Как вычислить высоту цилиндра
У цилиндра имеется высота, которая перпендикулярна двум его основаниям. Способ определения ее длины зависит от набора исходных данных. Таковыми могут быть, в частности, диаметр, площадь, диагональ сечения.
Инструкция
Для любых фигур существует такой термин, как высота. Высотой обычно называется измеряемая величина какой -либо фигуры в вертикальном положении. У цилиндра высота -это линия, перпендикулярная двум его параллельным основаниям. Также у него есть образующая. Образующая цилиндра -это линия, вращением которой получается цилиндр. Она, в отличие от образующей других фигур, например конуса, совпадает с высотой.
Рассмотрим формулу, с помощью которой можно найти высоту:
V=πR^2*H, где R – радиус основания цилиндра, H – искомая высота.
Если вместо радиуса дан диаметр, данная формула видоизменяется следующим образом:
V=πR^2*H=1/4πD^2*H
Соответственно, высота цилиндра равна:
H=V/πR^2=4V/D^2
Также высоту можно определить, исходя из диаметра и площади цилиндра. Существует площадь боковой и площадь полной поверхности цилиндра. Часть поверхности цилиндра, ограниченная цилиндрической поверхностью, называют боковой поверхностью цилиндра. Площадь полной поверхности цилиндра включает в себя и площадь его оснований.
Площадь боковой поверхности цилиндра вычисляется по следующей формуле:
S=2πRH
Преобразовав данное выражение, найдите высоту:
H=S/2πR
Если дана площадь полной поверхности цилиндра, вычисляйте высоту несколько иным способом. Площадь полной поверхности цилиндра равна:
S=2πR(H+R)
Вначале преобразуйте данную формулу как показано ниже:
S=2πRH+2πR
Затем найдите высоту:
H=S-2πR/2πR
Через цилиндр можно провести прямоугольное сечение. Ширина этого сечения будет совпадать с диаметрами оснований, а длина – с образующими фигуры, которые равны высоте. Если провести через это сечение диагональ, то можно легко заметить, что образуется прямоугольный треугольник. В данном случае диагональ является гипотенузой треугольника, катет -диаметром, а второй катет- высотой и образующей цилиндра. Тогда высоту можно найти по теореме Пифагора:
b^2 =sqrt (c^2 -a^2)
Источники:
- Как вычислить объем цилиндра?
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Через диаметр цилиндра можно рассчитать его радиус и периметр основания цилиндра. Радиус будет равен половине диаметра, а периметр – его произведению на число π.
r=D/2
P=πD
Зная диаметр и высоту цилиндра, можно узнать площадь, объем, диагональ цилиндра и остальные параметры. Площадь боковой поверхности цилиндра представляет собой площадь прямоугольника, сторонами которого являются периметр основания цилиндра и его высота. Чтобы затем найти площадь полной поверхности цилиндра через диаметр и высоту, нужно к площади боковой поверхности добавить площадь верхнего и нижнего оснований, каждое из которых равно произведению числа π на четверть квадрата диаметра.
S_(б.п.)=hP=πDh
S_(п.п.)=S_(б.п.)+2S_(осн.)=πDh+(πD^2)/2=πD/2(2h+D)
P=πD
Объем цилиндра представляет собой площадь его основания, умноженную на высоту. Чтобы найти объем цилиндра через диаметр и высоту, нужно умножить квадрат диаметра на четверть числа π и на высоту.
V=(πD^2 h)/4
P=πD
Диагональ цилиндра находится из прямоугольного треугольника, в котором она является гипотенузой, а катеты представлены высотой и диаметром цилиндра. По теореме Пифагора диагональ цилиндра через высоту и диаметр цилиндра равна квадратному корню из суммы их квадратов. (рис. 25.1)
d=√(h^2+D^2 )
P=πD
Чтобы найти радиус сферы вписанной в цилиндр, если его диаметр равен высоте, нужно разделить диаметр цилиндра либо высоту на два, так как радиус вписанной сферы равен радиусу цилиндра. (рис.25.2)
r_1=h/2=D/2
P=πD
Радиус сферы, описанной вокруг цилиндра, при соблюдении тех же условий (равенство диаметра цилиндра и его высоты) равен половине диагонали цилиндра.(рис.25.3)
R=d/2=√(h^2+D^2 )/2
Онлайн калькулятор для цилиндра позволяет по известным данным вычислить:
- объем цилиндра,
- площадь основания, площадь боковой поверхности и площадь полной поверхности цилиндра,
- элементы: радиус, диаметр и высоту.
Калькулятор для цилиндра: комментарий
Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью (называемой боковой поверхностью цилиндра) и не более чем двумя поверхностями (основаниями цилиндра).
Обозначения для цилиндра:
R – радиус, D – диаметр,
V – объем,
Sо – площадь основания, Sб – площадь боковой поверхности, S – площадь полной поверхности,
h – высота прямого кругового цилиндра (h1 и h2 — минимальная и максимальная высота)
π – число Пи которое всегда примерно равно 3,14.
Прямой круговой цилиндр
Круговым называется цилиндр, если его направляющая является окружностью. Прямым называется цилиндр, если его образующая перпендикулярна основаниям.
Формулы для прямого кругового цилиндра:
Найти объем цилиндра, если известны:
- радиус и высота цилиндра: V=πR2h
- диаметр и высота цилиндра: V=πD2/4h
- площадь и высота цилиндра: V=Sоh
Площадь(Sб) боковой поверхности прямого кругового цилиндра
Так как боковая поверхность представляет собой прямоугольник, то площадь боковой поверхности цилиндра определяется по формуле: Sб=2πR⋅h
Площадь(Sо) основания цилиндра
Основание цилиндра —круг, поэтому площадь одного основания находится по формуле площади круга: Sо=πR2.
Площадь(S) полной поверхности прямого кругового цилиндра
Площадь полной поверхности цилиндра определяется по формуле: S=2πRh+2πR2=2πR(h+R)
Формулы нахождения радиуса и диаметра по:
- высоте и объему: R=√(V/πh), D=2*√(V/πh)
- площади боковой поверхности и высоте: R=Sб/2πh, D=2*Sб/2πh
- площади основания и высоте: R=√(Sо/π), R=2*√(Sо/π)
Формулы нахождения высоты по:
- радиусу и объему: h=V/πR2
- площади боковой поверхности и радиусу: h=Sб/2πR
- площади полной поверхности и радиусу: h=S/2πR-R
Скошенный цилиндр
Прямой круговой цилиндр со скошенным основанием (скошенный цилиндр) определяется радиусом основания R, минимальной высотой h1 и максимальной высотой h2.
Формулы для скошенного цилиндра:
- Объем скошенного цилиндра: V=πR2(h1+h2)2
- Площадь(Sб) боковой поверхности скошенного цилиндра: Sб=πR(h1+h2)
- Площадь(Sо) оснований скошенного цилиндра: Sо=πR2+πR √(R2+((h1−h2)/2)2)
- Площадь(S) полной поверхности скошенного цилиндра
S=Sб+Sо= πR(h1+h2)+ πR2+πR √ (R2+((h1−h2)/2)2) = πR[(h1+h2)+ R+√ (R2+((h1−h2)/2)2) ]
Список всех онлайн-конвертеров на странице «Калькуляторы«.
Как зная диаметр цилиндра и его объём, вычислить его высоту?
Артем Слуцкий
Знаток
(473),
закрыт
10 лет назад
Как зная диаметр цилиндра и его объём, вычислить его высоту?
Лучший ответ
Naumenko
Высший разум
(856085)
11 лет назад
вычислить площадь основания по формуле площади круга:
ПД4, где П=3.14
и разделить объем на площадь.
делиться всегда хорошо мб…
Остальные ответы
Slayer
Профи
(870)
11 лет назад
объём/(пи*радиус2)
радиус=диаметр/2
Александр
Гуру
(2649)
11 лет назад
http://ru.wikipedia.org/wiki/Цилиндр
внизу формула самая нижняя. . по ней посчитайте
Ann
Ученик
(243)
11 лет назад
объем цилиндра равен произведению основания на высоту, из этого следует, что высота равна объему, деленному на число пи, умноженное на квадрат радиуса (радиус- половина диаметра) и умноженное на высоту.
Похожие вопросы
Высоту цилиндра найти не так-то просто, как может показаться. Дело в том, что она не выражается через основание цилиндра, так что круглешок можно оставить в покое. А выражается она через сторону цилиндра. Если цилиндр прямой, то высота цилиндра будет равна стороне цилиндра. Если он косой, то высота будет h=a*cosб, где а-сторона, б-острый угол между стороной и высотой. автор вопроса выбрал этот ответ лучшим chela 10 лет назад Можно найти высоту цилиндра по объему и площади основания h=V/S(основания) Можно найти высоту цилиндра по площади боковой поверхности и радиусе основания h=S(боковой поверхности)/2пиR Эти формулы можно применять для нахождения высоты прямых цилиндров. vksvovko 6 лет назад Обычно цилиндр прямой – тут всё просто, его высота равна его стороне. но если он наклонный, то нужно найти угол наклона и взять косинус этого угла и перемножить на его сторону. либо синус на его диаметр. Знаете ответ? |