задачна векторВекторная алгебра - примеры с решением заданий и выполнением задачназывается вектор Векторная алгебра - примеры с решением заданий и выполнением задач длина которого равна Векторная алгебра - примеры с решением заданий и выполнением задача направление его совпадает с направлением вектора Векторная алгебра - примеры с решением заданий и выполнением задач если Векторная алгебра - примеры с решением заданий и выполнением задачи имеет противоположное с ним направление, если Векторная алгебра - примеры с решением заданий и выполнением задач Если Векторная алгебра - примеры с решением заданий и выполнением задач или Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    В частности, векторВекторная алгебра - примеры с решением заданий и выполнением задач обозначается через Векторная алгебра - примеры с решением заданий и выполнением задачи называется вектором, противоположным вектору Векторная алгебра - примеры с решением заданий и выполнением задач

    Если Векторная алгебра - примеры с решением заданий и выполнением задач то произведение Векторная алгебра - примеры с решением заданий и выполнением задач мы будем иногда записывать в виде Векторная алгебра - примеры с решением заданий и выполнением задач

    Из приведенного определения сразу же следует, что коллинеарные векторы Векторная алгебра - примеры с решением заданий и выполнением задач линейно связаны, т. е. существует константа Векторная алгебра - примеры с решением заданий и выполнением задач такая,что  Векторная алгебра - примеры с решением заданий и выполнением задачВ качестве такой константы следует

    взять число Векторная алгебра - примеры с решением заданий и выполнением задач Если Векторная алгебра - примеры с решением заданий и выполнением задач то Векторная алгебра - примеры с решением заданий и выполнением задачВ частности, если Векторная алгебра - примеры с решением заданий и выполнением задачто вектором единичной длины с направлением данного вектора является вектор Векторная алгебра - примеры с решением заданий и выполнением задач

    b) Сложение векторов.

    Суммой двух векторов Векторная алгебра - примеры с решением заданий и выполнением задач называется вектор Векторная алгебра - примеры с решением заданий и выполнением задач который находится по правилу треугольника

    Векторная алгебра - примеры с решением заданий и выполнением задач

    или по равносильному ему правилу параллелограмма

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Вектор Векторная алгебра - примеры с решением заданий и выполнением задачназывается разностью векторов Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Свойства линейных операций над векторами аналогичны соответствующим свойствам действительных чисел.

    Проекцией вектора Векторная алгебра - примеры с решением заданий и выполнением задач на вектор Векторная алгебра - примеры с решением заданий и выполнением задач называется число
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Геометрически очевидны следующие свойства проекции:

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Пример №1

    Пусть Е и F – середины сторон AD и ВС соответственно выпуклого четырехугольника ABCD. Доказать, что

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Доказательство. Из четырехугольников EDCF и EABF по правил}’ сложения векторов получим:

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Сложив данные равенства и учитывая, что Векторная алгебра - примеры с решением заданий и выполнением задач будем иметь:

    Векторная алгебра - примеры с решением заданий и выполнением задач

    что и требовалось.

    Базис и декартова система координат

    Определение: Базисом на плоскости называется упорядоченная пара неколлинеарных векторов. Базисом в пространстве называется упорядоченная тройка некомпланарных векторов.

    Обозначение: Векторная алгебра - примеры с решением заданий и выполнением задач— базис на плоскости, Векторная алгебра - примеры с решением заданий и выполнением задач — базис в пространстве. Всюду в дальнейшем, не оговаривая это особо, будем рассматривать только положительно ориентированные базисы, т. е. базисы, у которых кратчайший поворот от вектора Векторная алгебра - примеры с решением заданий и выполнением задач к вектору Векторная алгебра - примеры с решением заданий и выполнением задачсовершается против часовой стрелки, если наблюдение ведется со стороны вектораВекторная алгебра - примеры с решением заданий и выполнением задачСформулируем теперь фундаментальное свойство базиса.

    Теорема. Любой вектор единственным образом разлагается по базису, т. е. представляется в виде Векторная алгебра - примеры с решением заданий и выполнением задач где действительные числа Векторная алгебра - примеры с решением заданий и выполнением задач – координаты вектора Векторная алгебра - примеры с решением заданий и выполнением задач в базисеВекторная алгебра - примеры с решением заданий и выполнением задач

    Приведем геометрическое доказательство этого утверждения.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    ВекторВекторная алгебра - примеры с решением заданий и выполнением задач можно единственным образом представить как большую диагональ параллелепипеда, ребра которого, параллельны базисным векторам. Тогда по правилу сложения векторов Векторная алгебра - примеры с решением заданий и выполнением задач В виду коллинеарности векторов Векторная алгебра - примеры с решением заданий и выполнением задач соответствующим базисным векторам, мы можем записать, что Векторная алгебра - примеры с решением заданий и выполнением задач— некоторые действительные числа. Отсюда и следует искомое разложение.

    Если базис зафиксирован, то факт, что вектор а в этом базисе имеет координаты Векторная алгебра - примеры с решением заданий и выполнением задач коротко записывается как Векторная алгебра - примеры с решением заданий и выполнением задач

    Из доказанной теоремы следует, что при выполнении линейных операций над векторами точно также преобразуются и их координаты, т. е. если Векторная алгебра - примеры с решением заданий и выполнением задачесли Векторная алгебра - примеры с решением заданий и выполнением задачОтсюда, в частности, следует, что два вектора коллинеарны тогда и только тогда, когда их координаты пропорциональны, т. е.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Рассмотрим теперь ортонормированный базис Векторная алгебра - примеры с решением заданий и выполнением задач т.е. базис, в котором все векторы имеют единичную длин}’ и попарно ортогональны. Векторы этого базиса мы будем называть ортами. Пусть в этом базисе Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Как видно из чертежа, координаты вектора в ортонормированном базисе представляют собой проекции этого вектора на соответствующие орты. т. е.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Величины Векторная алгебра - примеры с решением заданий и выполнением задач т. е. косинусы углов, которые образует данный вектор с ортами Векторная алгебра - примеры с решением заданий и выполнением задач к соответственно, называются направляющими косинусами вектора Векторная алгебра - примеры с решением заданий и выполнением задач Единичный вектор Векторная алгебра - примеры с решением заданий и выполнением задач имеет координаты Векторная алгебра - примеры с решением заданий и выполнением задач

    Очевидно также, что

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Свяжем теперь с ортонормированным базисом декартову (прямоугольную) систему координат. Для этого поместим начала ортов в некоторую точку О, ось Ох (абсцисс) направим вдоль орта Векторная алгебра - примеры с решением заданий и выполнением задач ось Векторная алгебра - примеры с решением заданий и выполнением задач (ординат) — вдоль орта Векторная алгебра - примеры с решением заданий и выполнением задач наконец, ось Векторная алгебра - примеры с решением заданий и выполнением задач (аппликат) направим вдоль ортаВекторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    В выбранной системе координат координаты радиуса-вектора Векторная алгебра - примеры с решением заданий и выполнением задач мы будем называть координатами точки М и записывать Векторная алгебра - примеры с решением заданий и выполнением задач

    Если известны координаты начальной Векторная алгебра - примеры с решением заданий и выполнением задач и конечной Векторная алгебра - примеры с решением заданий и выполнением задачточек вектора, то из равенства Векторная алгебра - примеры с решением заданий и выполнением задач слезет, что его координаты равны

    Векторная алгебра - примеры с решением заданий и выполнением задач и, значит, расстояние между точками Векторная алгебра - примеры с решением заданий и выполнением задач вычисляется по формуле

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Найдем теперь координаты точки М, делящей отрезок с концами в точках Векторная алгебра - примеры с решением заданий и выполнением задачв данном

    отношении Векторная алгебра - примеры с решением заданий и выполнением задачТак как Векторная алгебра - примеры с решением заданий и выполнением задач Отсюда, переходя к координатам получим:

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Следовательно, координаты искомой точки вычисляются по формулам:

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Найдем, в частности, координаты середины отрезка. Здесь А = 1, поэтому

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Пример №2

    Треугольник задан координатами своих вершин Векторная алгебра - примеры с решением заданий и выполнением задач Векторная алгебра - примеры с решением заданий и выполнением задач Найти координаты точки пересечения его медиан. Решение.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    ПустьВекторная алгебра - примеры с решением заданий и выполнением задач – середина отрезка Векторная алгебра - примеры с решением заданий и выполнением задач – точка пересечения медиан. Тогда

    Векторная алгебра - примеры с решением заданий и выполнением задач

    По известному свойству точки пересечения медиан Векторная алгебра - примеры с решением заданий и выполнением задач и потому

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Подставив сюда найденные координаты точки Векторная алгебра - примеры с решением заданий и выполнением задачползучим:

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Таким образом, координаты точки пересечения медиан треугольника равны средним арифметическим соответствующих координат его вершин.

    Замечание. Базисом n-мерного пространства Векторная алгебра - примеры с решением заданий и выполнением задач называется упорядоченная совокупность n векторов

    Векторная алгебра - примеры с решением заданий и выполнением задач

    обладающая тем свойством, что любой векторВекторная алгебра - примеры с решением заданий и выполнением задач единственным образом представляется в виде линейной комбинации базисных векторов (1), т.е. существуют действительные числа Векторная алгебра - примеры с решением заданий и выполнением задач (координаты вектораВекторная алгебра - примеры с решением заданий и выполнением задачв базисе (1)) такие, что

    Векторная алгебра - примеры с решением заданий и выполнением задач

    В качестве базиса в Векторная алгебра - примеры с решением заданий и выполнением задач мы можем взять, например, векторы

    Векторная алгебра - примеры с решением заданий и выполнением задач

    так как, очевидно, любой вектор Векторная алгебра - примеры с решением заданий и выполнением задачоднозначно представляется в виде (2).

    Скалярное произведение векторов

    Определение: Скалярным произведением векторов Векторная алгебра - примеры с решением заданий и выполнением задач называется число

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Из этого определения сразу же следует, что

    Векторная алгебра - примеры с решением заданий и выполнением задач

    и таким образом, если один из векторов имеет единичную длину, то их скалярное произведение равно проекции второго вектора на единичный.

    Отметим основные свойства скалярного произведения.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Первые два и последнее свойства немедленно следуют из определения скалярного произведения, а третье и четвертое – из сформулированных в §1 свойств проекции.

    Найдем теперь представление скалярного произведения в координатах. Пусть в орто-нормированном базисе Векторная алгебра - примеры с решением заданий и выполнением задач векторы Векторная алгебра - примеры с решением заданий и выполнением задачимеют координаты Векторная алгебра - примеры с решением заданий и выполнением задач Заметив, что по свойствам 1) и 5) скалярного произведения

    Векторная алгебра - примеры с решением заданий и выполнением задач

    перемножим векторыВекторная алгебра - примеры с решением заданий и выполнением задачскалярно, используя свойства 2) – 4):

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Таким образом, скалярное произведение в ортонормированном базисе равно сумме произведений соответствующих координат векторов.

    Пример №3

    Разложить вектор Векторная алгебра - примеры с решением заданий и выполнением задач на две ортогональные составляющие, одна из которых коллинеарна вектору Векторная алгебра - примеры с решением заданий и выполнением задач

    Решение.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Из чертежа следует, что Векторная алгебра - примеры с решением заданий и выполнением задач – искомое разложение. Найдем векторы Векторная алгебра - примеры с решением заданий и выполнением задач Составляющая Векторная алгебра - примеры с решением заданий и выполнением задач коллинеарная вектору Векторная алгебра - примеры с решением заданий и выполнением задач равна, очевидно, вектору проекции Векторная алгебра - примеры с решением заданий и выполнением задач и, следовательно,

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Тогда вторая ортогональная составляющая вектора Векторная алгебра - примеры с решением заданий и выполнением задач равна

    Векторная алгебра - примеры с решением заданий и выполнением задач

    В заключение параграфа рассмотрим одно простое приложение скалярного произведения в механике. Пусть под действием постоянной силы Векторная алгебра - примеры с решением заданий и выполнением задач материальная тотп<а переместилась по прямой из положения В в положение С.

    Векторная алгебра - примеры с решением заданий и выполнением задач
    Найдем работу этой силы. Для этого разложим вектор силы Векторная алгебра - примеры с решением заданий и выполнением задач на две ортогональные составляющие. одна из которых коллинеарна вектору перемещения Векторная алгебра - примеры с решением заданий и выполнением задач Тогда

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Составляющая Векторная алгебра - примеры с решением заданий и выполнением задач работы не совершает, следовательно, работа силы Векторная алгебра - примеры с решением заданий и выполнением задач равна работе составляющей Векторная алгебра - примеры с решением заданий и выполнением задач и, таким образом,

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Окончательно, работа силыВекторная алгебра - примеры с решением заданий и выполнением задач, под действием которой материальная точка перемещается по отрезку прямой из положения В в положение С, вычисляется по формуле:

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Замечание. Скалярным произведением векторов Векторная алгебра - примеры с решением заданий и выполнением задач n-мерного пространстваВекторная алгебра - примеры с решением заданий и выполнением задачназывается число Векторная алгебра - примеры с решением заданий и выполнением задач равное произведению первого вектора, записанного строкой, на второй вектор, записанный столбцом. Таким образом, если

    Векторная алгебра - примеры с решением заданий и выполнением задач

    то

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Несложной проверкой мы можем убедиться в том, что таким образом определенное скалярное произведение в Векторная алгебра - примеры с решением заданий и выполнением задач обладает свойствами 2) — 4) скалярного произведения векторов на плоскости или в пространстве.

    Длиной вектора Векторная алгебра - примеры с решением заданий и выполнением задачназывается число

    Векторная алгебра - примеры с решением заданий и выполнением задач

    ВекторыВекторная алгебра - примеры с решением заданий и выполнением задач называются ортогональными, если Векторная алгебра - примеры с решением заданий и выполнением задач Векторы

    Векторная алгебра - примеры с решением заданий и выполнением задач

    составляют ортонормированный базис пространства Векторная алгебра - примеры с решением заданий и выполнением задач, так как каждый из этих векторов имеет единичную длину и все они попарно ортогональны.

    Любой вектор Векторная алгебра - примеры с решением заданий и выполнением задач мы можем рассматривать как точку

    Векторная алгебра - примеры с решением заданий и выполнением задач

    n-мерного пространства с координатами Векторная алгебра - примеры с решением заданий и выполнением задач

    Взяв еще одну точку Векторная алгебра - примеры с решением заданий и выполнением задач соответствующую вектору Векторная алгебра - примеры с решением заданий и выполнением задач мы под расстоянием между точками М и N будем понимать длину вектора Векторная алгебра - примеры с решением заданий и выполнением задач т. е. число

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Таким образом переопределенное пространство Векторная алгебра - примеры с решением заданий и выполнением задач с расстоянием (2) между точками мы будем называть евклидовым пространством, сохранив для него то же обозначение.

    Совокупность точки О(0.0,…, 0) и ортонормированного базиса (1) называется декартовой системой координат евклидова пространства R”. Точка 0(0,0,… ,0) называется, естественно, началом координат.

    Векторное произведение векторов

    Определение: Векторным произведением некоялинеарных векторов Векторная алгебра - примеры с решением заданий и выполнением задач называется вектор Векторная алгебра - примеры с решением заданий и выполнением задач такой, что

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач
    Из этого определения следует, что площадь параллелограмма, построенного на векторах Векторная алгебра - примеры с решением заданий и выполнением задач и Векторная алгебра - примеры с решением заданий и выполнением задач равна длине векторного произведения Векторная алгебра - примеры с решением заданий и выполнением задач, т. е.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Сформулируем основные свойства векторного произведения.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Первые два свойства очевидным образом следуют из определения векторного произведения. Доказательство третьего ввиду его громоздкости мы приводить не будем.

    Найдем формулу для вычисления векторного произведения в координатах. Пусть векторы Векторная алгебра - примеры с решением заданий и выполнением задач и Векторная алгебра - примеры с решением заданий и выполнением задач в ортонормированном базисе Векторная алгебра - примеры с решением заданий и выполнением задач имеют координаты Векторная алгебра - примеры с решением заданий и выполнением задач Учитывая, tito по определению векторного произведения

    Векторная алгебра - примеры с решением заданий и выполнением задач

    раскроем скобки в векторном произведении Векторная алгебра - примеры с решением заданий и выполнением задачпринимая во внимание свойства 1) – 3): Векторная алгебра - примеры с решением заданий и выполнением задач

    Полученный вектор мы можем записать в виде следующего символического определителя.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    вычислять который удобно разложением по первой строке.

    Пример №4

    Найти составляющую вектора Векторная алгебра - примеры с решением заданий и выполнением задач, ортогональную плоскости векторов Векторная алгебра - примеры с решением заданий и выполнением задач.

    Решение.

    Векторная алгебра - примеры с решением заданий и выполнением задач
    Из чертежа видно, что искомая составляющая представляет собой вектор проекции данного вектора Векторная алгебра - примеры с решением заданий и выполнением задач на векторное произведениеВекторная алгебра - примеры с решением заданий и выполнением задач и, следовательно.

    Векторная алгебра - примеры с решением заданий и выполнением задач
    Переходим к вычислениям:

    Векторная алгебра - примеры с решением заданий и выполнением задач
    Тогда Векторная алгебра - примеры с решением заданий и выполнением задач

    Среди многочисленных приложений векторного произведения отметим его применение в механике при вычислении момента силы.

    Векторная алгебра - примеры с решением заданий и выполнением задач
    Итак, пусть сила Векторная алгебра - примеры с решением заданий и выполнением задач приложена к материальной точке В. Моментом этой силы относительно неподвижной точки С называется вектор

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Смешанное произведение векторов

    Определение: Смешанным произведением трех векторов Векторная алгебра - примеры с решением заданий и выполнением задач называется число

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Выясним геометрический смысл смешанного произведения для тройки некомпланарных векторов.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    По определению смешанного произведения

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Поскольку Векторная алгебра - примеры с решением заданий и выполнением задач – площадь параллелограмма, построенного на векторах Векторная алгебра - примеры с решением заданий и выполнением задач (§4)

    Векторная алгебра - примеры с решением заданий и выполнением задач -высота параллелепипеда построенного на векторах Векторная алгебра - примеры с решением заданий и выполнением задач то

    Векторная алгебра - примеры с решением заданий и выполнением задач

    – объем параллелепипеда. Таким образом, абсолютная величина смешанного произведения трех векторов равна объему параллелепипеда, построенного на этих векторах.

    Если векторы заданы своими координатами в ортонормированном базисе Векторная алгебра - примеры с решением заданий и выполнением задач, т.е. Векторная алгебра - примеры с решением заданий и выполнением задач то учитывая формулы для вычисления скалярного и векторного произведений (§3, §4), получим:

    Векторная алгебра - примеры с решением заданий и выполнением задач
    Следовательно (глава I. §2, пункт 3, свойство 7)), в координатах смешанное произведение вычисляется по формуле:

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Докажем, пользуясь этой формулой, некоторые свойства смешанного произведения.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    что следует из свойства 4) определителя (глава I. §2, пункт 3). Таким образом, в смешанном произведении можно менять местами знаки скалярного и векторного произведения, и поэтому для него используется более короткое обозначение Векторная алгебра - примеры с решением заданий и выполнением задач. которым мы и будем пользоваться в дальнейшем.

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Эти свойства смешанного произведения также являются прямыми следствиями соответствующих свойств определителя.

    Докажем еще одно, геометрическое свойство смешанного произведения.

    Теорема. Три вектора Векторная алгебра - примеры с решением заданий и выполнением задач компланарны тогда и только тогда, когда их смешанное произведение равно нулю.

    Доказательство. Докажем необходимость условия теоремы. Пусть векторы Векторная алгебра - примеры с решением заданий и выполнением задач компланарны. Очевидно, что, если хотя бы один из них равен нулю, то и их смешанное произведение равно нулю. Если же все они ненулевые, то, ввиду их компланарности, векторное произведение Векторная алгебра - примеры с решением заданий и выполнением задач ортогонально вектору с и, следовательно, Векторная алгебра - примеры с решением заданий и выполнением задач. Аналогично проверяется достаточность условия теоремы.

    Следствие. Три вектора Векторная алгебра - примеры с решением заданий и выполнением задач образуют базис в том и только в том случае, когда их смешанное произведение отлично от нуля.

    Заметим, кроме того, что, если Векторная алгебра - примеры с решением заданий и выполнением задач, то угол между векторами Векторная алгебра - примеры с решением заданий и выполнением задач -острый (тупой) и, следовательно, базис Векторная алгебра - примеры с решением заданий и выполнением задач является положительно (отрицательно) ориентированным.

    Пример №5

    Доказать, что пять точек

    Векторная алгебра - примеры с решением заданий и выполнением задач

    расположены в одной плоскости.

    Решение. Рассмотрим векторы Векторная алгебра - примеры с решением заданий и выполнением задач Так как

    Векторная алгебра - примеры с решением заданий и выполнением задач
    то по доказанной выше теореме эти векторы компланарны и, стало быть. точки Векторная алгебра - примеры с решением заданий и выполнением задач находятся в одной плоскости Векторная алгебра - примеры с решением заданий и выполнением задач Аналогично покажем, что и точки Векторная алгебра - примеры с решением заданий и выполнением задач также принадлежат одной плоскости Векторная алгебра - примеры с решением заданий и выполнением задач. Действительно, Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач
    так как первая и третья строки в определителе пропорциональны. Плоскости Векторная алгебра - примеры с решением заданий и выполнением задач имеют три общие точки Векторная алгебра - примеры с решением заданий и выполнением задач, следовательно, они совпадают и, таким образом, все пять точек расположены в одной плоскости.

    Векторы и линейные операции над ними

    Определение: Вектором называется направленный отрезок (рис. 1).  
      Векторная алгебра - примеры с решением заданий и выполнением задач А – начало, В – конец вектора  Векторная алгебра - примеры с решением заданий и выполнением задач
                         Рис. 1 
      Так как вектор определяется его началом и концом, то можно сформулировать эквивалентное данному определение. 

    Определение: Вектором называется упорядоченная пара точек

    Определение: Длина вектора  Векторная алгебра - примеры с решением заданий и выполнением задач – расстояние между его началом и концом

    Определение:  Два  вектора  называются  равными,  если  они  имеют равные длины и одинаково направлены. При этом одинаково направленными называются векторы, лежащие на параллельных прямых и имеющие одинаковые направления. 
    Из этого определения следует, что точка приложения вектора значения не имеет, то есть вектор не изменяется, если его перемещать параллельно самому себе, сохраняя  длину. Такие векторы называются свободными. 
    Если начало и конец вектора совпадают, он называется нулевым: 
    Векторная алгебра - примеры с решением заданий и выполнением задач – нулевой вектор: его направление не определено, а длина   Векторная алгебра - примеры с решением заданий и выполнением задач

    Определение: Векторы  Векторная алгебра - примеры с решением заданий и выполнением задач  называются коллинеарными, если они лежат на параллельных прямых: Векторная алгебра - примеры с решением заданий и выполнением задач
    Так как направление  нулевого вектора не определено, то он коллинеарен любому другому. 

    Определение: Векторы называются компланарными, если они параллельны одной плоскости. 
    Нулевой вектор компланарен любой системе компланарных векторов.

    Линейные операции над векторами

    Линейными  называются  операции  сложения  векторов  и  умножения  на число. 

    Сложение

    а)  Правило  параллелограмма  (рис.2): начала  Векторная алгебра - примеры с решением заданий и выполнением задач   совмещаются в одной точке, и  Векторная алгебра - примеры с решением заданий и выполнением задач – диагональ параллелограмма, построенного на  Векторная алгебра - примеры с решением заданий и выполнением задач

    б) Правило треугольника  (рис. 3): начало Векторная алгебра - примеры с решением заданий и выполнением задач   совмещается  с  концом Векторная алгебра - примеры с решением заданий и выполнением задач направлен от начала   Векторная алгебра - примеры с решением заданий и выполнением задач   к концу  Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач

    в) Правило сложения нескольких векторов (рис. 4).                                                                   

    Вектор  Векторная алгебра - примеры с решением заданий и выполнением задач   замыкает ломаную линию, построенную таким образом:  конец  предыдущего  вектора  совмещается  с  началом  последующего и Векторная алгебра - примеры с решением заданий и выполнением задач направлен от начала Векторная алгебра - примеры с решением заданий и выполнением задач к концуВекторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Умножение на число

    Определение: Произведением вектора  Векторная алгебра - примеры с решением заданий и выполнением задач  на число Векторная алгебра - примеры с решением заданий и выполнением задач называется вектор Векторная алгебра - примеры с решением заданий и выполнением задач , aудовлетворяющий условиям: 
    а) Векторная алгебра - примеры с решением заданий и выполнением задач       
    б) Векторная алгебра - примеры с решением заданий и выполнением задач  

    в)Векторная алгебра - примеры с решением заданий и выполнением задач , если Векторная алгебра - примеры с решением заданий и выполнением задач ,a если  Векторная алгебра - примеры с решением заданий и выполнением задач, если Векторная алгебра - примеры с решением заданий и выполнением задач

    Произведение Векторная алгебра - примеры с решением заданий и выполнением задач  называется  вектором,  противоположным векторуВекторная алгебра - примеры с решением заданий и выполнением задач . Очевидно,  Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Определение:  Разностью Векторная алгебра - примеры с решением заданий и выполнением задач  называется    сумма    вектора  Векторная алгебра - примеры с решением заданий и выполнением задач  и  вектора, противоположного Векторная алгебра - примеры с решением заданий и выполнением задач (рис. 5). 
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Начала  Векторная алгебра - примеры с решением заданий и выполнением задач  совмещаются в одной точке, и  Векторная алгебра - примеры с решением заданий и выполнением задач направлен от конца  Векторная алгебра - примеры с решением заданий и выполнением задач  к концу  Векторная алгебра - примеры с решением заданий и выполнением задач

    Свойства линейных операций

    Векторная алгебра - примеры с решением заданий и выполнением задач 
     

    Определение:  Результат  конечного  числа  линейных  операций  над векторами называется их линейной комбинацией:Векторная алгебра - примеры с решением заданий и выполнением задач  –  линейная  комбинация  векторов  Векторная алгебра - примеры с решением заданий и выполнением задач с  коэффициентами Векторная алгебра - примеры с решением заданий и выполнением задач 
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Пример №6

    Пусть  М – точка пересечения медиан треугольника АВС, а О – произвольная точка пространства. Представить Векторная алгебра - примеры с решением заданий и выполнением задач  как линейную комбинацию  
    Векторная алгебра - примеры с решением заданий и выполнением задач(рис. 6). 
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач.  Так  как  точка  пересечения  медиан  треугольника делит их в отношении 2:1, считая от вершины, то  из правила параллелограмма следует, что Векторная алгебра - примеры с решением заданий и выполнением задач
    По правилу треугольника Векторная алгебра - примеры с решением заданий и выполнением задач , то есть Векторная алгебра - примеры с решением заданий и выполнением задач  – линейная комбинация  Векторная алгебра - примеры с решением заданий и выполнением задач с коэффициентами Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Теорема:  Пусть Векторная алгебра - примеры с решением заданий и выполнением задач   –  неколлинеарные  векторы.  Тогда  любой компланарный с ними вектор  c  может быть представлен в виде  
    Векторная алгебра - примеры с решением заданий и выполнением задач
    где коэффициенты (2.1) определяются единственным образом. 
    Представление вектора Векторная алгебра - примеры с решением заданий и выполнением задач  в виде (2.1) называется разложением  его по двум неколлинеарным векторам. 

    Доказательство:

    1. Пусть среди  Векторная алгебра - примеры с решением заданий и выполнением задач есть два коллинеарных, например: Векторная алгебра - примеры с решением заданий и выполнением задачВекторная алгебра - примеры с решением заданий и выполнением задач
    2. Пусть среди  Векторная алгебра - примеры с решением заданий и выполнением задач коллинеарных нет, тогда совместим начала всех трех векторов  в одной точке. Построим параллелограмм, диагональ которого совпадает  с    Векторная алгебра - примеры с решением заданий и выполнением задач ,  а  стороны  параллельны  прямым, на которых лежат  Векторная алгебра - примеры с решением заданий и выполнением задач  (рис. 7). 

    Тогда  c Векторная алгебра - примеры с решением заданий и выполнением задач  но Векторная алгебра - примеры с решением заданий и выполнением задачВекторная алгебра - примеры с решением заданий и выполнением задач Поэтому Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Докажем единственность разложения. Предположим, что  Векторная алгебра - примеры с решением заданий и выполнением задачи Векторная алгебра - примеры с решением заданий и выполнением задач   Тогда,  вычитая  одно  равенство    из  другого,  получим:Векторная алгебра - примеры с решением заданий и выполнением задач

    Если Векторная алгебра - примеры с решением заданий и выполнением задач, что противоречит условию. Теорема доказана. 

    Теорема: Пусть  Векторная алгебра - примеры с решением заданий и выполнением задач  – некомпланарные векторы. Тогда любой вектор  Векторная алгебра - примеры с решением заданий и выполнением задач  может быть представлен в виде  
    Векторная алгебра - примеры с решением заданий и выполнением задач
    причем единственным образом. 
    Представление  вектора Векторная алгебра - примеры с решением заданий и выполнением задач   в  виде (2.2) называется  разложением  его по трем некомпланарным.  
    Доказать самостоятельно. 

    Проекция вектора на ось

    Проекция вектора на ось — это скалярная величина (число), равная длине геометрической проекции вектора, если направление оси и геометрической проекции совпадают; или число, противоположное длине геометрической проекции вектора, если направления геометрической проекции и оси — противоположные.

    Координаты вектора

    Осью называется  направленная прямая. 
     

    Определение:  Ортом  оси  Векторная алгебра - примеры с решением заданий и выполнением задач   называется  единичный  вектор  Векторная алгебра - примеры с решением заданий и выполнением задач 
    направление которого совпадает с направлением оси. 

    Определение: Ортогональной проекцией точки М на ось   Векторная алгебра - примеры с решением заданий и выполнением задач  называется основание Векторная алгебра - примеры с решением заданий и выполнением задач перпендикуляра, опущенного из М на Векторная алгебра - примеры с решением заданий и выполнением задач

    Определение: Ортогональной проекцией вектора   Векторная алгебра - примеры с решением заданий и выполнением задач  на ось Векторная алгебра - примеры с решением заданий и выполнением задач  называется  длина  отрезка  Векторная алгебра - примеры с решением заданий и выполнением задач  этой  оси,  заключенного  между  ортогональными проекциями его начала и конца, взятая со знаком  «+», если направление  вектора   Векторная алгебра - примеры с решением заданий и выполнением задач совпадает с направлением оси, и со знаком «–», если эти направления противоположны (рис. 8).  
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Определение: Углом между вектором и осью называется угол, на который  нужно  повернуть  в  положительном  направлении  ось  до  совпадения  ее направления с направлением вектора (положительным считается поворот против часовой стрелки). 
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Очевидно, проекцию вектора на ось можно найти по формуле     
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Можно показать, что проекция линейной комбинации векторов равна та-
    кой же линейной комбинации их проекций: 
    Векторная алгебра - примеры с решением заданий и выполнением задач

    В частности, проекция суммы векторов равна сумме их проекций:  
    Векторная алгебра - примеры с решением заданий и выполнением задач                                                                          

    Рассмотрим  прямоугольную  декартову  систему  координат ХОY. Обозначим   Векторная алгебра - примеры с решением заданий и выполнением задач  – орт оси ОХ,  Векторная алгебра - примеры с решением заданий и выполнением задач  – орт оси OY. Выберем точку  A , и пусть  x, y – проекции ее на ОХ и OY,то есть координаты этой точки (рис. 9). 
    Векторная алгебра - примеры с решением заданий и выполнением задач  
    Аналогично в пространственной системе  OXYZ  Векторная алгебра - примеры с решением заданий и выполнением задач  – орты координатных осей) (рис. 10): 
    Векторная алгебра - примеры с решением заданий и выполнением задач
    – разложение  Векторная алгебра - примеры с решением заданий и выполнением задач  по ортам  координатных осей (единственно по теореме 2).

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Таким  образом, если задана прямоугольная декартова система координат  (пдск),  то  со  всяким  пространственным  вектором  Векторная алгебра - примеры с решением заданий и выполнением задач   можно  связать три числа  x,y,z  (или два числа  x, y, если вектор плоский), которые являются коэффициентами разложения этого вектора по ортам координатных осей, а также являются проекциями этого вектора на координатные оси. 
     

    Определение: Координатами вектора Векторная алгебра - примеры с решением заданий и выполнением задач  в любой пдск называются коэффициенты в разложении этого вектора по ортам координатных осей. 

    Таким образом, можно дать еще одно определение вектора. 
     

    Определение:  Вектором  называется  упорядоченная  тройка  чисел (упорядоченная пара, если вектор плоский).  

    Пример №7

    Если  Векторная алгебра - примеры с решением заданий и выполнением задач  и  наоборот,  если 
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Так  как, с одной стороны, вектор  – объект, имеющий длину и направление, а с другой, – упорядоченная  тройка  чисел,  то,  зная  длину  и  направление,  можно  определить  его координаты  и  наоборот.  Направление  вектора  в  заданной  системе  координат  характеризуется  его  направляющими  косинусами (рис. 11):  
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Из этих формул очевидно следует  основное  свойство  направляющих  косинусов:    
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Если известны длина  Векторная алгебра - примеры с решением заданий и выполнением задач  и направляющие  косинусы  вектора,  то  его  координаты вычисляются по формулам:       
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Пусть  AB – произвольный вектор в системе OXYZ, OA,OB  – радиус-векторы его начала и конца,   
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Тогда      
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач(см. свойства  линейных  операций  над  векторами).  Таким  образом,Векторная алгебра - примеры с решением заданий и выполнением задач, то есть для определения координат вектора надо из координат его конца вычесть координаты начала. 
     

    Определение: Базисом в пространстве называется любая упорядоченная тройка некомпланарных векторов (рис. 13).

     
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Если  Векторная алгебра - примеры с решением заданий и выполнением задач  – базис, то Векторная алгебра - примеры с решением заданий и выполнением задач  – другой базис, так как изменился порядок следования векторов. 
     

    Определение: Базис называется прямоугольным декартовым, если базисные  векторы  взаимно  перпендикулярны и длина каждого равна 1. 
    Такой базис принято обозначать  Векторная алгебра - примеры с решением заданий и выполнением задач
    Из теоремы 2 следует, что всякий вектор Векторная алгебра - примеры с решением заданий и выполнением задач  может быть разложен по базису  Векторная алгебра - примеры с решением заданий и выполнением задач,  то  есть  представлен  в  виде: Векторная алгебра - примеры с решением заданий и выполнением задач.  Числа  x,y,z  называются координатами Векторная алгебра - примеры с решением заданий и выполнением задач  в базисе  Векторная алгебра - примеры с решением заданий и выполнением задач

    Определение: Базисом на плоскости называется любая упорядоченная пара неколлинеарных векторов.  

    Если  Векторная алгебра - примеры с решением заданий и выполнением задач –  базис,  то  представление  вектора  в  виде Векторная алгебра - примеры с решением заданий и выполнением задачназывается разложением  Векторная алгебра - примеры с решением заданий и выполнением задач   по базисуВекторная алгебра - примеры с решением заданий и выполнением задач  и  x, y – координаты Векторная алгебра - примеры с решением заданий и выполнением задач в этом базисе.  
     

    Определение:  Базисом на прямой называется любой ненулевой вектор этой прямой. 

    Деление отрезка в данном отношении

    Рассмотрим задачу: дан отрезок   AB . Найти точку  D , которая делит   AB  в заданном отношении Векторная алгебра - примеры с решением заданий и выполнением задач(рис. 14).     
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Введем прямоугольную декартову систему  координат  (пдск)  OXYZ,  тогда  
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Обозначим  
    Векторная алгебра - примеры с решением заданий и выполнением задач 

    Так  как  Векторная алгебра - примеры с решением заданий и выполнением задач   (лежат  на  одной  прямой)  и  Векторная алгебра - примеры с решением заданий и выполнением задач  то 
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Переходя от этого векторного  равенства к равенству соответствующих координат, получим:   
    Векторная алгебра - примеры с решением заданий и выполнением задач
     

    ЗАМЕЧАНИЕ 1. Если  D  – середина отрезка  AB , то k 1, поэтому 
    Векторная алгебра - примеры с решением заданий и выполнением задач
     

    ЗАМЕЧАНИЕ 2.  Если k < 0,  Векторная алгебра - примеры с решением заданий и выполнением задач, то точка D  лежит за пределами AB : так как  Векторная алгебра - примеры с решением заданий и выполнением задач , то при Векторная алгебра - примеры с решением заданий и выполнением задач

    Векторная алгебра - примеры с решением заданий и выполнением задач
    В этом случае   Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Скалярное произведение векторов

    Определение:  Скалярным произведением векторов  Векторная алгебра - примеры с решением заданий и выполнением задач  называется скаляр (число), равный   Векторная алгебра - примеры с решением заданий и выполнением задач

    Скалярное произведение обозначается так:  Векторная алгебра - примеры с решением заданий и выполнением задач   или Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Так как Векторная алгебра - примеры с решением заданий и выполнением задач(рис. 16) или  Векторная алгебра - примеры с решением заданий и выполнением задачтоВекторная алгебра - примеры с решением заданий и выполнением задач
     

    Свойства скалярного произведения

    1.Векторная алгебра - примеры с решением заданий и выполнением задач – очевидно из определения.  
    2.Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Доказательство:

    Векторная алгебра - примеры с решением заданий и выполнением задач
    3.Векторная алгебра - примеры с решением заданий и выполнением задач

    Доказательство:

    а) Векторная алгебра - примеры с решением заданий и выполнением задач – очевидно.   

    б) Векторная алгебра - примеры с решением заданий и выполнением задач

    в) Векторная алгебра - примеры с решением заданий и выполнением задач В этом случае   
    Векторная алгебра - примеры с решением заданий и выполнением задач

    4.Векторная алгебра - примеры с решением заданий и выполнением задач
    Отсюда следует, что Векторная алгебра - примеры с решением заданий и выполнением задач
      Необходимым  и  достаточным  условием  перпендикулярности  векторов является равенство нулю их скалярного произведения:  

    5.Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Доказательство:
    а) пусть Векторная алгебра - примеры с решением заданий и выполнением задач
    б) пусть Векторная алгебра - примеры с решением заданий и выполнением задач
    В первом и втором случаях один из сомножителей – нулевой вектор. Его направление не определено, поэтому можно считать, что  Векторная алгебра - примеры с решением заданий и выполнением задач. В третьем случае Векторная алгебра - примеры с решением заданий и выполнением задач
    Используя свойства 4 и 5, составим таблицу вычисления скалярного произведения базисных векторов Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Пусть в некоторой пдск Векторная алгебра - примеры с решением заданий и выполнением задач . Найдем скалярное  произведение этих векторов: 
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Таким образом, Векторная алгебра - примеры с решением заданий и выполнением задач

    Пример №8

    Найти, при каком значении  x  векторы Векторная алгебра - примеры с решением заданий и выполнением задач перпендикулярны.  
    Два вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю (свойство 5), поэтому найдем скалярное произведение по формуле (2.5): Векторная алгебра - примеры с решением заданий и выполнением задач

    Пример №9

    Найти угол между биссектрисой   AD и медианой  Векторная алгебра - примеры с решением заданий и выполнением задачесли Векторная алгебра - примеры с решением заданий и выполнением задач
    Так как  Векторная алгебра - примеры с решением заданий и выполнением задач 
    то  Векторная алгебра - примеры с решением заданий и выполнением задач
    Найдем координаты векторов Векторная алгебра - примеры с решением заданий и выполнением задач . Точка  M  – середина  BC ,  поэтому по формулам (2.4)Векторная алгебра - примеры с решением заданий и выполнением задач
    По теореме о биссектрисе внутреннего угла треугольника Векторная алгебра - примеры с решением заданий и выполнением задач
    Чтобы найти k , вычислим длины  AC  и  AB :  
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Разделим отрезок CB в данном отношении по формулам (2.3):  
    Векторная алгебра - примеры с решением заданий и выполнением задач
    отсюда Векторная алгебра - примеры с решением заданий и выполнением задач
    Заметим,  что  Векторная алгебра - примеры с решением заданий и выполнением задач.  Это  замечание  позволит  нам  не иметь дело с дробями, так как    
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Пример №10

    Найти Векторная алгебра - примеры с решением заданий и выполнением задач
    Воспользуемся свойствами 1–4 скалярного произведения: 
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Отсюда Векторная алгебра - примеры с решением заданий и выполнением задач
     

    ЗАМЕЧАНИЕ. Так как работа силы  Векторная алгебра - примеры с решением заданий и выполнением задач  по перемещению материальной точки вдоль вектора  Векторная алгебра - примеры с решением заданий и выполнением задач  вычисляется по формуле Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Определение векторного произведения векторов

    Определение:  Тройка  некомпланарных векторов Векторная алгебра - примеры с решением заданий и выполнением задач, имеющих общее  начало,  называется  правой  (левой),  если Векторная алгебра - примеры с решением заданий и выполнением задач  конца  третьего  вектора    c  вращение  первого  вектора Векторная алгебра - примеры с решением заданий и выполнением задач  ко второму  вектору  Векторная алгебра - примеры с решением заданий и выполнением задач  по  кратчайшему  пути наблюдается против (по) часовой стрелки (рис. 17). 
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Определение:  Векторным  произведением  вектора  Векторная алгебра - примеры с решением заданий и выполнением задач на  вектор Векторная алгебра - примеры с решением заданий и выполнением задач называется векторВекторная алгебра - примеры с решением заданий и выполнением задач, удовлетворяющий условиям: 

    1. Векторная алгебра - примеры с решением заданий и выполнением задач (Векторная алгебра - примеры с решением заданий и выполнением задач  перпендикулярен плоскости векторов  Векторная алгебра - примеры с решением заданий и выполнением задачи Векторная алгебра - примеры с решением заданий и выполнением задач). 
    2. Направление Векторная алгебра - примеры с решением заданий и выполнением задач  таково, что тройкаВекторная алгебра - примеры с решением заданий и выполнением задач– правая.
    3. Векторная алгебра - примеры с решением заданий и выполнением задач 

    Векторное произведение обозначается так: Векторная алгебра - примеры с решением заданий и выполнением задач
     

    ЗАМЕЧАНИЕ 1. Геометрический смысл векторного произведения: длина  векторного  произведения  численно  равна  площади  параллелограмма,  построенного на этих векторах
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Это следует из того, что площадь параллелограмма равна произведению длин смежных сторон на синус угла между ними. 
    Заметим, что 
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Таким  образом,  длину  вектора  векторного  произведения  можно  вычислить с помощью скалярного произведения по формуле  
    Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Пример №11

    Найти площадь параллелограмма, построенного на векторахВекторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач
     По формуле (2.7): Векторная алгебра - примеры с решением заданий и выполнением задач
     

    ЗАМЕЧАНИЕ 2. Направление вектора  Векторная алгебра - примеры с решением заданий и выполнением задач  можно также (кроме п.2) определить по правилу винта: направление вектора  Векторная алгебра - примеры с решением заданий и выполнением задач   совпадает с направлением поступательного  движения  винта  в правой  резьбой  при  вращении  его в сторону  поворота первого вектора Векторная алгебра - примеры с решением заданий и выполнением задач   ко второму  вектору Векторная алгебра - примеры с решением заданий и выполнением задач  по кратчайшему пути (рис. 19). 
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Свойства векторного произведения

    1.Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Доказательство:
    а)пусть Векторная алгебра - примеры с решением заданий и выполнением задач или Векторная алгебра - примеры с решением заданий и выполнением задач. В первом и втором случаях один из сомножителей – нулевой вектор. 
    Его  направление  не  определено,  поэтому  можно  считать,  что  Векторная алгебра - примеры с решением заданий и выполнением задач.  Если Векторная алгебра - примеры с решением заданий и выполнением задач
    б)пусть Векторная алгебра - примеры с решением заданий и выполнением задач

    2. Векторная алгебра - примеры с решением заданий и выполнением задач  
     

    Доказательство:  По  определению  направления  векторов  Векторная алгебра - примеры с решением заданий и выполнением задач и Векторная алгебра - примеры с решением заданий и выполнением задач противоположны,  а  модули  равны,  значит,  векторы  отличаются  лишь знаком. 

    3.Векторная алгебра - примеры с решением заданий и выполнением задач  –  свойство  линейности  векторного произведения по первому сомножителю (без доказательства). 
    Векторное произведение также линейно и по второму сомножителю. 

    Используя определение и свойства 1 и 2, составим таблицу вычисления векторного произведения базисных векторов Векторная алгебра - примеры с решением заданий и выполнением задач: векторы, стоящие в левом столбце, умножаются на соответствующие векторы верхней строки (рис. 20).                                 
    Векторная алгебра - примеры с решением заданий и выполнением задач                                                                                          
    Пусть  в некоторой пдск Векторная алгебра - примеры с решением заданий и выполнением задач. Найдем векторное произведение этих векторов: 

    Векторная алгебра - примеры с решением заданий и выполнением задач

    Заметим, что это выражение можно получить, вычислив символический определитель (сделать это можно по-разному, но лучше разложить по первой строке): 
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Таким образом,   
    Векторная алгебра - примеры с решением заданий и выполнением задач 
     

    Пример №12

    Вычислить векторное произведение векторов Векторная алгебра - примеры с решением заданий и выполнением задачВекторная алгебра - примеры с решением заданий и выполнением задач
    По формуле (2.8): Векторная алгебра - примеры с решением заданий и выполнением задач
    Заметим,  что  площадь  треугольника,  построенного  на  векторах  Векторная алгебра - примеры с решением заданий и выполнением задач , можно вычислить двумя способами: как половину длины найденного вектора или используя формулу (2.7). Заметим, что Векторная алгебра - примеры с решением заданий и выполнением задачВекторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач
    или 
    Векторная алгебра - примеры с решением заданий и выполнением задач 
     

    Пример №13

    Вычислить  площадь  параллелограмма,  построенного  на  векторах Векторная алгебра - примеры с решением заданий и выполнением задач 
    Так как Векторная алгебра - примеры с решением заданий и выполнением задач , то вычислим векторное произведение, используя его свойства:Векторная алгебра - примеры с решением заданий и выполнением задач
    Отсюда  Векторная алгебра - примеры с решением заданий и выполнением задач

    Определение смешанного произведения векторов

    Определение: Смешанным произведением векторов Векторная алгебра - примеры с решением заданий и выполнением задач называется число Векторная алгебра - примеры с решением заданий и выполнением задач  – скалярное произведение a  на векторное произведение Векторная алгебра - примеры с решением заданий и выполнением задач
    Смешанное произведение обозначается так: Векторная алгебра - примеры с решением заданий и выполнением задач

    Пусть в некоторой пдск Векторная алгебра - примеры с решением заданий и выполнением задач
    Обозначим      
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Тогда   
    Векторная алгебра - примеры с решением заданий и выполнением задач
    по 7 свойству определителей. 
    Таким образом,   
    Векторная алгебра - примеры с решением заданий и выполнением задач                           
    Векторная алгебра - примеры с решением заданий и выполнением задач
    По  определению  скалярного  произведения Векторная алгебра - примеры с решением заданий и выполнением задач
    Совместим начала всех трех векторов в одной точке. Тогда (рис. 21) 
    Векторная алгебра - примеры с решением заданий и выполнением задач  – площадь параллелограмма,  
    Векторная алгебра - примеры с решением заданий и выполнением задач  – высота параллелепипеда,  
    Векторная алгебра - примеры с решением заданий и выполнением задач – объем параллелепипеда.  

    Геометрический  смысл  смешанного  произведения:  модуль  смешанного произведения численно равен объему параллелепипеда, построенного на векторах-сомножителях,  при  этом Векторная алгебра - примеры с решением заданий и выполнением задач  –  правая  тройка,  и Векторная алгебра - примеры с решением заданий и выполнением задач – левая тройка. 
    Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Свойства смешанного произведения

    1. Необходимым и достаточным условием компланарности трех векторов является  равенство  нулю  их  смешанного  произведения:  Векторная алгебра - примеры с решением заданий и выполнением задач  компланарны  
    Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Доказательство:   а) Векторная алгебра - примеры с решением заданий и выполнением задач компланарны Векторная алгебра - примеры с решением заданий и выполнением задач
    Если Векторная алгебра - примеры с решением заданий и выполнением задачкомпланарны, то на них нельзя построить параллелепипед, а потому Векторная алгебра - примеры с решением заданий и выполнением задач
    б)Векторная алгебра - примеры с решением заданий и выполнением задачкомпланарны.   
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Во всех трех случаях  Векторная алгебра - примеры с решением заданий и выполнением задач компланарны: в частности,  если Векторная алгебра - примеры с решением заданий и выполнением задач параллелен плоскости векторов  Векторная алгебра - примеры с решением заданий и выполнением задач, что означает их компланарность. 

    2.  Круговая  перестановка  сомножителей  в  смешанном  произведении  не изменяет  его  величины.  Перестановка  соседних  сомножителей  изменяет  его знак, не изменяя абсолютной величины:  
    Векторная алгебра - примеры с решением заданий и выполнением задач

    Доказательство следует из формулы (2.9) и свойства 3 определителей, при этом круговая перестановка сомножителей соответствует двойной перемене строк в определителе, а потому оставляет его неизменным.  

    3. В смешанном произведении векторное и скалярное произведения можно менять местами: Векторная алгебра - примеры с решением заданий и выполнением задач
     

    Доказательство:  из свойства 2 смешанного произведения и свойства 1 скалярного получим: Векторная алгебра - примеры с решением заданий и выполнением задач

    4.  Смешанное произведение линейно по каждому из трех сомножителей. 
    Векторная алгебра - примеры с решением заданий и выполнением задач – линейность по первому сомножителю. 

    Доказательство следует из формулы (2.9) и свойств определителей. 

    Пример №14

    Найти  объем  тетраэдра,  построенного  на  векторах  
    Векторная алгебра - примеры с решением заданий и выполнением задач , и его высоту, перпендикулярную плоскости векторов Векторная алгебра - примеры с решением заданий и выполнением задач
    Объем тетраэдра в 6 раз меньше объема параллелепипеда, построенного на этих векторах, поэтому Векторная алгебра - примеры с решением заданий и выполнением задач
    Векторная алгебра - примеры с решением заданий и выполнением задач
    Отсюда Векторная алгебра - примеры с решением заданий и выполнением задач(заметим, что Векторная алгебра - примеры с решением заданий и выполнением задач– левая тройка, так как смешанное произведение отрицательно). 
    Чтобы найти высоту, воспользуемся формулой   
    Векторная алгебра - примеры с решением заданий и выполнением задач 
    По формуле (2.7) Векторная алгебра - примеры с решением заданий и выполнением задач

    Лекции по предметам:

    1. Математика
    2. Алгебра
    3. Линейная алгебра
    4. Геометрия
    5. Аналитическая геометрия
    6. Высшая математика
    7. Дискретная математика
    8. Математический анализ
    9. Теория вероятностей
    10. Математическая статистика
    11. Математическая логика

    Как найти середину вектора

    Вектор – это величина, характеризуемая своим численным значением и направлением. Другими словами, вектор – это направленный отрезок. Положение вектора AB в пространстве задается координатами точки начала вектора A и точки конца вектора B. Рассмотрим, как определить координаты середины вектора.

    Как найти середину вектора

    Инструкция

    Для начала определимся с обозначениями начала и конца вектора. Если вектор записан как AB, то точка A является началом вектора, а точка B – концом. И наоборот, для вектора BA точка B является началом вектора, а точка A – концом. Пусть нам задан вектор AB с координатами начала вектора A = (a1, a2, a3) и конца вектора B = (b1, b2, b3). Тогда координаты вектора AB будут следующими: AB = (b1 – a1, b2 – a2, b3 – a3), т.е. из координаты конца вектора необходимо вычесть соответствующую координату начала вектора. Длина вектора AB (или его модуль) вычисляется как корень квадратный из суммы квадратов его координат: |AB| = √((b1 – a1)^2 + (b2 – a2)^2 + (b3 – a3)^2).

    Найдем координаты точки, являющейся серединой вектора. Обозначим ее буквой O = (o1, o2, o3). Находятся координаты середины вектора так же, как координаты середины обычного отрезка, по следующим формулам: o1 = (a1 + b1)/2, o2 = (a2 + b2)/2 , o3 = (a3 + b3)/2. Найдем координаты вектора AO: AO = (o1 – a1, o2 – a2, o3 – a3) = ((b1 – a1)/2, (b2 – a2)/2, (b3 – a3)/2).

    Рассмотрим пример. Пусть дан вектор AB с координатами начала вектора A = (1, 3, 5) и конца вектора B = (3, 5, 7). Тогда координаты вектора AB можно записать как AB = (3 – 1, 5 – 3, 7 – 5) = (2, 2, 2). Найдем модуль вектора AB: |AB| = √(4 + 4 + 4) = 2 * √3. Значение длины заданного вектора поможет нам для дальнейшей проверки правильности координат середины вектора. Далее найдем координаты точки O: O = ((1 + 3)/2, (3 + 5)/2, (5 + 7)/2) = (2, 4, 6). Тогда координаты вектора AO рассчитываем как AO = (2 – 1, 4 – 3, 6 – 5) = (1, 1, 1).

    Выполним проверку. Длина вектора AO = √(1 + 1 + 1) = √3. Вспомним, что длина исходного вектора равна 2 * √3, т.е. половина вектора действительно равна половине длины исходного вектора. Теперь рассчитаем координаты вектора OB: OB = (3 – 2, 5 – 4, 7 – 6) = (1, 1, 1). Найдем сумму векторов AO и OB: AO + OB = (1 + 1, 1 + 1, 1 + 1) = (2, 2, 2) = AB. Следовательно, координаты середины вектора были найдены верно.

    Полезный совет

    Выполнив вычисления координат середины вектора, обязательно выполните хотя бы самую простую проверку – посчитайте длину вектора и сравните ее с длиной данного вектора.

    Источники:

    • как найти первую координату

    Войти на сайт

    или

    Забыли пароль?
    Еще не зарегистрированы?

    This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

    Векторное произведение векторов.

    Определение. Векторным произведением вектора a на вектор b называется вектор c, длина которого численно равна площади параллелограмма построенного на векторах a и b, перпендикулярный к плоскости этих векторов и направленный так, чтоб наименьшее вращение от a к b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора c (рис. 1).

    Векторное произведение векторов
    рис. 1

    Формулы вычисления векторного произведения векторов

    Векторное произведение двух векторов a = {ax; ay; az} и b = {bx; by; bz} в декартовой системе координат – это вектор, значение которого можно вычислить, используя следующие формулы:

    a × b =

    ijk
    axayaz
    bxbybz

    = i (aybz – azby) – j (axbz – azbx) + k (axby – aybx)

    a × b = {aybzazby; azbxaxbz; axbyaybx}

    Свойства векторного произведения векторов

    • Геометрический смысл векторного произведения.

      Модуль векторного произведения двух векторов a и b равен площади параллелограмма построенного на этих векторах:

      Sпарал = [a × b]

    • Геометрический смысл векторного произведения.

      Площадь треугольника построенного на векторах a и b равна половине модуля векторного произведения этих векторов:

    • Векторное произведения двух не нулевых векторов a и b равно нулю тогда и только тогда, когда вектора коллинеарны.

    • Вектор c, равный векторному произведению не нулевых векторов a и b, перпендикулярен этим векторам.

    • a × b = –b × a

    • (k a) × b = a × (k b) = k (a × b)

    • (a + b) × c = a × c + b × c

    Примеры задач на вычисления векторного произведения векторов

    Пример 1. Найти векторное произведение векторов a = {1; 2; 3} и b = {2; 1; -2}.

    Решение:

    a × b  i   j   k   =
     1   2   3 
     2   1   -2 

    = i(2 · (-2) – 3 · 1) – j(1 · (-2) – 2 · 3) + k(1 · 1 – 2 · 2) =

    = i(-4 – 3) – j(-2 – 6) + k(1 – 4) = -7i + 8j – 3k = {-7; 8; -3}

    треугольник построенный на векторах

    Пример 2.
    Найти площадь треугольника образованного векторами a = {-1; 2; -2} и b = {2; 1; -1}.

    Решение: Найдем векторное произведение этих векторов:

    a × b  i   j   k   =
     -1   2   -2 
     2   1   -1 

    = i(2 · (-1) – (-2) · 1) – j((-1) · (-1) – (-2) · 2) + k((-1) · 1 – 2 · 2) =

    = i(-2 + 2) – j(1 + 4) + k(-1 – 4) = -5j – 5k = {0; -5; -5}

    Из свойств векторного произведения:

    SΔ =

    12

    |a × b| =

    12

    02 + 52 + 52 =

    12

    25 + 25 = 12√50 =

    5√22

    = 2.5√2

    Ответ: SΔ = 2.5√2.

    Добавить комментарий