Как найти вычитание чисел с разными знаками

Данная статья посвящена числам с разными знаками. Мы будем разбирать материал и пытаться выполнять вычитание между этими числами. В параграфе мы познакомимся с основными понятиями и правилами, которые пригодятся во время решения упражнений и задач. Также в статье представлены подробно разобранные примеры, которые помогут лучше понять материал.

Как правильно выполнять вычитание

Для того, чтобы лучше понять процесс вычитания, следует начать с основных определений.

Определение 1

Если вычесть из числа a число b, то это можно преобразовать как сложение числа a и -b, где b и −b – числа с противоположными знаками.

Если выразить данное правило буквами, то оно выглядит так a−b=a+(−b), где a и b – любые действительные числа.

Данное правило вычитания чисел с разными знаками работает для действительных, рациональных и целых чисел. Его можно доказать на основании свойств действий с действительными числами. Благодаря им мы может представить числа как несколько равенства (a+(−b))+b=a+((−b)+b)=a+0=a. Так как сложение и вычитание тесно связаны, то равным также будет выражение a−b=a+(−b). Это значит, что рассматриваемое правило вычитания также верно.

Данное правило, которое применяется для вычитания чисел с разными знаками, позволяет работать как с положительными, так и с отрицательными числами. Также можно производить процесс вычитания из отрицательного числа из положительного, которое переходит в сложение.

Для того, чтобы закрепить полученную информацию, мы рассмотрим типичные примеры и на практике рассмотрим правило вычитания для чисел с разными знаками.

Примеры упражнений на вычитание

Закрепим материал, рассмотрев типичные примеры.

Пример 1

Необходимо выполнить вычитание 4 из −16.

Для того, чтобы выполнить вычитание, следует взять число, противоположное вычитаемому 4, есть −4. Согласно рассмотренному выше правилу вычитания (−16) −4=(−16) +(−4). Далее мы должны сложить получившиеся отрицательные числа. Получаем: (−16) +(−4) =−(16+4) =−20. (−16)−4=−20.

Для того, чтобы выполнять вычитание дробей, необходимо представлять числа в виде обыкновенных или десятичных дробей. Это зависит от того, с числами какого вида будет удобнее проводить вычисления.

Пример 2

Необходимо выполнить вычитание −0,7 от 37.

Прибегаем к правилу вычитания чисел. Заменяем вычитание на сложение: 37-(-0,7)=37+0,7.

Мы складываем дроби и получаем ответ в виде дробного числа. 37-(-0,7)=1970.

Когда какое-либо число представлено в виде квадратного корня, логарифма, основной и тригонометрических функций, то зачастую результат вычитания может быть записан в виде числового выражения. Чтобы пояснить данное правило, рассмотрим следующий пример.

Пример 3

Необходимо выполнить вычитание числа 5 из числа -2.

Воспользуемся описанным выше правилом вычитания. Возьмем противоположное число вычитаемому 5 – это −5. Согласно работы с числами с разными знаками -2-5=-2+(-5).

Теперь выполним сложение: получаем -2+(-5)=2+5.

Полученное выражение и является результатом вычитания исходных чисел с разными знаками:  -2+5.

Значение полученного выражения может быть вычислено максимально точно только в том случае, если это необходимо. Для подробной информации можно изучить другие разделы, связанные с данной темой.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

План урока:

Сложение отрицательных чисел

Сложение чисел с разными знаками

Вычитание отрицательных чисел и чисел с разными знаками

В субботу, ученики 6 класса договорились встретиться и погулять в парке. Утром Юля выглянула в окошко, ярко светит солнышко, но при этом морозно. Девочка взглянула на термометр. Он показывал -10˚C. Мама попросила Юлю пойти на улицу немного позже, когда на улице потеплеет. Юля расстроилась и стала ждать. Через два часа девочка снова взглянула на термометр. Он показал -3. Ого! Всего  два часа, а так потеплело – обрадовалась девочка и стала одеваться, чтобы идти гулять. В это время в комнату вошла мама и удивленно спросила «Уже потеплело? На сколько градусов?» Дочь не знала, что сказать и как правильно узнать, на сколько градусов стало теплее. Мама пришла на помощь и сообщила, что достаточно от -10 отнять -3, и мы узнаем, на сколько градусов изменилась температура воздуха за окном. Иначе, можно сказать, что шкала термометра поднялась вверх на 7 делений, значит, на улице стало теплее на 7 градусов. Запомнив все, что рассказала мама, Юля побежала в парк делиться новыми знаниями с друзьями.

Сложение  и вычитание отрицательных чисел

Давайте вспомним любимую многими сказку «Буратино» и разберем задачу с участием любимых персонажей.

В театре Карабаса-Барабаса актерам жилось очень сложно, все куклы мечтали  жить на свободе. Актеры тяжело работали,  но долги перед хозяином росли с каждым днем. Злой владелец пообещал отпустить Буратино и Мальвину из своего театра только тогда, когда кукольные герои вернут ему долг. Сколько монет нужно собрать героям, чтобы оказаться на свободе, если у Буратино было -15 монет, а у Мальвины -6?

3sdsd

Чтобы ответить на главный вопрос задачи, нам нужно понимать, о чем идет речь. Изучив условие, возникает вопрос «Как может быть -15 и -6 монет?». В данном случае выходит, что Буратино и Мальвина должны вернуть Карабасу-Барабасу 15 и 6 монет, поэтому перед данными числами и стоит знак «минус». Получается, кукольные персонажи смогут покинуть театр, когда полностью вернут долг. Для этого необходимо узнать общий размер долга Буратино и Мальвины. Чтобы узнать размер долга, суммируем монеты персонажей -15 и -6. Но как их сложить, когда перед слагаемыми стоит «минус»? В подобных ситуациях применяют правило сложения отрицательных чисел.

tab1

Возвращаемся к решению задачи.

Теперь, правильно запишем и суммируем известные данные.

tab2

Получается, что герои имеют -21 монету, следовательно, они должны собрать 21 монету и вернуть долг, только тогда появится возможность покинуть театр Карабаса-Барабаса.

4sdsd
Источник

Рассмотрим еще одно задание.

Найдите результат сложения -24 и -16.

Чтобы вычислить сумму двух значений со знаком «минус», достаточно суммировать их модули, и перед полученной цифрой записать «-».

-24+(-16)=-(24+16)=-40.

Запомни! Если складываем два отрицательных числа, то суммируем их модули, а перед результатом сложения записываем «-».

Сложение чисел с разными знаками

Рассмотрим ситуацию.

Мишин папа навещал бабушку в деревне, обещал привезти гостинец сыну – яблоки. Во дворе Миша рассказал мальчишкам про папино обещание, и решил угостить яблоком, каждого из трех друзей, то есть, у него уже стало -3 яблока. Папа привез сыну 10 яблок и мальчик с радостью поделился фруктами с друзьями. Сколько яблок осталось у мальчика?

Чтобы найти количество яблок у мальчика, нам нужно узнать, чему равна сумма яблок –тех которые были у мальчика(-3), и тех, которые дал папа(10). То есть, чтобы ответить на главный вопрос задачи, достаточно сложить -3 и 10. Но слагаемые имеют разные знаки «+» и «-». Как же выполнить сложение положительного и отрицательного чисел? Запомнив алгоритм сложения положительных и отрицательных чисел сделать это, будет очень просто.

tab3

Используем рассмотренный алгоритм при выполнении действий.

Суммируем-3 и 10. Для этого:

  • определяем модули: -3=|3|, 10=|10|;
  • сравниваем модули, определяя больший: |3|<|10|;
  • от большего отнимаем меньший: 10 – 3=7;
  • так как по условию 10 – число положительное, то и результат будет числом положительным.

Записывается в таком виде:

-3+10=10 – 3=7.

Выходит, у мальчика стало 7 яблок.

6hgjh

Рассмотрим еще один пример сложения чисел с разными знаками.

Вычислите сумму -28 и 11.

Известные слагаемые имеют разные знаки, то есть -28 является значением отрицательным, а 11–положительным. Чтобы суммировать слагаемые, необходимо воспользоваться ранее рассмотренным алгоритмом. Вначале, определяем модули и сравниваем их.

-28=|28|;

11=|11|;

28>11.

Помним, что большее значение модуля имеет отрицательное слагаемое (-28), поэтому перед результатом нужно будет поставить знак «минус». Теперь, находим разность большего и меньшего значения модуля (28-17) и записываем математическое выражение:

-28+11=-(28-11)=-17.

Учитывая рассмотренные примеры, можно сказать, что:

любое числовое значение от прибавления к нему положительного числа, всегда становится больше, а от прибавления отрицательного числа только меньше.

Докажем справедливость данного правила, вычислив выражение и сравнив уменьшаемое с полученной суммой:-150+50.

Чтобы найти значение выражения нужно определить модули (150 и 50), оставив знак«-» модуля большего слагаемого, от большего значения отнимаем меньшее:

-150+50=-(150-50)=-100.

Сравним найденное значение выражения (-100) с уменьшаемым (-150), используя правило сравнения чисел с отрицательным знаком:

При сравнении цифровых значений со знаком «минус», меньшим будет то, чей модуль больше.

-150=|150|;

-100=|100|.

150>100;

-150<-100.

Действительно, при сложении с отрицательным числом уменьшаемое стало только меньше.

Вычитание отрицательных чисел и чисел с разными знаками

Мы уже знаем, как выполнять сложение и вычитание положительных и отрицательных чисел, но хочется сказать, что именно в этом разделе математики, большую роль играют противоположные числа. Для тех, кто забыл, напоминаем, какие числовые значения называются противоположными:

Если два числа отличаются только знаком, то они являются противоположными:-13 и 13, 141 и -141, 1000 и -1000.

Чтобы понять, какие правила необходимо соблюдать при выполнении вычитания чисел с разными знаками, давайте разберем задание.

Определите, чему будет равно значение выражения: от -510 отнять +210.

На первый взгляд задание очень простое и не вызывает никаких проблем. Но стоит записать разность в виде выражения:

-510-(+210)

Сразу возникает вопрос «Как вычитать, если уменьшаемое со знаком «минус», а вычитаемое со знаком «плюс»?».Чтобы решение подобных выражений не вызывало у вас трудностей, возьмите на заметку правило:

Чтобы выполнить вычитание чисел с разными знаками, нужно уменьшаемое оставить без изменений и прибавить к нему число, противоположное вычитаемому.

Например: -5-(+2).

Минус пять оставляем без изменений. Вычитаемое +2, а противоположное ему -2. Складываем уменьшаемое(-5) и число противоположное вычитаемому(-2): -5+(-2).

По правилу сложения отрицательных чисел, складываем модули(5+2) и ставим знак «-»:

-5+(-2)=-(5+2)=-7

Учитывая данное правило, получается, что к уменьшаемому(-510) необходимо прибавить значение,противоположное вычитаемому(210), таким числом будет -210:

Запишем выражение:

-510-(+210)=-510+(-210). Чтобы вычислить полученное выражение нужно сложить отрицательные значения, согласно правилу сложения отрицательных чисел:

-510-(+210)=-510+(-210)=-(510+210)=-720.

Вычисления окончены.

7vcvx
Источник

Рассмотрим следующее задание.

Найдите значение выражения: -248+248.

Используем правило сложения значений с разными знаками.

-248=|248|;

248=|248|;

248 – 248=0.

Следовательно, при сложении противоположных числовых значений в результате всегда будет 0.

Зная правило вычитания отрицательных чисел, можем сделать вывод, что знаки, стоящие перед скобками, могут менять знак числа, находящегося в скобках.

К примеру, в выражении 19-(-4), при вычислении используем правило, согласно которого, к уменьшаемому прибавляем, число противоположное вычитаемому, то есть знак вычитаемого «-» меняем на противоположный «+». Получим:

scrin1

Запомни! Если перед скобкой в математическом выражении стоит знак «минус», то знак числа в скобках меняется на противоположный.

tab4

Ну а сейчас, разберем задание, в котором перед скобкой стоит знак «плюс».

Вычисли: -36+(-7).

В этом задании воспользуемся правилом сложения отрицательных чисел– сложим модули числовых значений, а перед суммой поставим знак «минус»:

tab5

Мы видим, что «плюс» перед скобкой никак не повлиял на знак числа, стоящего в скобках. Запомни! Если перед скобками стоит «плюс», то знак числового значения, стоящего в скобках никак не меняется.

В выполнении рассматриваемых действий нет ничего сложного. Главное запомнить основные требования и придерживаться их в процессе любых вычислений! Если сразу запомнить все правила не получается, заходи на сайт 100уроков.ru и мы всегда с удовольствием напомним нужное правило или алгоритм.

Минутка истории

История математики утверждает, что человечество длительное время не принимало ряд отрицательных числовых значений. Данный вид чисел, казался непонятным и ненужным. Привычных нам знаков «плюс» и «минус» просто не существовало. Если возникала необходимость в записи отрицательно числа, то его записывали следующим образом «долг в 30 монет». И лишь математики Древней Индии и Китая, выполняли записи отрицательных чисел без употребления слова «долг», а просто использовали черные чернила, вместо синих.

Только в 3 веке греческий ученый Диофант, стал обозначать знак «минус» вот таким символом   .

Привычные нам знаки «+» и «-» появились в Германии в конце 15 века. Чешский ученый Ян Видман, отразил данные знаки в своей книге-пособии, помогающей подсчитывать прибыль и убытки чешским купцам. Стоит заметить, что данная книга была написана от руки и имела огромную популярность среди богатых людей того времени.

Автор статьи

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Правило сложения отрицательных чисел

Если вспомнить урок математики и тему «Сложение и вычитание чисел с разными знаками», то для сложения двух отрицательных чисел необходимо:

  • выполнить сложение их модулей;
  • дописать к полученной сумме знак «–».

Согласно правилу сложения можно записать:

$(−a)+(−b)=−(a+b)$.

Правило сложения отрицательных чисел применяется к отрицательным целым, рациональным и действительным числам.

Пример 1

Сложить отрицательные числа $−185$ и $−23 789.$

Решение.

Воспользуемся правилом сложения отрицательных чисел.

Найдем модули данных чисел:

$|-185|=185$;

$|-23 789|=23 789$.

Выполним сложение полученных чисел:

$185+23 789=23 974$.

Поставим знак $«–»$ перед найденным числом и получим $−23 974$.

Краткая запись решения: $(−185)+(−23 789)=−(185+23 789)=−23 974$.

Ответ: $−23 974$.

При сложении отрицательных рациональных чисел их необходимо преобразовать к виду натуральных чисел, обыкновенных или десятичных дробей.

Пример 2

Сложить отрицательные числа $-frac{1}{4}$ и $−7,15$.

Решение.

Согласно правилу сложения отрицательных чисел, сначала необходимо найти сумму модулей:

$|-frac{1}{4}|=frac{1}{4}$;

$|-7,15|=7,15$.

Полученные значения удобно свести к десятичным дробям и выполнить их сложение:

$frac{1}{4}=0,25$;

$0,25+7,15=7,40$.

Поставим перед полученным значением знак $«–»$ и получим $–7,4$.

Краткая запись решения:

$(-frac{1}{4})+(−7,15)=−( frac{1}{4}+7,15)=–(0,25+7,15)=−7,4$.

Ответ: $–7,4$.

Как вычитать числа с разными знаками

Правило сложения чисел с противоположными знаками:

Для сложения положительного и отрицательного числа необходимо:

  1. вычислить модули чисел;
  2. выполнить сравнение полученных чисел:

    • если они равны, то исходные числа являются противоположными и их сумма равна нулю;
    • если они не равны, то нужно запомнить знак числа, у которого модуль больше;
  3. из большего модуля вычесть меньший;

  4. перед полученным значением поставить знак того числа, у которого модуль больше.

«Сложение и вычитание положительных и отрицательных чисел» 👇

Сложение чисел с противоположными знаками сводится к вычитанию из большего положительного числа меньшего отрицательного числа.

Правило сложения чисел с противоположными знаками выполняется для целых, рациональных и действительных чисел.

Пример 3

Сложить числа $4$ и $−8$.

Решение.

Требуется выполнить сложение чисел с противоположными знаками. Воспользуемся соответствующим правилом сложения.

Найдем модули данных чисел:

$|4|=4$;

$|-8|=8$.

Модуль числа $−8$ больше модуля числа $4$, т.е. запомним знак $«–»$.

Далее от большего модуля отнимем меньший модуль, получим:

$8−4=4$.

Поставим знак $«–»$, который запоминали, перед полученным числом, и получим $−4.$

Краткая запись решения:

$4+(–8) = –(8–4) = –4$.

Ответ: $4+(−8)=−4$.

Для сложения рациональных чисел с противоположными знаками их удобно представить в виде обыкновенных или десятичных дробей.

Вычитание чисел с разными и отрицательными знаками

Правило вычитания отрицательных чисел:

Для вычитания из числа $a$ отрицательного числа $b$ необходимо к уменьшаемому $a$ добавить число $−b$, которое является противоположным вычитаемому $b$.

Согласно правилу вычитания можно записать:

$a−b=a+(−b)$.

Данное правило справедливо для целых, рациональных и действительных чисел. Правило можно использовать при вычитании отрицательного числа из положительного числа, из отрицательного числа и из нуля.

Пример 4

Вычесть из отрицательного числа $−28$ отрицательное число $−5$.

Решение.

Противоположное число для числа $–5$ – это число $5$.

Согласно правилу вычитания отрицательных чисел получим:

$(−28)−(−5)=(−28)+5$.

Выполним сложение чисел с противоположными знаками:

$(−28)+5=−(28−5)=−23$.

Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.

Ответ: $(−28)−(−5)=−23$.

При вычитании отрицательных дробных чисел необходимо выполнить преобразование чисел к виду обыкновенных дробей, смешанных чисел или десятичных дробей.

Сложение и вычитание чисел с разными знаками

Правило вычитания чисел с противоположными знаками совпадает с правилом вычитания отрицательных чисел.

Пример 5

Вычесть положительное число $7$ из отрицательного числа $−11$.

Решение.

Противоположное число для числа $7$ – это число $–7$.

Согласно правилу вычитания чисел с противоположными знаками получим:

$(−11)−7=(–11)+(−7)$.

Выполним сложение отрицательных чисел:

$(−11)+(–7)=−(11+7)=−18$.

Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.

Ответ: $(−11)−7=−18$.

При вычитании дробных чисел с разными знаками необходимо выполнить преобразование чисел к виду обыкновенных или десятичных дробей.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Сложение и вычитание целых чисел

  • Сложение
  • Вычитание

Сложение

При сложении двух целых чисел с одинаковым знаком складываются их абсолютные величины и перед суммой ставится их общий знак.

Примеры:

(+3) + (+7) = 10,

(-3) + (-7) = -10.

Из данных примеров следует, что в результате сложения двух положительных чисел получится положительное число, а в результате сложения двух отрицательных чисел – отрицательное число.

При сложении двух целых чисел с разными знаками нужно взять их абсолютные величины и из большей вычесть меньшую, в результате ставится знак того числа, у которого абсолютная величина больше.

Другими словами, можно просто, не обращая внимания на знаки, вычесть из большего числа меньшее и у получившегося результата поставить знак большего числа:

Примеры:

(-4) + (+11) = 7,   так как   11 – 4 = 7;

(-5) + (+2) = -3,   так как   5 – 2 = 3.

Из данных примеров следует, что в результате сложения двух чисел с разными знаками может получится как положительное, так и отрицательное число.

Сумма двух противоположных чисел равна нулю.

Примеры:

(-7) + 7 = 0,

(+12) + (-12) = 0.

Вычитание

Вычитание одного целого числа из другого можно заменить сложением, при этом уменьшаемое берётся со своим знаком, а вычитаемое с противоположным.

Примеры:

(+6) – (+5) = (+6) + (-5) = 1,

(+6) – (-5) = (+6) + (+5) = 11,

(-6) – (-5) = (-6) + (+5) = -1,

(-6) – (+5) = (-6) + (-5) = -11.

Из данных примеров следует, что, чтобы из одного числа вычесть другое, надо к уменьшаемому прибавить число, противоположное вычитаемому.

При решении выражений, содержащих и сложение, и вычитание, можно сначала заменить вычитание сложением, затем отдельно сложить положительные и отрицательные слагаемые, а потом найти сумму получившихся чисел.

Пример.

12 – 18 + 41 – 9.

Решение: Заменим вычитание на сложение:

12 + (-18) + 41 + (-9),

сгруппируем слагаемые по их знакам и сложим отдельно положительные и отрицательные числа:

(12 + 41) + ((-18) + (-9)) = 53 + (-27).

Теперь осталось только найти сумму двух получившихся результатов:

53 + (-27) = 26,   значит   12 – 18 + 41 – 9 = 26.

Основные правила сложения и вычитания положительных и отрицательных чисел

В зависимости от знака различают положительные и отрицательные числа. Их можно расположить на координатной прямой, где началом отсчета будет ноль, который не относится ни к положительным, ни к отрицательным значениям.

Определение

Положительные числа — это числа со знаком «+», который обычно не пишется. Положительные значения располагаются на числовой линии справа от нуля.

Определение

Отрицательные числа — это числа со знаком «−», расположенные слева от нуля на координатной прямой.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Основные правила сложения и вычитания отрицательных чисел:

  1. При сложении двух отрицательных чисел, необходимо суммировать их модули, затем перед полученным результатом приписать знак минус.

(-a;+;(-b);=;-;(vert-avert;+;vert-bvert);=;-;(a;+;b))

  1. Разность двух отрицательных чисел находится по правилу «минус на минус дает плюс».

((-a);-;(-b);=;(-a);+;b;=;b;-;a)

Сложение чисел с разными знаками

При складывании двух слагаемых, одно из которых с плюсом, а другое — с минусом, необходимо сравнить их модульные значения. От слагаемого с большим модулем нужно отнять слагаемое с меньшим модулем, далее перед полученным результатом поставить знак слагаемого, большего по модульному значению.

Примечание:

Каждая положительная величина имеет противоположный элемент с отрицательным символом. В сумме эти пары образуют 0:

(a;+;(-a);=;a;-;a;=;0)

Вычитание чисел с разными знаками

Вычитание положительных и отрицательных элементов обладает свойством, которое позволяет свести данное действие к сложению:

(а;–;b;=;a;+;(–b))

Расшифровка этой формулы дает следующее правило: 

Вычитание одного числа из другого равно сумме уменьшаемого и числа, противоположного вычитаемому.

Для того, чтобы найти разность двух чисел с разными знаками, необходимо следовать алгоритму суммирования положительной и отрицательной величины: сравнить модули уменьшаемого и вычитаемого, из числа с большим модулем нужно вычесть меньшее модульное значение, затем перед полученным результатом поставить знак большего по значения.

Примеры упражнений

Пример 1.

Сложение двух отрицательных элементов: 

− 89 + (− 125) = − (89 + 125) = − 214

Пример 2.

Вычитание двух отрицательных чисел:

− 134 − (− 357) = − 134 + 357 = 357 − 134 = 223

Пример 3.

Сложение двух чисел с разными знаками:

− 876 + 543

|− 876| > |543|

− 876 + 543 = − (|− 876| − |543|) = − (876 − 543) = − 333

Пример 4.

Вычитание двух элементов с разными знаками:

 678 − 943

|678| < |− 943| 

678 − 943 = − (|− 943| − |678|) = − (943 − 678) = − 265

Добавить комментарий