Четырехугольники
теория по математике 📈 планиметрия
Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.
Выпуклый четырехугольник
Четырехугольник называется выпуклым, если он находится в одной полуплоскости (то есть все его стороны расположены только с одной стороны прямой, прямая НЕ разбивает фигуру) относительно прямой, содержащей любую его сторону. На рисунке показан выпуклый четырехугольник АВСD.
Определение
Диагональ четырехугольника – отрезок, соединяющий любые две не соседние вершины. На рисунке 2 диагоналями являются отрезки АС и BD.
Виды и свойства выпуклых четырехугольников
Сумма углов выпуклого четырехугольника равна 360 градусов.
Прямоугольник
Прямоугольник – это четырехугольник, у которого все углы прямые.
На рисунке видно, что углы А, В, C и D прямые, то есть равны 90 градусов. Свойства прямоугольника, его периметр и площадь
- Противоположные стороны прямоугольника равны (АВ=CD, ВС=АD).
- Диагонали прямоугольника равны (АС=ВD).
- Диагонали пересекаются и точкой пересечения делятся пополам.
- Периметр прямоугольника – это сумма длин всех сторон: Р=(а + b) × 2, где а и b соседние (смежные) стороны прямоугольника
- Площадь прямоугольника – это произведение длин соседних (смежных) сторон, формула для нахождения площади прямоугольника:
S=ab, где a и b соседние стороны прямоугольника.
Квадрат
Квадрат – это прямоугольник, у которого все стороны равны.
Свойства квадрата
- Диагонали квадрата равны (BD=AC).
- Диагонали квадрата пересекаются под углом 90 градусов.
- Диагонали квадрата точкой пересечения делятся пополам (BO=OD, AO=OC).
- Периметр квадрата – это сумма длин всех сторон. Так как все стороны квадрата равны, то его можно найти по формуле Р=4×а, где а — длина стороны квадрата.
- Площадь квадрата – это произведение длин соседних сторон, формула для нахождения площади прямоугольника S=a 2 , где a — длина стороны квадрата.
Параллелограмм
Параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны.
Ромб – это параллелограмм, у которого все стороны равны.
Трапеция
Трапеция – это четырехугольник, у которого только две противоположные стороны параллельны. Параллельные стороны называются основаниями трапеции, а две другие стороны – боковыми сторонами трапеции.
Виды трапеций
Трапеция называется прямоугольной, если у нее боковая сторона перпендикулярна основаниям. Прямоугольная трапеция имеет два прямых угла.
углы А и С равны по 90 градусов
Средняя линия трапеции
Сделаем чертеж параллелограмма и покажем на нем биссектрисы углов, которые пересекаются в точке N.
Угол ANB равен углу NАD как накрест лежащие при параллельных прямых ВС и АD и секущей AN. А по условию углы BАN и NАD равны (AN биссектриса). Следовательно, углы BАN и BNА равны. Значит, треугольник ABN является равнобедренным, у него АВ= BN.
Аналогично, через равенство углов CND, ADN и CDN доказывается, что треугольник CND является равнобедренным, у него CN=DC.
По условию задачи мы имеем параллелограмм, а по свойству параллелограмма – противолежащие стороны равны, т.е. АВ=СD, значит, АВ=BN=NC=CD. Таким образом, мы доказали, что BN=NC, т.е. N – середина ВС.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Найдите боковую сторону АВ трапеции ABCD, если углы АВС и BCD равны соответственно 30 0 и 135 0 , а СD =17
Сделаем чертеж, выполнив на нём дополнительные построения – высоты АМ и СН, которые равны как расстояния между параллельными сторонами трапеции.
Рассмотрим треугольник CНD, где CD=17, угол Н=90 0 , следовательно, треугольник прямоугольный. Найдем величину угла DCН, 135 0 – 90 0 =45 0 (так как провели высоту CН). Отсюда следует, что угол D=45 0 , так как треугольник прямоугольный. Значит, треугольник является равнобедренным (углы D и DCН равны по 45 градусов).
Найдем катеты CН и DН по теореме Пифагора, как катет равнобедренного треугольника по формуле с=а √ 2 , где с=17. Следовательно, CН = 17 √ 2 . . = 17 √ 2 2 . . .
Рассмотрим прямоугольный треугольник АВМ, где угол В равен 30 градусов, а катет АМ= CН= 17 √ 2 2 . . . Зная, что катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы, найдем АВ (она будет в два раза больше катета). АВ=2 × 17 √ 2 2 . . =17 √ 2
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Основания трапеции равны 7 и 11, а высота равна 7. Найти площадь этой трапеции.
Для нахождения площади трапеции в справочном материале есть формула
S = a + b 2 . . h , для которой у нас известны и основания, и высота. Подставим в неё эти значения и вычислим: S = 7 + 11 2 . . ∙ 7 = 18 2 . . ∙ 7 = 9 ∙ 7 = 63
pазбирался: Даниил Романович | обсудить разбор | оценить
Радиус вписанной в квадрат окружности равен 22 √ 2 . Найти диагональ этого квадрата.
Для начала надо сделать построения на чертеже, чтобы увидеть, как располагаются известные и неизвестные элементы и чем они еще могут являться на чертеже.
Обозначим диагональ АВ, точкой О – центр окружности, С – один из углов квадрата. Покажем расстояние от центра окружности до стороны квадрата – радиус r. Если радиус равен 22 √ 2 , то сторона квадрата будет в два раза больше, т.е. 44 √ 2 .
Рассмотрим прямоугольный треугольник АВС, который является равнобедренным (так как по условию дан квадрат) и боковые стороны равны по 44 √ 2 . Нам надо найти диагональ, т.е. гипотенузу данного треугольника. Вспомним, что для нахождения гипотенузы равнобедренного треугольника есть формула с=а √ 2 , где с – гипотенуза, а – катет. Подставим в неё наши данные:
с=44 √ 2 × √ 2 =44 √ 4 =44 × 2=88
pазбирался: Даниил Романович | обсудить разбор | оценить
Площадь четырехугольника можно вычислить по формуле S= d 1 d 2 s i n a 2 . . , где d 1 и d 2 длины диагоналей четырехугольника, а – угол между диагоналями. Пользуясь этой формулой, найдите длину диагонали d 1 , если d 2 =16, sin a= 2 5 . . , a S=12,8
Для выполнения данного задания надо подставить все известные данные в формулу:
12,8= d 1 × 16 × 2 5 . . 2 . .
В правой части можно сократить 16 и 2 на 2: 12,8= d 1 × 8 × 2 5 . . 1 . .
Теперь умножим 8 на дробь 2 5 . . , получим 3,2: 12,8= d 1 × 3 , 2
Найдем неизвестный множитель, разделив 12,8 на 3,2: d 1 =12,8:3,2=4
pазбирался: Даниил Романович | обсудить разбор | оценить
На плане изображен дачный участок по адресу: п. Сосновка, ул. Зеленая, д. 19 (сторона каждой клетки на плане равна 2 м). Участок имеет прямоугольную форму. Выезд и въезд осуществляются через единственные ворота.
При входе на участок слева от ворот находится гараж. Справа от ворот находится сарай площадью 24 кв.м, а чуть подальше – жилой дом. Напротив жилого дома расположены яблоневые посадки. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, и огород с теплицей внутри (огород отмечен на плане цифрой 6). Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м. Между гаражом и сараем находится площадка, вымощенная такой же плиткой. К участку подведено электричество. Имеется магистральное газоснабжение.
Задание №1
Для объектов, указанных в таблице, определите, какими цифрами они обозначены на плане. Заполните таблицу, в бланк ответов перенесите последовательность четырех цифр без пробелов, запятых и других символов.
Объекты | яблони | теплица | сарай | жилой дом |
Цифры |
Решение
Для решения 1 задачи работаем с текстом и планом одновременно:
при входе на участок слева от ворот находится гараж (слева от входа находится объект под номером 2), итак, гараж — 2. Справа от ворот находится сарай площадью 24 кв.м (справа объект под номером 1), сарай – номер 1. А чуть подальше – жилой дом, следовательно, жилой дом – объект под номером 7. Напротив жилого дома расположены яблоневые посадки, на плане они обозначены цифрой 3. Также на участке есть баня, к которой ведет дорожка, выложенная плиткой, на плане видим, что к объекту под номером 4 ведет дорожка, значит баня – 4. Огород с теплицей внутри (огород отмечен на плане цифрой 6), в огороде расположена теплица – объект 5.
Итак, получили следующее:
1 – сарай; 2 – гараж; 3 – яблоневые посадки; 4 – баня; 5 – теплица; 6 – огород; 7 – жилой дом.
Заполняем нашу таблицу:
Объекты | яблони | теплица | сарай | жилой дом |
Цифры | 3 | 5 | 1 | 7 |
Записываем ответ: 3517
Задание №2
Плитки для садовых дорожек продаются в упаковках по 6 штук. Сколько упаковок плиток понадобилось, чтобы выложить все дорожки и площадку между сараем и гаражом?
Решение
Для начала надо определить, как обозначены дорожки, которые надо выложить плиткой, на плане. На плане они показаны серым цветом (мы их обведём голубым цветом).
Теперь ищем в условии задачи, что сказано про плитки и дорожки: «Все дорожки внутри участка имеют ширину 1 м и вымощены тротуарной плиткой размером 1м х 1м».
Сосчитаем, сколько клеточек (плиток) на плане, получаем 65. Зная по условию задачи 1, что плитки продаются в упаковках по 6 штук, разделим 65 на 6. Заметим, что 65 на 6 не делится, получается приблизительно 10,8…Учитывая, что упаковки не делятся, округляем до большего целого числа, нам понадобится 11 упаковок.
Задание №3
Найдите расстояние от жилого дома до теплицы (расстояние между двумя ближайшими точками по прямой) в метрах.
Решение
Из задания 1 знаем, что жилой дом обозначен на плане цифрой 7, а теплица цифрой 5. Следовательно, на плане находим эти объекты и расстояние между двумя ближайшими точками по прямой (обозначим это голубым цветом). Видим, что это расстояние – 2 клетки. На плане показано, что длина стороны одной клетки равна 2 метра, значит, расстояние между двумя этими объектами равно 4 метра.
Задание №4
Найдите площадь, которую занимает гараж. Ответ дайте в квадратных метрах.
Решение
Найдем на плане гараж, это объект под номером 2. Гараж имеет прямоугольную форму, следовательно, нам надо найти площадь прямоугольника. Для этого надо найти длину и ширину. На плане показано, что длина стороны 1 клетки равна 2 метра, значит, длина гаража равна 8 м (4 клетки), а ширина — 6 м (3 клетки).
Зная ширину и длину, находим площадь гаража: 6х8=48 кв.м
Задание №5
Хозяин участка решил покрасить весь забор вокруг участка (только с внешней стороны) в зелёный цвет. Площадь забора равна 232 кв.м., а купить краску можно в одном из двух ближайших магазинов. Цена и характеристика краски и стоимость доставки заказа даны в таблице.
Номер магазина | Расход краски | Масса краски в одной банке | Стоимость одной банки краски | Стоимость доставки заказа |
1 | 0,25 кг/кв.м | 6 кг | 3000 руб. | 500 руб. |
2 | 0,4 кг/кв.м | 5 кг | 1900 руб. | 800 руб. |
Во сколько рублей обойдется наиболее дешёвый вариант покупки с доставкой?
Решение
Определим, сколько килограммов краски понадобится для покраски забора площадью 232 кв.м:
1 магазин: 232х0,25=58 кг
2 магазин: 232х0,4=92,8 кг
Вычислим количество банок краски, которое надо купить, зная массу краски в 1 банке:
1 магазин: 58:6=9,7…; так как банки продаются целиком, то надо 10 банок (округляем до наибольшего целого числа)
2 магазин: 92,8:5=18,56; значит надо 19 банок.
Вычислим стоимость краски в каждом магазине плюс доставка:
1 магазин: 10х3000+500=30500 руб.
2 магазин: 19х1900+800=36900 руб.
Из решения задачи видно, что в 1 магазине купить краску выгоднее. Следовательно, наиболее дешёвый вариант покупки с доставкой будет стоить 30500 рублей.
Ответ: см. решение
pазбирался: Даниил Романович | обсудить разбор | оценить
Четырехугольник – виды и свойства с примерами решения
Содержание:
Четырёхугольник – это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки – сторонами четырёхугольника.
Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне – противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин – противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области – внутреннюю и внешнюю.
Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).
Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.
Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.
Внутренние и внешние углы четырехугольника
Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов углы являются внешними.
Каждый внутренний угол выпуклого четырёхугольника меньше Градусная мера внутреннего угла невыпуклого четырёхугольника может быть больше
Сумма внутренних углов выпуклого четырёхугольника
Теорема. Сумма внутренних углов выпуклого четырёхугольника равна
Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Доказательство представьте в виде двухстолбчатой таблицы.
Сумма внешних углов выпуклого четырёхугольника
Теорема. Сумма внешних углов выпуклого четырёхугольника равна
Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.
Параллелограмм
Параллелограмм и его свойства
Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны.
Теорема 1. Противоположные стороны параллелограмма конгруэнтны.
Теорема 2. Противоположные углы параллелограмма конгруэнтны.
Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна
Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам.
Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника.
Признаки параллелограмма
Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.
Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.
Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.
Прямоугольник
Параллелограмм, все углы которого прямые, называется прямоугольником.
Все свойства параллелограмма относятся к прямоугольнику.
Наряду с этим прямоугольник имеет следующее свойство:
Теорема. Диагонали прямоугольника конгруэнтны.
Признак прямоугольника
Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.
Ромб и квадрат
Свойства ромба
Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:
Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом.
Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если то параллелограмм является ромбом.
Доказательство теоремы 1.
Дано: ромб.
Докажите, что
Доказательство (словестное): По определению ромба При этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что равнобедренный. Медиана (так как ), является также и биссектрисой и высотой. Т.е. Так как является прямым углом, то . Аналогичным образом можно доказать, что
Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.
Ромб:
- 1. Все свойства параллелограмма действительны для ромба.
- 2. Все стороны конгруэнтны.
- 3. Диагонали взаимно перпендикулярны.
- 4. Диагонали ромба делят его углы пополам.
Квадрат:
- 1. Все свойства прямоугольника и ромба действительны для квадрата.
- 2. Все углы прямые.
- 3. Все стороны конгруэнтны.
- 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.
Трапеция
Четырёхугольник, у которого только две стороны параллельны, называется трапецией.
Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.
Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.
Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.
Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны.
Теорема 2. Диагонали равнобедренной трапеции конгруэнтны.
План доказательства теоремы 2
Дано: равнобедренная трапеция.
Докажите:
Средняя линия треугольника
Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если тогда Запишите в тетради доказательство теоремы, заполнив пропущенные строки.
Доказательство: через точку проведем параллельную прямую к прямой
Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.
Исследование: 1) В треугольнике через точку – середину стороны проведите прямую параллельную Какая фигура получилась? Является ли трапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Можно ли утверждать, что
Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине
Доказательство. Пусть дан треугольник и его средняя линия Проведём через точку прямую параллельную стороне По теореме Фалеса, она проходит через середину стороны т.е. совпадает со средней линией Т.е. средняя линия параллельна стороне Теперь проведём среднюю линию Т.к. то четырёхугольник является параллелограммом. По свойству параллелограмма По теореме Фалеса Тогда Теорема доказана.
Средняя линия трапеции
Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.
Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство: Через точку и точку середину проведём прямую и обозначим точку пересечения со стороной через
Координаты середины отрезка
Исследование: Начертите числовую ось. Постройте окружность с центром в точке радиусом 3 единицы. Вычислите значение выражения Есть ли связь между значением данного выражения и координатой точки
Координаты середины отрезка
1) Пусть на числовой оси заданы точки и и точка которая является серединой отрезка
то а отсюда следует, что
2) По теореме Фалеса, если точка является серединой отрезка то на оси абсцисс точка является соответственно координатой середины отрезка концы которого находятся в точках и
3) Координаты середины отрезка с концами и точки находятся так:
Убедитесь, что данная формула верна в случае, если отрезок параллелен одной из осей координат.
Теорема Пифагора
В этом разделе вы научитесь:
- различать рациональные и иррациональные числа;
- упрощать выражения, содержащие квадратные корни;
- решать задания на извлечение квадратного корня;
- основам теоремы Пифагора;
- решать практические задачи, применяя теорему Пифагора.
При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.
Теорема Пифагора очень часто используется при решении геометрических задач.
Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.
Практическая работа:
Шаг 1. Вырежьте из картона два одинаковых квадрата.
Шаг 2. На стороне одного из них отметьте отрезки как показано на рисунке и разрежьте его на два квадрата и два прямоугольника.
Шаг 3. Полученные фигуры расположите, как показано на рисунке.
Шаг 4. На сторонах другого квадрата отметьте отрезки как показано на рисунке и отрежьте четыре прямоугольных треугольника.
Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?
Шаг 6. Расположите полученные фигуры, как показано на рисунке.
Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?
Теорема Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах:
Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.
Пример:
Найдём длину катета на рисунке:
Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.
Обратная теорема:
Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если то, – прямоугольный.
Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25. также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа являются Пифагоровыми тройками, то и числа также являются Пифагоровыми тройками.
Справочный материал по четырёхугольнику
Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.
(рис. 1).
Точки А, В, С, D – вершины четырёхугольника, отрезки АВ, ВС, CD, DA – его стороны. Углы DAB, ABC, BCD, CDA – это углы четырёхугольника. Их также обозначают одной буквой –
Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?
У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой.
Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA – неверна.
Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ – соседние, а вершины А и С, , стороны AD и ВС – противоположные.
Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD – диагонали четырёхугольника ABCD.
Четырёхугольники бывают выпуклыми и невыпуклыми.
Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б – невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.
Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.
Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: =40 cm
Пример:
Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.
Решение:
Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В + CD (по неравенству треугольника). Тогда . Аналогично АВ 45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) . Углы А и С параллелограмма равны как суммы равных углов.
Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.
Пример №1
Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.
Решение:
(рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично (АВ CD, ВС-секущая), (ВС || AD, CD – секущая), (АВ || CD, AD- секущая).
Теорема (свойство диагоналей параллелограмма).
Диагонали параллелограмма точкой их пересечения делятся пополам.
Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.
Доказательство. по стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.
Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).
Свойства параллелограмма приведены в таблице 3.
1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).
2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.
Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).
Признаки параллелограмма
Решaя задачи, иногда требуется установить, что данный четырёхугольник – параллелограмм. Для этого используют признаки параллелограмма.
Теорема (признак параллелограмма).
Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник – параллелограмм.
Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.
Доказать: ABCD— параллелограмм.
Доказательство. Проведём диагональ BD (рис. 52). по трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Углы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.
Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие – параллельны?
Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD – не параллелограмм.
Теорема (признак параллелограмма).
Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник – параллелограмм.
Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.
Доказать: ABCD — параллелограмм.
Доказательство. Проведём диагональ АС (рис. 54). по двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, как внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Но углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.
Пример №2 (признак параллелограмма).
Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.
Решение:
Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. по двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, как вертикальные. Из равенства треугольников следует: ВС= AD и Но углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.
Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник – параллелограмм.
Чтобы установить, что четырёхугольник – параллелограмм, докажите, что в нём:
- либо противоположные стороны попарно параллельны (определение параллелограмма),
- либо противоположные стороны попарно равны (признак),
- либо две противоположные стороны равны и параллельны (признак),
- либо диагонали делятся точкой их пересечения пополам (признак).
Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.
Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.
Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.
Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».
Прямоугольник
Параллелограммы, как и –у треугольники, можно разделить на виды. Прямоугольник – один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике.
Параллелограмм, у которого все углы прямые, называется прямоугольником.
Поскольку прямоугольник – частный вид параллелограмма, то ему присущи все свойства параллелограмма:
- противоположные стороны равны;
- противоположные углы равны;
- диагонали делятся точкой их пересечения пополам.
Кроме этих свойств прямоугольник имеет ещё и особое свойство.
Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).
Доказать: АС = BD.
Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.
Свойства прямоугольника приведены в таблице 8.
Можно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.
Пример №3 (признак прямоугольника).
Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.
Решение:
Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что . по трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что . Поскольку в параллелограмме противоположные углы равны, то: . По свойству углов четырёхугольника,
Следовательно, : 4 = 90°, то есть параллелограмм ABCD — прямоугольник.
Для того чтобы установить, что данный параллелограмм – прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).
Можно ли утверждать, что четырёхугольник, в котором диагонали равны, – это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.
Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?
В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.
Следовательно, существуют разные определения одного и того же понятия.
Ромб. Квадрат
Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма – ромб.
Параллелограмм, у которого все стороны равны, называется ромбом.
Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.
Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.
Дано: ABCD – ромб (рис. 95), О— точка пересечения диагоналей АС и BD.
Доказать:
Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому .
Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.
Свойства ромба приведены в таблице 10. Таблица 1 О
Пример №4 (признак ромба)
Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.
Решение:
Пусть ABCD — данный параллелограмм, в котором (рис. 96). Докажем, что ABCD— ромб. по двум сторонами и углу между ними.
Так как ромб – это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, по условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.
Для того чтобы установить, что данный параллелограмм – ромб, докажите, что в нем:
- либо все стороны равны (определение ромба),
- либо диагонали взаимно перпендикулярны (признак).
Прямоугольник, в котором все стороны равны, называется квадратом.
На рисунке 97 вы видите квадрат ABCD.
Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.
- Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
- Диагонали квадрата равны (свойство прямоугольника).
- Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).
Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник – это частные виды параллелограмма. Соотношение между видами параллелограммов показано на
1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.
2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.
Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.
3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.
Теорема Фалеса. Средняя линия треугольника
Начертите угол ABC (рис. 117).
Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки и Проведите с помощью чертёжного угольника и линейки через точки параллельные прямые, которые пересекут сторону ВС этого угла в точках При помощи циркуля сравните длины отрезков Сделайте вывод.
Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.
Дано:
Доказать:
Доказательство. Проведём через точки прямые параллельные ВС. по стороне и прилежащим к ней углам. У них по условию, как соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что и как противоположные стороны параллелограммов
Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).
Пример №5
Разделите данный отрезок АВ на пять равных частей.
Решение:
Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).
Отложим на луче АС пять равных отрезков: АА,Проведём прямую . Через точки проведём прямые, параллельные прямой . По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.
Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.
На рисунке 121 отрезок MN – средняя линия , так как точки М и N – середины сторон АВ и ВС.
Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.
Дано: (рис. 122), AD = BD, СЕ= BE.
Доказать:
Доказательство. 1) Пусть DE- средняя линия . Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.
2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1
АС пополам: . По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно,
Пример №6
Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.
Решение:
Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.
Поэтому . КР— средняя линия треугольника ADC. Поэтому КР || АС и
Получаем: MN || АС и КР || АС, отсюда MN || КР, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.
Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.
Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.
Трапеция
Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами – параллелограмм.
На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие – АВ и CD – непараллельны. Такой четырёхугольник – трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.
Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие – непараллельны.
Параллельные стороны трапеции называются её основаниями, а непараллельные – боковыми сторонами. На рисунке 144 AD и ВС – основания трапеции, АВ и CD – боковые стороны.
Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.
Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).
Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP – равнобедренная, поскольку MN = КР.
Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) – прямоугольная, поскольку = 90*.
Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.
На рисунке 147 отрезок EF – средняя линия трапеции ABCD, так как точки Е и F – середины боковых сторон АВ и CD.
Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.
Дано: ABCD – трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать:
Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. no стороне и прилежащим к ней углам. У них CF = FD по условию, как вертикальные, внутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.
1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.
Пример №7 (свойство равнобедренной трапеции).
В равнобедренной трапеции углы при основании равны. Докажите это.
Решение:
Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.
Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и равнобедренный. Поэтому соответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда
Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.
Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами
Центральные и вписанные углы
Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.
Угол с вершиной в центре окружности называется центральным углом.
Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.
Дано: — вписанный в окружность с центром О (рис. 188 — 190).
Доказать:
Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.
1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом . По свойству внешнего угла треугольника, – равнобедренный (ОВ= OA = R). Поэтому измеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.
2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:
Из доказанного в первом случае следует, что измеряется половиной дуги AD, a — половиной дуги DC. Поэтому измеряется суммой полудуг AD и DC, то J есть половиной дуги АС.
3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда:
Следствие 1.
Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.
Следствие 2.
Вписанный угол, опирающийся на диаметр, – прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°.
Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.
Пример №8
Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.
Решение:
Проведём диаметр CD и соединим точки A и D (рис. 194). как вписанные, опирающиеся на дугу АС (следствие 1). Поэтому , так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно,
Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.
Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.
Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, (рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.
Если описать окружность около (рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо:
Вписанные и описанные четырёхугольники
Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность.
Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность – описанной около этого четырехугольника.
Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.
Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность – вписанной в этот четырёхугольник.
Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.
Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.
Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).
Доказать:
Доказательство. Углы А, В, Си D вписаны в окружность.
Из теоремы о вписанном угле следует:
Тогда
Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда
Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник – вписанный. Приведём признак вписанного четырёхугольника без доказательства.
Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.
Пример №9
Докажите, что около равнобедренной трапеции можно описать окружность.
Решение:
Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225).
Докажем, что . В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).
Поэтому, . По свойству равнобокой трапеции,
Тогда и, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.
Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.
Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.
Доказать: АВ + CD = ВС + AD.
Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.
В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.
Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.
Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ے M + ے K = 180°, либо ے N + ے P= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.
1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.
Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения центры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника вписанного в окружность. Действительно,
Следовательно, четырёхугольник — вписанный в окружность.
2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.
Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.
Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).
Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD – вписанный, так как ے ABC + ے ADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.
4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.
Пример №10
Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ے MAD= ے MCD.
Решение:
Около четырёхугольника ADMC можно описать окружность, так как ے ACM+ ے ADM= 180°.
Тогда ے MAD= ے MCD— вписанные углы, опирающиеся на одну дугу MD.
Рекомендую подробно изучить предметы: |
|
Ещё лекции с примерами решения и объяснением: |
- Площади фигур в геометрии
- Площади поверхностей геометрических тел
- Вычисление площадей плоских фигур
- Преобразование фигур в геометрии
- Парабола
- Многогранник
- Решение задач на вычисление площадей
- Тела вращения: цилиндр, конус, шар
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Выпуклый четырехугольник
Определения
Четырехугольник – это геометрическая фигура, состоящая из четырех точек, никакие три из которых не лежат на одной прямой, и отрезков, последовательно соединяющих эти точки.
Диагональ четырехугольника – отрезок, соединяющий любые две несоседние вершины.
Различают выпуклые и невыпуклые четырехугольники.
Четырехугольник называется выпуклым, если он находится в одной полуплоскости относительно прямой, содержащей любую его сторону.
В школьном курсе рассматриваются только выпуклые четырехугольники. Поэтому далее “выпуклый четырехугольник” будем сокращенно называть “четырехугольник”.
Теорема
Сумма внутренних углов любого четырехугольника равна (360^circ) .
Доказательство
Рассмотрим четырехугольник (ABCD) и проведем его диагональ (AC) . Она разбила четырехугольник на два треугольника. Сумма углов любого треугольника равна (180^circ) , следовательно:
[begin 360^circ=180^circ+180^circ=(angle DAC+angle D+angle ACD) + (angle CAB+angle B+angle ACB)=\ =angle D+angle B +(angle DAC+angle CAB)+(angle ACD+angle ACB)=angle D+angle B+angle A+angle C end]
Теорема Вариньона
Выпуклый четырехугольник, вершинами которого являются середины сторон произвольного четырехугольника, является параллелограммом.
Доказательство*
С доказательством данной теоремы рекомендуется ознакомиться после изучения темы “Средняя линия треугольника”.
Проведем диагонали четырехугольника (ABCD) . Рассмотрим (triangle ABC) : (MN) – средняя линия этого треугольника, следовательно, (MNparallel AC) .
Рассмотрим (triangle ADC) : (PK) – средняя линия этого треугольника, следовательно, (PKparallel AC) .
Таким образом, (MNparallel ACparallel PK) .
Аналогичным образом доказывается, что (MPparallel BDparallel NK) .
Следовательно, по определению (MNKP) – параллелограмм.
Теорема
Если в четырехугольнике (ABCD) диагонали взаимно перпендикулярны, то суммы квадратов противоположных сторон равны: [AB^2+CD^2=BC^2+AD^2]
Доказательство
По теореме Пифагора:
Из равенств видно, что (AB^2+CD^2=x^2+a^2+y^2+b^2=BC^2+AD^2)
Замечание
Все известные четырехугольники, изучаемые в школьной программе, подчиняются следующей схеме:
Таким образом, любой четырехугольник из этой схемы обладает свойствами всех предыдущих четырехугольников, из которых он следует.
Например, прямоугольник обладает свойствами параллелограмма и произвольного выпуклого четырехугольника; квадрат обладает свойствами прямоугольника, параллелограмма, выпуклого четырехугольника.
[spoiler title=”источники:”]
http://www.evkova.org/chetyirehugolnik
http://shkolkovo.net/theory/62
[/spoiler]
Лучший ответ
Ольга Дмитриева
Просветленный
(48501)
14 лет назад
Примерно так же, как шестигранного цилиндра
Остальные ответы
Nelli
Мыслитель
(8320)
14 лет назад
что-то я не знаю что такое выпуклый треугольник. надо освежить память
Red Muhomor
Мастер
(1752)
14 лет назад
Такого нет:)
Флейта
Оракул
(61574)
14 лет назад
А что это такое?
МарьПетровна Математичка
Гуру
(4660)
14 лет назад
фигасе о_О
Марусель
Искусственный Интеллект
(187245)
14 лет назад
Ты хоть сама понимаешь, что спросила?
Вадим Сухотин
Мудрец
(14276)
14 лет назад
1. Сумма бывает у чисел, а не у треугольника
2. Любой треугольник – выпуклая фигура. Не бывает невыпуклых треугольников.
¤•°•BesT BOY¤•°•
Гуру
(3112)
14 лет назад
посчитай
Содержание:
Изучив материал этой лекции, вы узнаете формулу, с помощью которой можно найти сумму углов выпуклого многоугольника.
- Вы расширите свои представления о такой знакомой вам величине, как площадь.
- Вы научитесь находить площадь параллелограмма, треугольника, трапеции.
Определение многоугольников
Рассмотрим фигуру, состоящую из точек
Фигура, образованная этими отрезками, ограничивает часть плоскости, выделенную на рисунке 195 зеленым цветом. Эту часть плоскости вместе с отрезками называют многоугольником. Точки называют вершинами многоугольника, а указанные выше отрезки — сторонами многоугольника.
Стороны, являющиеся соседними отрезками, называют соседними сторонами многоугольника. Вершины, являющиеся концами одной стороны, называют соседними вершинами многоугольника.
Две соседние стороны многоугольника образуют угол многоугольника. Например, на рисунке 196 — углы многоугольника, а не является углом многоугольника.
Многоугольник называют по количеству его углов: треугольник, четырехугольник, пятиугольник и т. п.
Многоугольник обозначают по его вершинам. Например, на рисунке 197 изображен пятиугольник ABCDE. В обозначении многоугольника буквы, стоящие рядом, соответствуют соседним вершинам. Например, пятиугольник, изображенный на рисунке 197, можно обозначить еще и так: CDEAB, EABCD, EDCBA и т. д.
Периметром многоугольника называют сумму длин всех его сторон.
Отрезок, соединяющий несоседние вершины многоугольника, называют диагональю. Например, на рисунке 198 отрезок АЕ — диагональ шестиугольника ABCDEF.
На рисунке 199 изображен многоугольник, все углы которого меньше развернутого. Такой многоугольник называют выпуклым. Из сказанного следует, что любой треугольник является выпуклым многоугольником. Заметим, что многоугольники, изображенные на рисунках 196-198, не являются выпуклыми.
Выпуклый многоугольник обладает такими свойствами:
- выпуклый многоугольник расположен в одной полуплоскости относительно любой прямой, содержащей его сторону (рис. 200);
- выпуклый многоугольник, отличный от треугольника, содержит любую свою диагональ (рис. 201).
Если многоугольник не является выпуклым, то он такими свойствами не обладает (рис. 198, 202).
Теорема 19.1. Сумма углов выпуклого n-угольника равна
Доказательство. Для случая n = 3 теорема была доказана в 7 классе (теорема 16.1).
Пусть На рисунке 203 изображен выпуклый n-угольник
Докажем, что сумма всех его углов равна 180° (n-2).
Проведем все его диагонали, выходящие из вершины Эти диагонали разбивают данный многоугольник на (n – 2) треугольника. Сумма всех углов этих треугольников равна сумме углов n-угольника. Поскольку сумма углов каждого треугольника равна 180°, то искомая сумма равна 180° (n – 2).
Отметим, что эта теорема справедлива и для любого многоугольника, не являющегося выпуклым.
Определение. Окружность называют описанной около многоугольника, если она проходит через все его вершины.
На рисунке 204 изображена окружность, описанная около многоугольника. В этом случае также говорят, что многоугольник вписан в окружность.
Центр окружности, описанной около многоугольника, равноудален от всех его вершин. Следовательно, этот центр принадлежит серединным перпендикулярам всех сторон многоугольника, вписанного в окружность.
Около многоугольника можно описать окружность, если существует точка, равноудаленная от всех его вершин. Следовательно, если серединные перпендикуляры всех сторон многоугольника пересекаются в одной точке, то около такого многоугольника можно описать окружность.
Определение. Окружность называют вписанной в многоугольник, если она касается всех его сторон.
На рисунке 205 изображена окружность, вписанная в многоугольник. В этом случае также говорят, что многоугольник описан около окружности.
Центр окружности, вписанной в многоугольник, равноудален от всех его сторон. Следовательно, этот центр принадлежит биссектрисам всех углов многоугольника, описанного около окружности.
Понятие площади многоугольника. Площадь прямоугольника
С такой величиной, как площадь, вы часто встречаетесь в повседневной жизни: площадь квартиры, площадь дачного участка, площадь поля и т. п.
Опыт подсказывает вам, что равные земельные участки имеют равные площади, что площадь квартиры равна сумме площадей всех ее помещений (комнат, кухни, коридора и т. д.).
Вы знаете, что площади земельных участков измеряют в сотках (арах) и гектарах; площади регионов и государств — в квадратных километрах; площадь квартиры — в квадратных метрах.
На этих практических знаниях о площади основывается определение площади многоугольника.
Определение. Площадью многоугольника называют положительную величину, которая обладает следующими свойствами:
- равные многоугольники имеют равные площади;
- если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
- за единицу измерения площади принимают единичный квадрат, то есть квадрат со стороной, равной единице измерения длины.
Измерить площадь многоугольника — это значит сравнить его площадь с площадью единичного квадрата. В результате получают числовое значение площади данного многоугольника. Это число показывает, во сколько раз площадь данного многоугольника отличается от площади единичного квадрата.
Например, если клетку вашей тетради принять за единичный квадрат, то площадь многоугольника, изображенного на рисунке 207, будет равна 11 квадратным единицам (кратко записывают: 11 ед.2).
Обычно для нахождения площади используют формулы, то есть вычисляют площадь многоугольника по определенным элементам (сторонам, диагоналям, высотам и т. д.). Некоторые из формул вы уже знаете. Например, вы неоднократно применяли формулу S = ab, где S — площадь прямоугольника, а и b — длины его соседних сторон.
Для доказательства этой формулы потребуется следующая лемма.
Лемма. Площадь квадрата со стороной ед. (n — натуральное число) равна
Доказательство. Рассмотрим единичный квадрат и разделим его на равных квадратов со стороной (рис. 208).
Из определения площади многоугольника (свойство 1) следует, что все эти квадраты имеют равные площади. По свойству 2 сумма площадей этих квадратов равна площади единичного квадрата, то есть 1 ед.2. Поэтому площадь каждого маленького квадрата равна
Теорема 20.1. Площадь прямоугольника равна произведению длин его соседних сторон.
Доказательство. На рисунке 209 изображен прямоугольник ABCD, длины соседних сторон которого равны a и b: АВ = а, ВС = b. Докажем для случая, когда а и b — рациональные числа, что площадь S прямоугольника вычисляют по формуле S = ab.
Числа а и b представим в виде обыкновенных дробей с одинаковыми знаменателями:
где – натуральные числа.
Разделим сторону АВ на р равных частей, а сторону ВС — на q равных частей. Через точки деления проведем прямые, параллельные сторонам прямоугольника. Тогда прямоугольник будет разделен на равных квадратов со стороной
Согласно лемме площадь каждого квадрата равна Из определения площади (свойство 2) следует, что площадь прямоугольника равна сумме площадей всех квадратов, то есть
Рассмотрение случая, когда хотя бы одно из чисел а или b является иррациональным, выходит за рамки школьного курса геометрии.
Определение. Многоугольники, имеющие равные площади, называют равновеликими.
Из определения площади (свойство 1) следует, что все равные фигуры равновелики. Однако не все фигуры, имеющие равные площади, являются равными. Например, на рисунке 210 изображены два многоугольника, каждый из которых составлен из семи единичных квадратов. Эти многоугольники равновелики, но не равны.
Площадь параллелограмма
Теорема 21.1. Площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне.
Доказательство. На рисунке 214 изображены параллелограмм ABCD, площадь которого равна S, и его высота ВМ. Докажем, что S = ВС • ВМ.
Проведем высоту CN. Легко показать (сделайте это самостоятельно), что четырехугольник MBCN — прямоугольник. Покажем, что он равновелик данному параллелограмму.
Площадь параллелограмма равна сумме площадей треугольника АВМ и трапеции MBCD. Площадь прямоугольника равна сумме площадей указанной трапеции и треугольника DCN. Однако треугольники АВМ и DCN равны по гипотенузе и острому углу (отрезки АВ и CD равны как противолежащие стороны параллелограмма, углы 1 и 2 равны как соответственные при параллельных прямых АВ и DC и секущей AD). Значит, эти треугольники равновелики. Отсюда следует, что параллелограмм ABCD и прямоугольник MBCN равновелики.
По теореме 20.1 площадь прямоугольника MBCN равна произведению длин сторон ВС и ВМ. Тогда S = ВС • ВМ, где S — площадь параллелограмма ABCD.
Для завершения доказательства надо рассмотреть случаи, когда основание М высоты ВМ не будет принадлежать стороне AD (рис. 215) или совпадет с вершиной D (рис. 216). И в этом случае параллелограмм ABCD и прямоугольник MBCN будут равновеликими. Докажите этот факт самостоятельно.
Если обозначить длины стороны параллелограмма и проведенной к ней высоты соответственно буквами а и h, то площадь S параллелограмма вычисляют по формуле
Площадь треугольника
Теорема 22.1. Площадь треугольника равна половине произведения его стороны и проведенной к ней высоты.
Доказательство. На рисунке 220 изображены треугольник АВС, площадь которого равна S, и его высота ВМ. Докажем, что
Через вершины В и С треугольника проведем прямые, параллельные сторонам АС и АВ соответственно (рис. 220). Пусть эти прямые пересекаются в точке N. Четырехугольник ABNC — параллелограмм по определению. Треугольники АВС и NCB равны (докажите это самостоятельно). Следовательно, равны и их площади. Тогда площадь треугольника АВС равна половине площади параллелограмма ABNC. Высота ВМ треугольника АВС является также высотой параллелограмма
ABNC. Отсюда
Если воспользоваться обозначениями для высот и сторон треугольника АВС, то согласно доказанной теореме имеем:
где S — площадь треугольника.
Следствие. Площадь прямоугольного треугольника равна половине произведения его катетов.
Докажите эту теорему самостоятельно.
Пример №1
Докажите, что площадь ромба равна половине произведения его диагоналей.
Решение:
На рисунке 221 изображен ромб ABCD, площадь которого равна S. Его диагонали АС и BD пересекаются в точке О. Докажем, что
Поскольку диагонали ромба перпендикулярны, то отрезки АО и СО являются высотами треугольников BAD и BCD соответственно. Тогда можно записать:
Площадь трапеции
Теорема 23.1. Площадь трапеции равна произведению полусуммы ее оснований и высоты.
Доказательство. На рисунке 224 изображена трапеция ABCD (AD||BC), площадь которой равна S. Отрезок CN — высота этой трапеции. Докажем, что
Проведем диагональ АС и высоту AM трапеции. Отрезки AM и CN являются высотами треугольников АВС и ACD соответственно.
Имеем:
Если обозначить длины оснований трапеции и ее высоты соответственно буквами то площадь S трапеции вычисляют по формуле
Следствие. Площадь трапеции равна произведению ее средней линии и высоты.
Равносоставленные и равновеликие многоугольники
Если некоторый многоугольник можно разрезать на части и составить из них другой многоугольник, то такие два многоугольника называют равносоставленными.
Например, если прямоугольник разрезать вдоль его диагонали (рис. 228), то получим два равных прямоугольных треугольника, из которых можно составить равнобедренный треугольник (рис. 229). Фигуры на рисунках 228 и 229 — равно составленные.
Очевидно, что равносоставленные многоугольники являются равновеликими. Этот факт применяют при доказательстве теорем и решении задач. Например, доказывая теорему 21.1, мы фактически разрезали параллелограмм на треугольник АВМ и трапецию MBCD, из которых составили прямоугольник MBCN (см. рис. 215).
Если треугольник разрезать вдоль средней линии, то из полученных треугольника и трапеции можно составить параллелограмм (рис. 230).
Легко установить (сделайте это самостоятельно), что такое разрезание треугольника приводит к еще одному доказательству теоремы о площади треугольника (теорема 22.1). Этой же цели служит разрезание треугольника на части, из которых можно составить прямоугольник (рис. 231).
Евклид в своей знаменитой книге «Начала» формулирует теорему Пифагора так:
«Площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах».
Если показать, что можно разрезать квадраты, построенные на катетах, на части и составить из этих частей квадрат со стороной, равной гипотенузе, то тем самым будет доказана теорема Пифагора.
На рисунке 232 показан один из возможных способов такого разрезания. Квадраты, построенные на катетах, разрезаны на части, площади которых равны Из этих частей сложен квадрат, построенный на гипотенузе.
Из определения площади многоугольника следует, что равносоставленные многоугольники являются равновеликими. Но совсем неочевидной является такая теорема.
Теорема. Любые два равновеликих многоугольника являются равносоставленными.
Впервые этот факт доказал в 1832 г. венгерский математик Фаркаш Бойяи. Позднее немецкий математик Пауль Гервин нашел другое доказательство. Поэтому эту теорему называют теоремой Бойяи—Гервина.
Теорема Чевы
На сторонах ВС, СА и АВ треугольника АВС отметим произвольные точки (рис. 234). Каждый из отрезков АЛ,, BBV СС, называют чевианой треугольника АВС. Такое название связано с именем итальянского инженера и математика Джованни Чевы (1648-1734), открывшего удивительную теорему.
Если точки выбраны так, что чевианы являются биссектрисами, либо медианами, либо высотами остроугольного треугольника, то эти чевианы пересекаются в одной точке.
Если три прямые пересекаются в одной точке, то их называют конкурентными.
Теорема Чевы дает общий критерий конкурентности произвольных трех чевиан.
Теорема. Для того чтобы, чевианы треугольника АВС пересекались в одной точке, необходимо и достаточно, чтобы выполнялось равенство
Доказательство. Докажем сначала необходимое условие конкурентности: если чевианы пересекаются в одной точке, то выполняется равенство (*).
Воспользовавшись результатом ключевой задачи 757, можно записать (рис. 235):
Перемножив записанные равенства, получим равенство (*).
Докажем теперь достаточное условие конкурентности: если выполняется равенство (*), то чевианы пересекаются в одной точке.
Пусть чевианы пересекаются в точке D, а чевиана, проходящая через вершину С и точку D, пересекает сторону АВ в некоторой точке Из доказанного выше можно записать:
Сопоставляя это равенство с равенством (*), приходим к выводу, что то есть точки делят отрезок АВ в одном и том же отношении, а значит, эти точки совпадают. Следовательно, прямая CD пересекает сторону АВ в точке
Напомню:
Сумма углов выпуклого n-угольника
Сумма углов выпуклого n-угольника равна 180° (n – 2).
Окружность, описанная около многоугольника
Окружность называют описанной около многоугольника, если она проходит через все его вершины.
Окружность, вписанная в многоугольник
Окружность называют вписанной в многоугольник, если она касается всех его сторон.
Площадь многоугольника
Площадью многоугольника называют положительную величину,
которая обладает следующими свойствами:
- равные многоугольники имеют равные площади;
- если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников;
- за единицу измерения площади принимают единичный квадрат, то есть квадрат со стороной, равной единице измерения длины.
Площадь прямоугольника
Площадь прямоугольника равна произведению длин его соседних сторон.
Равновеликие многоугольники
Многоугольники, имеющие равные площади, называют равновеликими.
Площадь параллелограмма
Площадь параллелограмма равна произведению его стороны и высоты, проведенной к этой стороне.
Площадь треугольника
Площадь треугольника равна половине произведения его стороны и проведенной к ней высоты.
Площадь прямоугольного треугольника
Площадь прямоугольного треугольника равна половине произведения его катетов.
Площадь трапеции
- Площадь трапеции равна произведению полусуммы ее оснований и высоты.
- Площадь трапеции равна произведению ее средней линии и высоты.
Ломанная линия и многоугольники
Ломаная линия состоит из таких нескольких последовательно-соединенных отрезков: конец первого является началом второго, конец второго является началом третьего и т.д. Если конечная точка последнего отрезка совпадает с начальной точкой первого отрезка, то ломаная называется замкнутой. Многоугольник – это фигура, образованная замкнутой ломаной линией, в которой смежные отрезки не лежат на одной прямой, а несмежные – не пересекаются.
- Многоугольник – это плоская фигура.
- Стороны состоят из конечного числа отрезков.
- Многоугольник это замкнутая фигура, делящая плоскость на 2 части: внутреннюю замкнутую область и внешнюю бесконечную область.
- Многоугольник обозначают буквами, указывающими его вершины.
Многоугольники бывают выпуклые и вогнутые. Многоугольник называется выпуклым, если он лежит в одной полуплоскости относительно любой прямой содержащей его сторону. Если не лежит в одной полуплоскости – вогнутым.
Многоугольник называется правильным, если у него все стороны все углы конгруэнтны.
В многоугольнике количество вершин, сторон и углов одинаковые. Многоугольник с – сторонами называют еще и – угольным.
Соответственно количеству сторон, многоугольники называются треугольными, четырехугольными, пятиугольными, шестиугольными т.д. Из любой вершины выпуклого – угольника выходят диагонали.
Внутренние и внешние углы многоугольника
Угол, образованный двумя сторонами, исходящими из данной вершины называется внутренним углом при данной’ вершине выпуклого многоугольника. Угол, смежный с внутренним углом многоугольника называется внешним. Сумма внутренних и внешних углов (взятых по одному при каждой вершине) многоугольника при любой вершине равна .
Теорема 1. Сумма внутренних углов выкуплого – угольника равна .
Следствие: Каждый внутренний угол правильного – угольника равен
Теорема 2. Сумма внешних углов выкуплого многоугольника равен .
Следствие 2. Каждый внешний угол правильного – угольника равен .
Пример №2
Один из внешних углов правильного многоугольника равен .
a) найдите градусную меру внутреннего угла многоугольника;
b) найдите число сторон многоугольника.
Решение: а) ;
Внутренний угол:
b)
Многоугольники вписанные в окружность и описанные около окружности
Определение 1. Многоугольник называется вписанным в окружность, если все его вершины лежат на окружности, а окружность называется описанной около многоугольника. На рисунке треугольник вписан в окружность.
Определение 2. Многоугольник называется описанным около окружности, если все его стороны касаются окружности, а окружность называется вписанной в многоугольник. На рисунке четырехугольник описан около окружности.
Окружность, вписанная в треугольник и описанная около нее
Теорема 1. В любой треугольник можно вписать окружность. Центром этой окружности будет точка пересечения биссектрис углов треугольника.
Теорема 2. Около любого треугольника можно описать окружность. Центром этой окружности будет точка пересечения серединных перпендикуляров к сторонам треугольника.
Теорема 3. Если в окружность вписан прямоугольный треугольник, то гипотенуза является диаметром этой окружности.
Обратная теорема. Если сторона треугольника, вписанного в окружность, является диаметром, то этот треугольник – прямоугольный.
Доказательство 1-ой теоремы (текстовое). Проведем биссектрисы углов и треугольника и точку пересечения обозначим буквой . Произвольная точка, взятая на биссектрисе находится на одинаковом расстоянии от сторон угла. Поэтому Точка находится и на биссектрисе угла (почему?). Нарисуем окружность с центром в точке и радиусом Так как стороны треугольника перпендикулярны радиусам то в точках они касаются окружности. А значит, эта окружность является вписанной в треугольник.
Доказательство 2-ой теоремы. Через середины сторон и треугольника проведем перпендикуляры и точку их пересечения обозначим буквой . По свойству серединного перпендикуляра к отрезку . Так как равнобедренный, то точка находится и на серединном перпендикуляре стороны . Окружность с центром в точке и радиусом , пройдя через все вершины треугольника, будет описанной около нее.
Замечание: Около данного треугольника можно описать только одну окружность. В данную окружность можно вписать бесконечное количество треугольников.
Свойства четырехугольников, вписанных в окружность и описанного около нее
В отличие от треугольников, не во всякий четырехугольник можно вписать или описать окружность.
Теорема 4. В любом описанном четырехугольнике суммы противоположных сторон равны.
Обратная теорема. Если суммы противоположных сторон четырехугольника равны, то в этот четырехугольник можно вписать окружность.
Теорема 5. Сумма двух противоположных углов четырехугольника, вписанного в окружность, равна
Обратная теорема. Если сумма противоположных углов четырехугольника равна , то около этого четырехугольника можно описать окружность.
Доказательство теоремы 4: Пусть точки будут точками касания сторон четырехугольника. По свойству касательных, проведенных из данной точки к окружности,
Если сложить почленно эти равенства, получим или же
Отношение стороны треугольника, вписанного в окружность, к синусу противолежащего угла равно диаметру этой окружности:
Исследуйте данное доказательство для случая, когда центр окружности расположен внутри треугольника, обсудите и напишите в тетради.
В любой правильный многоугольник можно вписать и описать окружность. Центры этих окружностей совпадут. Биссектрисы углов правильного многоугольника пересекаются в точке и образуют равнобедренные треугольники конгруэнтные показанному на рисунке (по признаку УСУ). Нарисуем окружность радиусом с центром в точке . Эта окружность, пройдя через все вершины, будет описанной окружностью. окружность с радиусом , касаясь всех сторон многоугольника, будет вписанной окружностью. – радиус окружности, описанной около правильного -угольника, -радиус вписанной окружности, -сторона правильного -угольника, – центральный угол
Задача на построение: Постройте правильный шестиугольник.
1. Нарисуйте отрезок , равный стороне правильного шестиугольника.
2. Циркулем нарисуйте окружность, радиус которой равен длине этого отрезка.
3. Не меняя раствора циркуля, разбейте всю окружность на части одинаковой длины и отметьте их точками.
4. Соедините последовательно отмеченные точки. Получится правильный шестиугольник, вписанный в окружность.
Если соединить попарно некоторые вершины правильного шестиугольника , например, вершины , то получится правильный треугольник. Чтобы построить правильный четырехугольник, нужно провести два взаимно перпендикулярных диаметра и последовательно соединить их концы. Если в окружность вписан правильный – угольник, то отметив точки пересечения серединных перпендикуляров с окружностью, получим точки являющиеся вершинами правильного -угольника.
Площадь правильного многоугольника
Центр правильного многоугольника. Центр окружности, описанного около правильного многоугольника или вписанного в него, является центром правильного многоугольника. Центр правильного многоугольника находится на одинаковом расстоянии от всех вершин и всех сторон многоугольника.
Апофема правильного многоугольника. Перпендикуляр, проведенный из центра многоугольника к его стороне, называется апофемой. Апофема правильного многоугольника равна радиусу вписанной окружности.
Выполните следующее упражнение по шагам и выведите формулу зависимости площади правильного многоугольника от апофемы.
1. Нарисуйте правильный пятиугольник .
2. Из центра проведите перпендикуляр, делящий сторону пополам.
3. Соедините точки и с центром .
4. Выразите площадь треугольника переменными и . Обратите внимание какому измерению многоугольника соответствует высота треугольника.
5. Соедините точки с точкой . Сравните площади полученных треугольников.
6. Обратите внимание на то, что площадь пятиугольника равна сумме площадей этих треугольников. Площадь пятиугольника:
7. Какому измерению соответствует выражение ? Выразите площадь пятиугольника через его периметр.
Площадь правильного многоугольника:
Соединив центр правильного -угольника с вершинами, получится количество равнобедренных конгруэнтных треугольников.
-длина стороны многоугольника , -число сторон, -апофема.
Пример №3
В окружность радиусом равным единице, вписан правильный пятиугольник. Найдите площадь пятиугольника. Решение:
Площадь многоугольника:
Нужно найти апофему и периметр .
Центральный угол равен . – равнобедренный треугольник, а значит его высота является и медианой, и биссектрисой.
Тогда . Чтобы найти стороны треугольника , воспользуемся тригонометрическими соотношениями .
– апофема пятиугольника,
Сторона пятиугольника:
Историческое сведение. В 3-ем веке до н.э. Архимед – древнегреческий ученый, для того, чтобы определить численное значение , воспользовался периметрами правильных; многоугольников описанных и вписанных в окружность. Пользуясь данным способом исследуйте значение .
1. Принимая за единицу диаметр окружности, найдите периметр вписанного шестиугольника.
2. Покажите, что длина окружности с единичным диаметром равна .
3. Нарисуйте радиус окружности. Найдите периметр описанного шестиугольника.
4. Напишите неравенство: .
Увеличив число сторон многоугольника в 2 раза и продолжая вычисления для 12-ти, а затем для 96-ти угольного многоугольника Архимед, определил, что значения больше , но меньше .
Паркетирование
Паркетированием называется покрытие площади фигурами до заполнения всей пустоты.
Если сумма углов при общей вершине многоугольника равна , то паркетированием можно покрыть всю пустую часть площади. Паркетирование возможно при помощи правильных треугольников, ромбов (квадратов) и правильных шестиугольников. Однако, при помощи правильных пятиугольников это сделать невозможно, потому что, градусная мера одного угла равна , а сумма углов при общей вершине трех пятиугольников , а четырех пятиугольников .
Справочный материал по многоугольникам
Многоугольник и его элементы.
Сумма углов выпуклого многоугольника. многоугольник, вписанный в окружность, и многоугольник, описанный около окружности.
Рассмотрим фигуру изображенную на рисунке 213. Она состоит из отрезков и При этом отрезки размещены так, что соседние отрезки ( и и и ) не лежат на одной прямой, а несоседние отрезки не имеют общих точек. Такую фигуру называют многоугольником. Точки называют вершинами многоугольника, а отрезки – сторонами многоугольника.
Очевидно, что количество вершин многоугольника равно количеству его сторон.
Сумму длин всех сторон многоугольника называют его периметром.
Наименьшее количество вершин (сторон) у многоугольника – три. В этом случае имеем треугольник. Еще одним отдельным видом многоугольника является четырехугольник.
Многоугольник, у которого вершин, называют угольником. На рисунке 213 изображен шестиугольник
Две стороны многоугольника называют соседними, если они имеют общую вершину. Стороны многоугольника, не имеющие общей вершины, называют несоседними. Например, стороны и – соседние, a и – несоседние (рис. 213).
Две вершины многоугольника называют соседними, если они принадлежат одной стороне, а вершины многоугольника, не принадлежащие одной стороне, называют несоседними.
Например, вершины и – соседние, и – несоседние (рис. 213).
Отрезок, соединяющий две несоседние вершины многоугольника, называют диагональю многоугольника. На рисунке 214 изображены диагонали многоугольника выходящие из вершины
Пример №4
Сколько диагоналей имеет угольник?
Решение:
Из каждой вершины угольника выходит диагонали. Всего вершин а каждая диагональ повторяется дважды, например и Поэтому всего диагоналей у угольника будет
Ответ.
Углы, стороны которых содержат соседние стороны многоугольника, называют углами многоугольника. Пятиугольник имеет углы
Если каждый из углов многоугольника меньше развернутого, то такой многоугольник называют выпуклым. Если хотя бы один угол многоугольника больше развернутого, то такой многоугольник называют невыпуклым.
Многоугольник – выпуклый (рис. 215), а многоугольник – невыпуклый (рис. 216), так как угол при вершине больше чем 180°.
Теорема (о сумме углов выпуклого угольника). Сумма углов выпуклого угольника равна
Доказательство:
Выберем во внутренней области многоугольника произвольную точку и соединим ее со всеми вершинами угольника (рис. 217). Получим треугольников, сумма всех углов которых равна Сумма углов с вершиной в точке равна Сумма углов данного угольника равна сумме углов всех треугольников, кроме углов с вершиной в точке то есть:
Углы выпуклого многоугольника называют еще его внутренними углами. Угол, смежный с внутренним углом многоугольника, называют внешним углом многоугольника. На рисунке 218 угол — внешний угол многоугольника – при вершине
Очевидно, что каждый многоугольник имеет по два внешних угла при каждой вершине.
Пример №5
Докажите, что сумма внешних углов выпуклого угольника, взятых по одному при каждой вершине, равна 360°.
Решение:
Сумма внутреннего и внешнего углов при каждой вершине многоугольника равна 180°. Поэтому сумма всех внутренних и внешних углов угольника равна Так как сумма внутренних углов равна то сумма внешних углов равна:
Многоугольник называют вписанным в окружность, если все его вершины лежат на окружности. Окружность при этом называют описанной около многоугольника (рис. 219).
Около многоугольника не всегда можно описать окружность. Если же это возможно, то центром такой окружности является точка пересечения серединных перпендикуляров к сторонам многоугольника (как и в случае треугольника).
Многоугольник называют описанным около окружности, если все его стороны касаются окружности. Окружность при этом называют вписанной в многоугольник (рис. 220).
Не в каждый многоугольник можно вписать окружность. Если же это возможно, то центром такой окружности является точка пересечения биссектрис внутренних углов многоугольника (как и в случае треугольника).
Многоугольник и его свойства
Вы уже знаете, что такое треугольник и четырёхугольник. Более общим является понятие многоугольника. На рисунке 327 вы видите многоугольник ABCDEF. Он состоит из отрезков АВ, ВС, CD, DE, EFy FA, размещённых таким образом, что смежные отрезки не лежат на одной прямой, а несмежные -не имеют общих точек. Отрезки, из которых состоит многоугольник, называются его сторонами, углы, образованные смежными сторонами, – углами, а вершины этих углов – вершинами многоугольника.
В зависимости от количества вершин (углов либо сторон) многоугольник называется треугольником, четырёхугольником, пятиугольником и т. д. Многоугольник с n вершинами называется n-угольником.
Многоугольник обозначают названиями его вершин, например шестиугольник ABCDEF (рис. 327), пятиугольник (рис. 328). ? | На рисунке 329 вы видите многоугольники . В чём их различие?
Ни одна из прямых, проходящих через стороны многоугольника не пересекает другие его стороны. Он лежит по одну сторону от любой из этих прямых. Такой многоугольник называется выпуклым. Многоугольник не является выпуклым.
В дальнейшем мы будем рассматривать лишь выпуклые многоугольники.
Периметром многоугольника называется сумма длин всех его сторон. Его обозначают буквой Р.
Посмотрите на рисунок 330. В шестиугольнике ABCDEF отрезки AC, AD, АЕ соединяют вершину А с несоседними вершинами. Это – диагонали шестиугольника.
Диагональю n-угольника называется отрезок, который соединяет две несоседние его вершины.
Теорема (о сумме углов n-угольника).
Сумма углов n-угольника равна 180° • (n – 2).
Дано: — n-угольник (рис. 331), — диагонали. Доказать:
Доказательство. В заданном n-угольнике диагонали выходят из одной вершины Поэтому они разбивают n-угольник на n — 2 треугольников. Сумма всех углов образованных треугольников равна сумме углов данного n-угольника. Поскольку в каждом треугольнике сумма углов равна 180°, то сумма углов данного n-угольника — 180° • (n — 2).
Угол, смежный с углом многоугольника (рис. 332), называется внешним углом многоугольника.
Многоугольники могут быть вписанными в окружность (рис. 333) или описанными около окружности (рис. 334). Попытайтесь дать определения и сравните их с указанными в учебнике.
Многоугольник все вершины которого лежат на окружности, называется вписанным, в эту окружность, а окружность – описанной около этого многоугольника.
Многоугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность – вписанной в этот многоугольник.
Стороны вписанного многоугольника и его диагонали – это хорды окружности. Каждый его угол является вписанным углом (рис. 335).
Стороны описанного многоугольника являются касательными к окружности, а его диагонали – секущими (рис. 336).
1. Геометрическая фигура называется простой, если её можно разбить на конечное количество треугольников. Многоугольник — это простая фигура (см. рис. 330 и 331), а окружность не является простой фигурой (рис. 337). Даже вписав в окружность многоугольник с очень большим количеством сторон, мы только приблизим его контур к окружности. Поэтому в геометрии длину окружности и площадь круга находят другими методами, чем периметр и площадь многоугольника.
2. У вас может возникнуть вопрос: Всегда ли из равенства сторон многоугольника следует равенство его углов и наоборот? Нет, это свойство лишь треугольника. Вы знаете пример четырёхугольника, в котором все стороны равны, а углы — не равны. Это ромб. В прямоугольнике все углы равны, а вот стороны — нет. Среди многоугольников с большим количеством вершин также можно выделить равносторонние многоугольники, в которых не все углы равны (рис. 338), и равноугольные многоугольники, в которых не все стороны равны
Понятие площади
Многоугольник разбивает плоскость на две области – внутреннюю (рис. 345) и внешнюю (рис. 346).
Многоугольник вместе с его внутренней областью называется плоским многоугольником.
Каждый плоский многоугольник (например, многоугольник F на рис. 347) занимает часть плоскости. Если эту часть плоскости выразить некоторым числом, то получим площадь многоугольника. Далее будем говорить «площадь многоугольника», имея в виду, что многоугольник -плоский. Это относится и к другим плоским фигурам.
Площадь обозначают буквой S. Иногда указывают название фигуры, например , а для нескольких фигур – индексы, например и т. д.
На рисунке 348 фигуры равны, поскольку совмещаются наложением. Понятно, что они имеют равные площади. Можем записать: . Для измерения площади фигуры выбирают единицу измерения. Для этого используют квадрат, со стороной равной единице измерения длины. Площадь квадрата со стороной 1 см – это единица измерения площади в квадратных сантиметрах, со стороной 1 м – в квадратных метрах и т. д.
Единицы измерения площади кратко записываем так: 1 см2, а говорим: «один квадратный сантиметр». Говорить «сантиметр в квадрате» -неправильно!
Некоторые единицы измерения площади имеют специальные названия: ар (квадрат со стороной 10м), гектар (квадрат со стороной 100 м) и т. д.
На рисунке 349 вы видите квадрат ABCD со стороной 2 см. Он состоит из четырёх квадратов площадью 1 см2, поэтому его площадь равна 4 см2.
Можем записать:
Ясно, что площадь любой фигуры выражается положительным числом. Изменится ли площадь квадрата ABCD, если за единицу измерения принять 1 мм2? Нет, площадь квадрата не изменится, но будет выражена иначе:
На рисунке 350 длина стороны квадрата KLMN равна 2,5 см. Он вмещает четыре квадрата площадью 1 см2 и ещё 9 маленьких квадратов площадью 0,25 см2. Поэтому = 4 + 9 • 0,25 = 6,25 (см2).
Ясно, что площадь любой фигуры равна сумме площадей частей, из которых она состоит.
Из предыдущих классов вы знаете, что площадь квадрата со стороной а можно вычислить иначе – по формуле площади квадрата:
Для квадратов ABCD и KLMN получим:
Поскольку 4 см2 < 6,25 см2, то можем записать:
Формулу площади квадрата будем считать основной, поэтому принимаем её без доказательства. Для других фигур формулы площади нужно выводить, исходя из основных свойств площади. Сформулируем их.
Основные свойства площади
- Площадь каждой фигуры больше нуля.
- Равные фигуры имеют равные площади.
- Площадь фигуры равна сумме площадей фигур, из которых она состоит.
- Единицей измерения площади является площадь квадрата со стороной, равной единице длины.
Основные свойства площади подсказывают способ выведения формул площади.
Для того чтобы вывести формулу площади многоугольника, нужно: либо разбить его на части, формулы площадей которых известны, либо дополнить его до такой фигуры, формула площади которой известна.
Теорема (о площади прямоугольника).
Площадь прямоугольника равна произведению его смежных сторон.
Дано: ABCD— прямоугольник (рис. 351),
AB=a,AD=b.
Доказать:
Доказательство. Достроим данный прямоугольник ABCD до квадрата AMKN со стороной о + b (рис. 352). Тогда S
С другой стороны, квадрат AMKNcociom из двух прямоугольников ABCD и OKLC и двух квадратов ВМОС и DNLC. Поэтому, по третьему свойству площади,
Прямоугольники ABCD и OKLC равны, поскольку равны смежные стороны а и b. Поэтому, по второму свойству площади, Квадраты ВМОС и DNLC имеют соответственно стороны b и а, поэтому
Далее получим:
Следствие. Площадь прямоугольного треугольника с катетами а и b равна половине произведения катетов.
Действительно, диагональ АС разбивает прямоугольник ABCD со сторонами а и b (рис. 353) на два равных прямоугольных треугольника ABC и ADC с катетами а и b. Поэтому
Пример №6
Докажите, что отношение площадей подобных прямоугольных треугольников равно квадрату их коэффициента подобия.
Решение:
Пусть один из заданных прямоугольных треугольников (рис. 354) имеет катеты и площадь , другой — катеты и площадь , а коэффициент их подобия равен k.
Докажем, что
Поскольку треугольники подобны, то Найдём площади треугольников и их отношение:
У вас может возникнуть вопрос: Как доказать, что площадь квадрата равна квадрату его стороны? Пусть сторона квадрата ABCD равна а. Возможны два случая: сторону АВ можно разбить на целое число п единичных отрезков (рис. 355); на стороне АВ можно разместить л единичных отрезков, но остаётся ещё отрезок, который короче единичного (рис. 356).
Рассмотрим первый случай (рис. 355). Разобьём сторону АВ на п единичных отрезков (на рисунке их три), тогда о — n • 1 — n. Аналогично разобьём сторону AD. Через точки деления проведём прямые, перпендикулярные АВ и AD. Эти прямые разбивают квадрат ABCD на равных квадратов площадью 1.
Поэтому .
Рассмотрим второй случай (рис. 356). Пусть на отрезке АВ помещается n единичных отрезков и остаётся ещё отрезок длиной меньше 1. Это означает, что отрезок АК из п единичных отрезков меньше отрезка АВ, а отрезок AM из n + 1 единичных отрезков — больше этого отрезка. Получаем неравенство: n < а < n + 1.
Чтобы точнее оценить площадь заданного квадрата, разделим единичный отрезок на т равных частей. Тогда длина каждой части будет равна .
Пусть на отрезке АК их помещается , а на отрезке
Число а будет лежать в пределах а квадрат этого числа — в пределах Площадь квадрата со стороной АК будет равна , а квадрата со стороной AM – Поэтому площадь квадрата ABCD будет лежать в пределах
При увеличении количества точек деления число т станет как угодно большим. Площадь квадрата ABCD и квадрат числа а будут лежать в пределах, разность которых как угодно мала:
А это возможно лишь в случае, если
3. Символ S для обозначения площади фигуры происходит от латинского слова superficils, что означает «поверхность».
Параллелограмм и его площадь
Вы уже знаете формулы площадей трёх фигур -квадрата, прямоугольника и прямоугольного треугольника. Выведем формулу площади параллелограмма.
Теорема (о площади параллелограмма).
Площадь параллелограмма равна произведению его стороны на высоту, проведённую к этой стороне.
Дано: ABCD — параллелограмм (рис. 367), DH— высота, АВ= a, DH= .
Доказать: .
Доказательство. Проведём из вершины С высоту СМ= DH = (рис. 368). Получили трапецию AMCD. Рассмотрим две пары фигур, из которых она состоит: данный параллелограмм ABCD и ∆ВМС, прямоугольник HMCD и ∆AHD. По третьему свойству площади, ∆ВМС= ∆AHD по катету и гипотенузе: СМ= DH как высоты, проведённые к одной стороне АВ параллелограмма, AD — ВС как противоположные стороны параллелограмма. Поэтому, согласно второму свойству площади , . Следовательно, . Для прямоугольника HMCD имеем: Согласно доказанному, площадь данного параллелограмма ABCD равна площади прямоугольника HMCD, поэтому
Пример №7
В параллелограмме стороны равны 8 см и 6,4 см, а высота, проведённая к большей стороне, — 6 см. Найдите высоту параллелограмма, проведённую к меньшей его стороне.
Решение:
Пусть ABCD— данный параллелограмм (рис. 369), в котором ab =6,4 см, ВС — 8 см, DM= 6 см.
Требуется найти высоту DH.
Площадь параллелограмма ABCD можно выразить двумя способами: либо как произведение стороны ВС на высоту DAf, либо как произведение стороны АВ на высоту DH.
Для того чтобы найти длину неизвестной стороны или высоту параллелограмма, выразите площадь двумя способами: через одну из двух смежных сторон параллелограмма и высоту, проведённую к ней, и через другую смежную сторону и соответствующую ей высоту. Составьте и решите уравнение относительно искомой величины.
Можно ли найти площадь ромба по стороне и высоте, проведённой к ней? Можно, поскольку ромб – частный вид параллелограмма.
Вы знаете, как находить площадь прямоугольного треугольника по его катетам. Воспользуемся этим, чтобы вывести ещё одну формулу площади ромба.
Теорема (о площади ромба по его диагоналям).
Площадь ромба равна половине произведения его диагоналей.
Дано: ABCD – ромб (рис. 370), АС и BD — диагонали,
Доказать:
Доказательство. В ромбе ABCD все стороны равны. Его диагонали АС и BD взаимно перпендикулярны и в точке пересечения делятся пополам. Поэтому они разбивают ромб на четыре равных прямоугольных треугольника ABO, СВО, CDO и ADO с катетами
Поскольку площадь ромба равна сумме площадей этих треугольников, то
Следствие. Площадь квадрата равна половине квадрата его диагонали.
Утверждение следует из того, что квадрат – это частный вид ромба и имеет равные диагонали, пусть d. Следовательно,
1. У вас может возникнуть вопрос: Зависит ли формула площади параллелограмма ABCD от расположения высоты DH (рис. 368)? Нет, не зависит. В расположении точки H возможны три случая. Один из них рассмотрен в учебнике. Ещё два случая: точка Н находится либо в вершине В параллелограмма (рис. 371), либо на продолжении его стороны АВ (рис. 372).
Во втором случае (рис. 371) параллелограмм ABCDсостоит из двух равных прямоугольных треугольников ABD u CDB, поэтому
В третьем случае (рис. 372) доказательство аналогично изложенному в учебнике. Проведите это самостоятельно.
2. Для фигур, имеющих равные площади, используют специальное название — равновеликие. Например, параллелограмм ABCD и прямоугольник HMCD на рисунке 372 являются равновеликими. Понятно, что два равных многоугольника всегда равновелики, но не любые два равновеликих многоугольника равны.
Два многоугольника называются равносоставленными, если их можно разбить на одинаковое количество попарно равных многоугольников, в частности треугольников. Таковы, например, параллелограмм ABCD и прямоугольник
HMCD на рисунке 368, поскольку каждый состоит из общей для них трапеции и равных прямоугольных треугольников ADH и ВСМ.
Между равновеликими и равносоставленными фигурами существует такая связь: равносоставленные многоугольники являются равновеликими (из определения о равносоставленных многоугольниках); равновеликие многоугольники являются равносоставленными. Последнее утверждение известно, как «теорема Больяи — Гервина», доказанная в XIX в. Интересно, что Фаркаш Больяи (1775 — 1856, Венгрия), доказавший теорему, был отцом Яноша Больяи (1802 — 1860) — одного из творцов неевклидовой геометрии. Янош Больяи.
Треугольник и его площадь
Вы уже знаете, как вычислить площадь прямоугольного треугольника по его катетам. Возникает вопрос: Как найти площадь любого треугольника по его стороне и высоте, проведённой к этой стороне?
Теорема (о площади треугольника).
Площадь треугольника равна половине произведения его стороны на высоту, проведённую к этой стороне.
Дано: (рис. 380), ‘ АН— высота, ВС= а, АН—
Доказать:
Доказательство. На стороне АВ заданного треугольника ABC построим равный ему треугольник BAD (рис. 381). Образованный четырёхугольник ADBC— параллелограмм, поскольку, по построению, AD = ВС, BD = АС. В нём сторона ВС= а, высота АН=, поэтому . Поскольку параллелограмм состоит из двух равных треугольников ABC и BAD, то площадь треугольника ABC равна половине площади параллелограмма ADBC.
Следовательно:
Пример №8
Докажите, что площадь треугольника равна произведению его полупериметра на радиус вписанной окружности.
Решение:
Пусть ABC — данный треугольник (рис. 382), в котором ВС= а, АС— b, АВ= с, — полу периметр, точка О— центр вписанной окружности, г — радиус вписанной окружности.
Докажем, что
Соединим отрезками вершины треугольника ABC с центром О вписанной в него окружности (рис. 383). Получаем три треугольника — ВОС, АОС и АОВ. В каждом из них радиус вписанной окружности r является высотой, проведённой к стороне, равной соответственно a, b или с.
Поэтому Площадь равна сумме площадей этих треугольников. Следовательно, Для того, чтобы найти площадь треугольника (четырехугольника) можно воспользоваться способом сложения площадей его частей. При этом иногда нужны дополнительные построения, чтобы образовались вспомогательные треугольники, площади которых можно найти по условию задачи.
1. Способы вычисления площади треугольника (а также прямоугольника и трапеции) были известны ещё в Древнем Египте. Сведения об этом дошли до нас на папирусах. Среди них наиболее известные — папирус Ринда (около 1800 г. до н. э.), содержащий 84 задачи с решениями (страница из этого папируса на рис. 384), и так называемый московский папирус (около 1600 г. до н. э.), он содержит 25 задач с решениями. Чтобы найти площадь треугольника, древние египтяне основание треугольника делили пополам и умножали на высоту. А для определения площади равнобедренного треугольника использовали полупроизведение его боковых сторон.
2. Геометрические расчёты по точным формулам проводились и в древнем Вавилоне. Сведения сохранились на клинописных табличках (образец вы видите на рис. 385). Дошедшие до нас тексты свидетельствуют, что вавилоняне знали и использовали в практических задачах пропорциональность параллельных отрезков. Например, они умели вычислять длину отрезков AW, СМ и ВМ (рис. 386) в треугольнике ABC по его стороне АС= 30, разности S, — S2 = 42 площадей трапеции и треугольника, на которые разбивается данный треугольник параллельной прямой MN, и разности ВМ — СМ = 20. Сейчас для решения этой задачи нам пришлось бы составлять систему уравнений.
Трапеция и её площадь
Вы знаете, чтобы вывести формулы площадей прямоугольника, параллелограмма или треугольника, надо составить из этих фигур такие, площади которых умеете находить. Воспользуемся этим способом и выведем формулу площади трапеции.
Теорема (о площади трапеции).
Площадь трапеции равна произведению полусуммы её оснований на высоту.
Дано: ABCD— трапеция (рис. 397),
AB и CD – основания, СН— высота, АВ=о, CD=b, CH=h. а + b
Доказать:
Доказательство. Проведём в трапеции диагональ АС (рис. 398). Она разбивает трапецию на два треугольника ABC и ADC. Высота h трапеции является высотой треугольника ABC, проведённой к стороне АВ = а, и равна высоте треугольника ADC, проведённой к стороне CD = b. Площадь трапеции равна сумме площадей этих треугольников, поэтому
Пример №9
Диагонали АС и BD трапеции ABCD пересекаются в точке О (рис. 399). Докажите, что треугольники AOD и ВОС имеют равные площади.
Решение:
Рассмотрим треугольники ABD и ABC. В них сторона АВ— общая, а высоты, проведённые к этой стороне, равны высоте трапеции. Поэтому Треугольник ABD состоит из треугольников АОВ и AOD, а треугольник АВС-из треугольников AOBw ВОС. Отсюда получим:
Следовательно, площади треугольников AOD и ВОС равны как разности равных площадей.
Для того чтобы установить, что неравные фигуры имеют равные площади, нужно доказать, что площади этих фигур равны либо сумме равных площадей, либо разности равных площадей.
1. У вас может возникнуть вопрос: Существует ли трапеция, средняя линия которой делит её площадь пополам?
Существование фигуры с заданными свойствами можно доказать, если привести пример такой фигуры. Однако не всегда этот путь — самый простой. История свидетельствует о том, что иногда на поиски примера, подтверждающего существование некоторого математического объекта, учёные затрачивали многие годы. Чтобы упростить поиск, проводят предварительные аналитические расчёты. Именно это мы и сделаем, чтобы ответить на поставленный вопрос. Пусть трапеция ABCD (рис. 400) имеет основания а и b и высоту h. Средняя линия MN разбивает её на две трапеции с равными высотами (докажите этo самостоятельно). Обозначим площади этих трапеций и выразим их через основания данной трапеции и её высоту:
Найдём отношение площадей После сокращений получим:
Равенство площадей возможно только в случае, если 3b + а = За + b, то есть при а= b. А такой трапеции не существует.
Интересно, что отрезок, соединяющий середины оснований трапеции (иногда его называют второй средней линией трапеции), делит площадь трапеции пополам. Докажите это самостоятельно, используя рисунок 401.
2. Изучая четырёхугольники, вы узнали о дельтоиде (рис. 402). Этот четырёхугольник, как и ромб, имеет взаимно перпендикулярные диагонали. Существуют трапеции со взаимно перпендикулярными диагоналями (рис. 403), а также произвольные четырёхугольники с аналогичным свойством (рис. 404). И ромб, и дельтоид, и указанная трапеция являются частными видами четырёхугольников со взаимно перпендикулярными диагоналями.
Докажите самостоятельно, что площадь четырехугольника со взаимно перпендикулярными диагоналями равна половине произведения этих диагоналей. Эта формула справедлива и для ромба, и для дельтоида, и для трапеции.
- Площадь многоугольника
- Правильные многоугольники
- Вписанные и описанные многоугольники
- Площадь прямоугольника
- Площади фигур в геометрии
- Площади поверхностей геометрических тел
- Вычисление площадей плоских фигур
- Преобразование фигур в геометрии
Содержание
- Выпуклый многоугольник
- Как объяснить понятие выпуклых многоугольников и загадочные крокодильчики
- Выпуклый многоугольник
- Содержание
- Определения
- Примеры
- Вариации и обобщения
- См. также
- Полезное
- Смотреть что такое «Выпуклый многоугольник» в других словарях:
- Многоугольник
- Виды многоугольников
- Обозначение многоугольника
- Соседние вершины многоугольника
- Смежные стороны многоугольника
- Простой многоугольник. Самопересекающийся многоугольник
- Выпуклый многоугольник
- Правильный многоугольник
- Звездчатый многоугольник
- Периметр многоугольника
- Угол многоугольника
- Внешний угол многоугольника
- Диагональ многоугольника. Количество диагоналей
- Сумма углов выпуклого многоугольника
- Угол правильного многоугольника
Выпуклый многоугольник
Что такое выпуклый многоугольник? В чём отличие выпуклого многоугольника от многоугольника, который не является выпуклым?
Выпуклый многоугольник — это многоугольник, лежащий в одной полуплоскости от каждой прямой, содержащей его сторону.
То есть ни одна из прямых, проходящих через две соседние вершины выпуклого многоугольника, не разрезает этот многоугольник на две части.
1) ABCDEF — выпуклый шестиугольник, так как он лежит в одной полуплоскости относительно каждой из прямых AB, BC, CD, DE и EF.
2) MNKFEL — не выпуклый шестиугольник,
Он не лежит в одной полуплоскости относительно прямых KF и FE.
Не выпуклый многоугольник можно разбить на конечное число выпуклых многоугольников. Поэтому в курсе геометрии средней школы изучают только выпуклые многоугольники.
Важнейшие виды выпуклых многоугольников
- Треугольники (в частности, прямоугольные, равнобедренные, равносторонние (правильные))
- Параллелограммы (в частности, прямоугольники, ромбы, квадраты)
- Трапеции (в частности, прямоугольные и равнобедренные)
- Правильные многоугольники.
Источник
Как объяснить понятие выпуклых многоугольников и загадочные крокодильчики
Отличить выпуклый многоугольник от не выпуклого несложно. У выпуклого не должно быть углов «внутрь». Как угол FJI на рисунке.
Но при решении задач, нельзя опираться на рисунок. Поэтому нужно определение. В школьных учебниках чаще всего используется такое:
Выпуклый многоугольник — это многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две соседние вершины.
То есть, если сторону многоугольника продлить до прямой, то вся фигура должна оказаться по одну сторону от неё. Это условие должно выполняться для каждой стороны.
Таким определением не просто пользоваться. Поэтому я даю детям следующее:
Выпуклый многоугольник — это многоугольник, все диагонали которого лежат внутри многоугольника.
На мой взгляд с его помощью, детям легче увидеть разницу в фигурах.
Недавно объясняя ученику эту тему, столкнулась с тем, что ребенок уловил разницу, но путал определения. То есть он понимал, чем отличается один от другого, но не мог правильно запомнить название. Пришлось прибегнуть к хитрости. Эмоционально окрашенная информация запоминается лучше . Поэтому я рассказала, что не выпуклый многоугольник это комната. Внутри неё находится человек, который наталкивается на угол. После этого человечку становится не хорошо. Ребенок посмеялся и перестал путать названия.
Через несколько часов я вспомнила историю про крокодильчиков, которую мне рассказал коллега.
Мальчик, третий класс. Нужно было вспомнить знаки сравнения. Бились минут пятнадцать. Ребенок правильно сравнивал числа, но какой знак нужно поставить не мог вспомнить. Отчаявшись, учитель написал знаки. И услышал радостное восклицание: «Это не сравнение. Это крокодильчики!». Оказалось, чтобы объяснить детям знаки сравнения, школьный учитель сравнил их с крокодильчиком. Ему нравится есть большие числа, поэтому он поворачивает свою пасть к тому числу, которое больше. К сожалению, кроме истории про крокодильчика, в голове этого ребенка больше ничего не осталось. Такие приёмы нужно использовать с осторожностью. Велика вероятность, что дети запомнят не то, что от них хотят.
Интересно, что расскажет мой ученик про выпуклые многоугольники на следующем занятии.
А у Вас были похожие истории? Делитесь в комментариях!
Источник
Выпуклый многоугольник
Выпуклым многоугольником называется многоугольник, обладающий тем свойством, что все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Содержание
Определения
Существует множество эквивалентных определений:
- многоугольник будет выпуклым, если для любых двух точек внутри него соединяющий их отрезок полностью лежит в нём.
- многоугольник без самопересечений такой, что каждый внутренний угол которого не более 180°;
- многоугольник такой, что все его диагонали полностью лежат внутри него;
- выпуклая оболочка конечного числа точек на плоскости;
- ограниченное множество являющееся пересечением конечного числа замкнутых полуплоскостей.
Примеры
Вариации и обобщения
- Выпуклое множество
- Аналогом выпуклого многоугольника в трёхмерном евклидовом пространстве является выпуклый многогранник.
См. также
Wikimedia Foundation . 2010 .
Полезное
Смотреть что такое «Выпуклый многоугольник» в других словарях:
выпуклый многоугольник — ▲ многоугольник ↑ выпуклый выпуклый многоугольник каждый внутренний угол меньше двух прямых; расположен в одной полуплоскости относительно любой прямой, содержащей его сторону. равносторонний. равноугольный многоугольник. изогон … Идеографический словарь русского языка
ВЫПУКЛЫЙ МНОГОУГОЛЬНИК — плоское выпуклое множество, граница к рого ломаная линия, состоящая из конечного числа прямолинейных отрезков. Иногда В. м. наз. только его границу. В. м. есть пересечение конечного числа (замкнутых) полуплоскостей. М … Математическая энциклопедия
Многоугольник — У этого термина существуют и другие значения, см. Многоугольник (значения). Примеры многоугольников Многоугольник это геометрическая фигура, обычно оп … Википедия
Многоугольник — замкнутая ломаная линия. Подробнее, М. линия, которая получается, если взять n любых точек A1, A2, . An и соединить прямолинейным отрезком каждую из них с последующей, а последнюю с первой (см. рис. 1, а). Точки A1, A2, . An… … Большая советская энциклопедия
МНОГОУГОЛЬНИК — 1) Замкнутая ломаная линия, именно: если различные точки, никакие последовательные три из к рых не лежат на одной прямой, то совокупность отрезков наз. многоугольником (см. рис. 1). М. могут быть пространственными или плоскими (ниже… … Математическая энциклопедия
Правильный многоугольник — выпуклый Многоугольник с равными сторонами и углами … Большая советская энциклопедия
Правильный многоугольник — Правильный семиугольник Правильный многоугольник это выпуклый многоугольник, у которого все стороны и углы равны . Определение правильного многоугольника может зависеть от определения … Википедия
Звёздчатый многоугольник — Звёздчатый многоугольник многоугольник, вершины которого расположены как у некоторого правильного многоугольника и стороны которого пересекаются между собой. Существует множество правильных звёздчатых многоугольников (или просто звёзд),… … Википедия
ПЛАНИГОН — выпуклый многоугольник правильного разбиения плоскости на равные многоугольники, т. е. такого разбиения, что существует группа движений плоскости, совмещающая разбиение с собой, к рая действует транзитивно на совокупности многоугольников… … Математическая энциклопедия
Вписанная окружность — Окружность, вписанная в многоугольник ABCDE Окружность называется вписанной в угол, если она лежит внутри угла и касается его сторон. Центр окружности, вписанной в угол, лежит на биссектри … Википедия
Источник
Многоугольник
Определение 1. Многоугольник − замкнутая ломаная линия.
Объединение многоугольника и ограниченной им части плоскости также называют многоугольником. Поэтому представим другое определение многоугольника:
Определение 2. Многоугольник − это геометрическая фигура, которая является частю плоскости, ограниченная замкнутой ломаной.
Вершины ломаной называются вершинами многоугольника. Звенья ломаной называются сторонами многоугольника.
Любой многоугольник разделяет плоскость на две части, одна из которых называется внутренней областью многоугольника, а другая внешней областью многоугольника.
Виды многоугольников
Многоугольник с тремя вершинами называется треугольником, с четыремя вершинами − четырехугольником, с пяти вершинами − пятиугольником, и т.д. Многоугольник с ( small n ) вершинами называется ( small n- )угольником.
На рисунке 1 представлены различные виды многоугольников.
Обозначение многоугольника
Обозначают многоугольник буквами, стоящих при его вершинах. Называют многоугольник чередовав буквы при его вершинах по часовой стрелке или против часовой стрелки. Например, многоугольник на рисунке 2 называют ( small A_1A_2A_3A_4A_5A_6 ) или ( small A_6A_5A_4A_3A_2A_1 ).
Соседние вершины многоугольника
Вершины многоугольника называются соседними, если они являются концами одной из его сторон.
На рисунке 2 вершины ( small A_2 ) и ( small A_3 ) являются соседними, так как они являются концами стороны ( small A_2A_3. )
Смежные стороны многоугольника
Стороны многоугольника называются смежными, если они имеют общую вершину.
На рисунке 2 стороны ( small A_4A_5 ) и ( small A_5A_6 ) являются смежными, так как они имеют общую вершину ( small A_5. )
Простой многоугольник. Самопересекающийся многоугольник
Многоугольник называется простым, если его несмежные стороны не имеют общих точек (внутренних или концевых).
На рисунке 3 изображен простой многоугольник так как стороны многоугольника не имеют самопересечений. А на рисунке 4 многоугольник не является простым, так как стороны ( small A_1A_4 ) и ( small A_2A_3 ) пересекаются. Такой многоугольник называется самопересекающийся многоугольник.
Выпуклый многоугольник
Многоугольник называется выпуклым, если она лежит по одну сторону от прямой, проходящей через любую его сторону.
На рисунке 5 многоугольник лежит по одну сторону от прямых ( small m, n, l, p, q, r) проходящих через стороны многоугольника.
На рисунке 6 прямая ( small m) делит многоугольник на две части, т.е. многоугольник не лежит по одну сторону от прямой ( small m). Следовательно многоугольник не является выпуклым.
Правильный многоугольник
Простой многоугольник называется правильным, если все его стороны равны и все углы равны. Например равносторонний треугольник является правильным многоугольником, поскольку все его стороны равны, и все его углы равны 60°. Квадрат является правильным многоугольником, так как все его стороны равны и все его углы равны 90°.
На рисунке 7 изображен правильный многоугольник (пятиугольник), так как у данного многоугольника все стороны равны и все углы равны. Многоугольник (ромб) на на рисунке 8 не является правильным, так как все стороны многоугольника равны, но все углы многоугольника не равны друг другу. Прямоугольник также не является правильным многоугольником, так как несмотря на то, что все углы прямоугольника равны, но все четыре стороны прямоугольника не равны друг другу.
Звездчатый многоугольник
Самопересекающийся многоугольник, все стороны которого равны и все углы равны, называется звездчатым или звездчато-правильным.
На рисунке 9 представлен звездчатый пятиугольник поскольку все углы ( small A_1, A_2, A_3, A_4, A_5 ) равны и равны все стороны: ( small A_1A_2=A_2A_3=A_3A_4=A_4A_5=A_5A_1. )
Периметр многоугольника
Сумма всех сторон многоугольника называется периметром многоугольника. Для многоугольника ( small A_1A_2. A_A_n ) периметр вычисляется из формулы:
Угол многоугольника
Углом (внутренним углом) многоугольника при данной вершине называется угол между двумя сторонами многоугольника, сходящимися к этой вершине. Если многоугольник выпуклый, то все углы многоугольника меньше 180°. Если же многоугольник невыпуклый, то он имеет внутренний угол больше 180° (угол ( small A_3 ) на рисунке 2).
Внешний угол многоугольника
Внешним углом многоугольника при данной вершине называется угол смежный внутреннему углу многоугольника при данной вершине.
На рисунке 10 угол 1 является внешним углом данного многоугольника при вершине ( small E. )
Диагональ многоугольника. Количество диагоналей
Диагоналями называют отрезки, соединяющие две несоседние вершины многоугольника.
Выведем форулу вычисления количества диагоналей многоугольника. Пусть задан ( small n )-угольник. Выберем одну вершину многоугольника и проведем мысленно все отрезки, соединяющие эту вершину с остальными вершинами. Получим ( small n-1 ) отрезков. Но поскольку две вершины для выбранной вершины являются соседними, а по определнию диагональ − это отрезок соединяющий несоседние вершины, то из ( small n-1 ) вычтем 2. Получим ( small n-3 ). Всего ( small n ) вершин. Следовательно количество вычисленных диагоналей будет ( small n(n-3). ) Учитывая, что каждый диагональ − это отрезок соединяющий две вершины, то получится, что мы вычислили каждый диагональ дважды. Поэтому полученное число нужно делить на два. Получим количество диагоналей ( small n- )мерного многоугольника:
.
Сумма углов выпуклого многоугольника
Выведем формулу вычисления суммы углов выпуклого многоугольника. Для этого проведем из вершины ( small A_1 ) все диагноали многоугольника ( small A_1A_2. A_A_n ) (Рис.11):
Количество диагоналей, проведенной из одной вершиы, как выяснили из предыдующего параграфа равно ( small n-3 ). Следовательно, эти диагонали разделяют многоугольник на ( small n-3+1=n-2 ) треугольников. Поскольку сумма углов треугольника равна 180°, то получим, что сумма углов выпуклого многоугольника равна: ( small 180°(n-2). )
где ( small n ) −количество сторон (вершин) выпуклого многоугольника.
Угол правильного многоугольника
Поскольку у правильного многоугольника все углы равны, то используя формулу (1) получим угол правильного многоугольника:
где ( small n ) −количество сторон (вершин) правильного многоугольника.
Источник
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Четырехугольники
- Выпуклый многоугольник
Выпуклый многоугольник – это многоугольник, который лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины. На рис.1 многоугольник М1 является выпуклым многоугольником, а многоугольник М2 – невыпуклым.
Сумма углов выпуклого многоугольника
Рассмотрим выпуклый n-угольник (рис.2,). АnА1А2, А1А2А3, …, Аn-1АnА1 – углы этого многоугольника. Найдем их сумму.
Соединим вершину А1 диагоналями с другими вершинами (рис.2, б). В итоге получим n-2 треугольника, сумма углов которых равна сумме углов n-угольника. Сумма углов каждого треугольника равна 1800, поэтому сумма углов многоугольника А1А2…Аn равна (n-2)1800.
Сумма углов выпуклого n-угольника равна (n – 2)1800.
Примечание: Сумма углов невыпуклого n-угольника также равна (n – 2)1800.
Внешний угол выпуклого многоугольника
Внешний угол выпуклого многоугольника – угол, смежный с углом многоугольника. На рис.3 угол OAB внешний угол многоугольника АВСDE смежный с углом ВАЕ.
Если при каждой вершине выпуклого многоугольника А1А2…Аn взять по одному внешнему углу, то сумма этих внешних углов окажется равной
1800 – А1 + 1800 – А2 + … + 1800 – Аn = n1800 – (A1 + A2 + … + An) = n1800 – (n-2)1800 = n1800 – n1800 + 21800 = 3600.
Сумма внешних углов выпуклого многоугольника равна 3600.
Советуем посмотреть:
Многоугольник
Четырехугольник
Параллелограмм
Признаки параллелограмма
Трапеция
Прямоугольник
Ромб и квадрат
Осевая и центральная симметрии
Четырехугольники
Правило встречается в следующих упражнениях:
7 класс
Задание 363,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 365,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 430,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 15,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 517,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 814,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 860,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1080,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1081,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1092,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник