Как найти высоту египетского треугольника

Ответы Mail.ru


Домашние задания


Русский язык
Литература
Математика
Алгебра
Геометрия
Иностранные языки
Химия
Физика
Биология
История
Обществознание
География
Информатика
Экономика

Другие предметы

Вопросы – лидеры.

frenky

Ответьте на вопросы по микробиологии.


1 ставка

frenky

Срочно! Не могу разобраться с ответом


1 ставка

Лидеры категории

Лена-пена


Лена-пена

Искусственный Интеллект

М.И.


М.И.

Искусственный Интеллект

Y.Nine


Y.Nine

Искусственный Интеллект

king71alex
Куклин Андрей
Gentleman
Dmitriy
•••

Как найти высоту, опущенную из прямого угла, в египетском треугольнике?

Алла Колесникова



Ученик

(115),
закрыт



7 лет назад

Лучший ответ

Михаил Зверев

Просветленный

(38577)


12 лет назад

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.
Высота h=a*b/c=?

Остальные ответы

Юрий Агалецкий

Ученик

(129)


4 года назад

2.4

Похожие вопросы

Планиметрия. Страница 5

1 2 3 4 5 6 7 8 9 10 11 12

1.Теорема Пифагора

Теорема: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Доказательство.

1. Разделим каждую сторону большого квадрата на два отрезка x и y точкой. И проведем через эти точки отрезки.

2. Тогда треугольники 1,2,3,4 равны по двум сторонам и углу между ними.

3. Т.к. сумма углов α + β = 90°, то фигура внутри большого квадрата тоже квадрат. (Все стороны = с и все углы = 90° )

4. Площадь большого квадрата равна сумме площадей малого квадрата и 4-х треугольников. (Рис.1)

Рис.1 Теорема Пифагора.

2.Египетский треугольник

Пусть дан треугольник со сторонами АВ = a, ВС = b, АС = c. При условии, что а 2 + b 2 = с 2 . Доказать, что угол, лежащий против стороны с, прямой.

Допустим, что треугольник АВС не прямоугольный. Тогда можно опустить высоту на сторону АС – h (Рис.2). Из двух прямоугольных треугольников ABD и DBC составим следующую систему уравнений по теореме Пифагора. Обозначим AD как х, BD – высота h.

Но по условию задачи а 2 + b 2 = с 2 . Следовательно х = 0 и сторона а = h. Т.е. угол между сторонами АВ и АС – прямой.

В древнем Египте данное соотношение применялось очень широко. Например для построения прямого угла между сторонами при строительстве зданий и сооружений. Или при измерении прямых углов пахотных земель. Так как зная соотношение, можно легко построить прямой угол. По этой причине треугольник со сторонами 3,4,5 ед. называют Египетским треугольником.

Рис.2 Египетский треугольник.

3.Соотношение между углами и сторонами в прямоугольном треугольнике

Пусть дан прямоугольный треугольник АВС. Проведем прямую ЕF параллельную стороне АВ (Рис.3). Тогда по теореме о пропорциональных отрезках:

Т.е. соs α не зависит от размеров прямоугольного треугольника, а зависит только от величины угла. Тогда по теореме Пифагора sin α также зависит только от величины угла. А следовательно tg α и ctg α.

Отсюда можно сделать следующие выводы:

AB = BC sin α
AC = BC cos α
AB = AC tg α
AC = AB ctg α

Рис.3 Соотношение между углами и сторонами в прямоугольном треугольнике.

4.Основные тригонометрические тождества

Пусть дан прямоугольный треугольник со сторонами a,b,c. (Рис.4)

Рис.4 Основные тригонометрические тождества.

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика, программирование.

2000 руб / 120 мин – подготовка к ЕГЭ и ГИА для школьников. 3000 руб / 120 мин – индивидуально (базовый уровень). 2000 руб / 120 мин – студенты.

Тел. 8 916 461-50-69, email: alexey-it@ya.ru

5.Пример 1

У треугольника одна сторона равна 1 м, а прилегающие к ней углы 30° и 45°. Найдите другие стороны треугольника. (рис.5)

Так как один из углов 30 градусов, то катет, лежащий против этого угла равен половине гипотенузы, т.е. h = b/2. А следовательно КС = h, т.к. угол β = 45 градусов.

Рис.5 Задача. У треугольника одна сторона равна 1 м.

Пример 2

Найдите высоту равнобокой трапеции, если ее основания равны 6 м и 12 м, а боковая сторона равна 5 м. (Рис.6)

Решение:

Пусть ABCD данная трапеция. ВЕ перпендикуляр, опущенный на основание AD. Тогда АЕ = (12 – 6)/ 2 = 3 м. Так как АЕ = FD.

По теореме Пифагора:

АВ 2 = AE 2 + BE 2

Рис.6 Задача. Найдите высоту равнобокой трапеции.

Пример 3

Докажите, что расстояние между двумя точками на сторонах треугольника не больше большей из его сторон. (Рис.7)

Доказательство:

Пусть ABC данный треугольник. АС – его большая сторона. Проведем отрезок DE параллельно стороне АС. Необходимо доказать, что отрезок DE меньше стороны АС. Если мы докажем, что отрезок DE меньше большей стороны АС, то при взятии двух других точек треугольника на других его меньших сторонах, отрезок между этими точками будет также меньше стороны АС.

Опустим перпендикуляр BF на большую сторону АС. Составим следующее соотношение:

АС = АВ сos α + ВС cos β

Тогда отрезок DE будет равен:

DE = DB сos α + ВE cos β

Так как DB Рис.7 Задача. Докажите, что расстояние между двумя точками.

Пример 4

Докажите, что прямая, отстоящая от центра окружности на расстояние меньше радиуса, пересекает окружность в двух точках. (Рис.8)

Доказательство:

Пусть дана окружность с центром в точке О. И прямая а, отстоящая от центра окружности точки О, на расстояние ОЕ = h h, то прямая а будет иметь две точки пересечения. Так как

h = ОА*cos α = ОВ*cos (-α)

Радиусы ОА и ОВ можно рассматривать как две наклонные, отложенные в двух полуплоскостях, в треугольнике АОВ перпендикуляра ОЕ.

Рис.8 Задача. Докажите, что прямая, отстоящая от центра окружности.

Пример 5

Даны три положительных числа a,b,c. Докажите, что если каждое из этих чисел меньше суммы двух других, то существует треугольник со сторонами a,b,c. (Рис.9)

Доказательство:

Пусть даны три точки. Если эти три точки лежат на одной прямой, например А,Е,С, то расстояния между этими точками связаны соотношением: АС = АЕ + ЕС

Отсюда видно, что каждое из трех расстояний не больше двух других. Т.е. расстояние между точками А и С не больше двух расстояний АЕ и ЕС.

Если взять три точки, не лежащих на одной прямой, например А,В,С и опустить перпендикуляр ВЕ, то АС AB + BC (Рис.9 б). Тогда концы отрезков АВ и СВ не смогут совпасть в точке В. Так как, если даже отрезки такой же длины отложить на отрезке АС, то получится, что

Таким образом, если числа a,b и с принять за длины отрезков, то концы отрезков АВ и СВ не смогут совпасть в одной точке В. Между ними образуется некое расстояние ВВ1 и построить треугольник не получится.

Рис.9 Задача. Даны три положительных числа.

Египетский треугольник что это такое?

Почему называется египетский треугольник?

Название «египетский треугольник» появилось уже в 5 веке до н. э. Принадлежит оно прямоугольному треугольнику, стороны которого равны соответственно 3, 4 и 5. Назван он был так потому, что очень широко применялся еще в Древнем Египте в различных сферах жизнедеятельности.

Что такое египетский треугольник?

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.

Как найти египетский треугольник?

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5. Особенностью такого треугольника, известной ещё со времён античности, является то, что при таком отношении сторон теорема Пифагора даёт целые квадраты как катетов, так и гипотенузы, то есть 9:16:25.

Чему равны углы в египетском треугольнике?

После этого заметить один край и прочертить от него линию кратную четырем, а от другого кратную трем. При этом каждый отрезок должен быть длиной минимум четыре и три. Пересекаясь, они образовывают один прямой угол в 90 градусов. Другие углы равны 53,13 и 36,87 градусам.

Как по другому называется египетский треугольник?

Но особой в этом отношении является пирамида Хефрена. Угол наклона боковых граней у этой пирамиды равен 53°12, при котором отношение катетов прямоугольного треугольника 4:3. Такой треугольник называют “священным” или “египетским” треугольником.

Как найти высоту в прямоугольном треугольнике?

Примеры решения задач

Задание В прямоугольном треугольнике катеты равны см и см. Найти высоту , опущенную на гипотенузу .
Решение Пусть катет см, а см (рис. 2). Тогда по теореме Пифагора гипотенуза см Площадь прямоугольного треугольника равна половине произведения катетов, т.е. Высоту найдем по формуле
Ответ см

Почему прямоугольный треугольник со сторонами 3 4 5?

Треугольник со сторонами 3, 4, 5 часто называют египетским треугольником, так как он был известен ещё древними египтянам.

Какие углы египетского треугольника?

Альтернативные способы построить прямой угол на 90 градусов

Главное же свойство египетского треугольника заключается в его универсальности. . Дело в том, что в них соотношение сторон всегда составляет ровно 90 градусов.

Как звучит Обратная теорема Пифагора?

Обратная теорема Пифагора:

Если в треугольнике квадрат длины одной стороны равен сумме квадратов длин других сторон, то этот треугольник – прямоугольный. Если a2 + b2 = c2, то треугольник ABC — прямоугольный.

Как найти угол в прямоугольном треугольнике?

Углы прямоугольного треугольника

  1. α = 90°-β Если известна величина двух катетов прямоугольного треугольника (а, b), находим угол, используя отношения тангенсов.
  2. tg (α) = a/b. Т. .
  3. β = 180° — 90° — α .
  4. sin (α) = a/c.

Как найти катет в прямоугольном треугольнике?

Катет прямоугольного треугольника равен его гипотенузе, умноженной на синус противолежащего или на косинус прилежащего к этому катету угла.

Как найти гипотенузу в прямоугольном треугольнике?

Гипотенуза (греч. ὑποτείνουσα, натянутая) — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. Длина гипотенузы прямоугольного треугольника может быть найдена с помощью теоремы Пифагора: Квадрат длины гипотенузы равен сумме квадратов длин катетов.

Как найти угол в треугольнике?

Если известны стороны треугольника, можно рассчитать его углы, воспользовавшись теоремой косинусов. Здесь, квадрат одной стороны треугольника (а) равен сумме квадратов двух его других сторон (b,с), образующих искомый угол (α), плюс удвоенное произведение этих сторон (b,с) на косинус угла.

Как доказать что это прямоугольный треугольник?

Так вот, прямоугольный треугольник обладает такими свойствами:

  1. Сумма квадратов катетов прямоугольного треугольника равна квадрату его гипотенузы
  2. Медиана прямоугольного треугольника равна половины гипотенузы
  3. сумма двух острых углов прямоугольного треугольника равна 90 градусов

Как при помощи веревки с узелками древние египтяне строили прямой угол?

Его использовали ещё древние египтяне. Они строили прямой угол с помощью обычной верёвки, на которой через равные расстояния завязаны тринадцать узелков. Чтобы отрезки на верёвке были одинаковые, узелки завязывали вокруг колышков, вбитых в землю на равном расстоянии друг от друга.

Египетский треугольник

Египетский треугольник – прямоугольный треугольник с отношением сторон 3:4:5. Это наиболее простой из треугольников, стороны и площади которых выражаются целыми числами. Он представляет собой прекрасную иллюстрацию теоремы Пифагора – действительно, квадрат его гипотенузы (25) очевидно равен сумме квадратов его катетов (9 и 16). Предполагается даже, что именно знакомство с египетским треугольником сподвигло Пифагора на формулировку его теоремы. Впрочем, как всегда в подобных случаях, историки древности, которые не являются специалистами ни в одной другой области знания, кроме истории (и уж точно плохо смыслят в математике), могут ошибаться.

Так или иначе, имеются многочисленные указания на то, что теорема Пифагора вообще и египетский треугольник в частности были известны и широко использовались за много веков до Пифагора и далеко за пределами Египта – в Месопотамии, в долине Инда, в древнем Китае. И вправду, корень многих знаний следует искать, наверное, в практической деятельности человека. Как только возникла необходимость возводить здания и сооружения, человек эмпирическим путём пришёл к пониманию важности прямых углов. А как отмерить прямой угол, не имея геодезических приборов?

Оказывается, очень просто. Берём верёвку и делим её на 12 равных частей – например, при помощи складывания. Выбираем отрезок верёвки, равный 5, так, чтобы он находился межды двумя другими, равными 3 и 4. Выпрямляем его и фиксируем на ровном участке земли при помощи двух колышков. А затем натягиваем концы верёвки и сводим их в одну точку, чтобы получился треугольник. Прямоугольный, египетский.

«Делай, как делается». Знаменитая древнеегипетская пословица, дошедшая до наших дней. У нас её обычно понимают, как мудрое наблюдение: если так получается, значит, так правильно. Но при этом часто забывают культурно-исторический контекст Древнего Египта. Всеми работами руководили жрецы – члены замкнутой касты харнителей священного, древнего знания. Поэтому «делай, как делается» в древнеегипетском контексте наверняка значило «делай как говорят и не задавай лишних вопросов». То есть жрецы знали не только, «как» делать, чтобы «делалось», но и «почему», и это зание было скрыто от непосвящённых.

Мы тоже хотим знать, «почему». Нам недостаточно «как». Человеческий ум будоражат разнообразные загадки, и так, наверное, будет всегда. Египетский треугольник, хоть и известен с незапамятных времён – одна из таких загадок.

Начнём с того, что он красив. Его форма проста и гармонична, на него приятно смотреть. И с ним легко работать, используя самые простые инструменты – линейку и циркуль. Он, казалось бы, даже приглашает поработать с ним. Что ж, примем приглашение и посмотрим, что у нас получится.

Несколько простых построений, в числе которых – квадраты гипотенузы и катетов, а также симметричные отображения, сразу дают нам красивые, грмоничные фигуры. Здесь мы видим и мальтийский крест, и серединное сечение пирамиды Хефрена, и фрактальный ряд убывающих (возрастающих) по размерам египетских треугольников в соответствии с правилом золотого сечения. Удивительное богатство гармоничных пропорций. И кажется, что ещё немного, и неразрешимая задача о квадратуре круга будет решена.

Впрочем, не станем уподобляться безумцам, которые изобретают вечный двигатель, ищут квадратуру круга, философский камень и книгу мёртвых. Ограничимся констатацией бесконечных возможностей создания красоты и гармонии при помощи простой верёвки, разделённой на 12 равных частей. В том числе и картины в стиле арифмизма. Картины, которая, в соответствии с определением, изображает законченное арифметическое выражение: 9 + 16 = 25. Математический и геометрический смысл очевиден. Тайное значение – наверное, на то оно и тайное, чтобы таковым оставаться. А многозначительная и почти мистическая эстетика данных форм пусть радует глаз и будоражит воображение.

[spoiler title=”источники:”]

http://topobzor10.ru/egipetskii-treugolnik-chto-eto-takoe

http://proza.ru/2012/09/05/831

[/spoiler]

Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5.

Свойства[править | править код]

  • Особенностью такого треугольника, известной ещё со времён античности, является то, что все три стороны его целочисленны, а по теореме, обратной теореме Пифагора, он прямоуголен.
  • Египетский треугольник является простейшим (и первым известным) из Героновых треугольников — треугольников с целочисленными сторонами и площадями.
  • Радиус вписанной в треугольник окружности равен единице.

История[править | править код]

Название треугольнику с таким отношением сторон дали эллины: в VII—V веках до нашей эры древнегреческие философы и математики совершали путешествия в Египет. Так, например, Пифагор в 535 году до нашей эры по настоянию Фалеса для изучения астрономии и математики отправился в Египет — и, судя по всему, именно решение задачи по удвоению площади квадрата с помощью построения на его диагонали большего квадрата привело Пифагора к доказательству знаменитой теоремы. Второй квадрат содержит четыре «половинки» первого, следовательно, его площадь вдвое больше. Эта задача легла в основу характерного для античного искусства способа пропорционирования. Такой способ гармонизации пропорций описал древнегреческий философ Платон (ок. 427—347 гг. до н. э.)[1].

Такой же приём, если верить Плинию Старшему (23—79 гг. н. э.) и Марку Теренцию Варрону (116—27 гг. до н. э.), использовал знаменитый древнегреческий скульптор Поликлет из Аргоса в сочинении «Канон» (сочинение не сохранилось)[2].

Египетский треугольник в истории архитектуры[править | править код]

Древнегреческие архитекторы называли строителей египетских пирамид «гарпедонавтами» («натягивателями верёвок» от др.-греч. αρπεδονη — аркан, петля), поскольку они использовали для построения исходной фигуры — прямоугольного треугольника — мерные шнуры. Простейший способ разбивки плана будущего сооружения на земле сводится к построению прямого угла, от которого зависит проецирование центра тяжести будущего сооружения на середину основания — первого условия прочности и надёжности постройки. Древние зодчие решали эту задачу гениально просто. Они брали мерный шнур — верёвку, разделённую узлами на двенадцать равных частей, соединяли её концы (двенадцатый и нулевой узел) и, растягивая на земле, забивали колышки в землю на третьем, седьмом и двенадцатом делениях. При этом получался треугольник с отношениями сторон 3 : 4 : 5 и он при любых размерах будет прямоугольным. Получив прямой угол без всяких вычислений, строители могли его увеличивать до нужных размеров, переносить в вертикальную плоскость. Благодаря своим универсальным свойствам такой треугольник в истории архитектуры получил название: «египетский священный треугольник». Одна из гигантских пирамид в Гизе — пирамида Хефрена — представляет собой в поперечном сечении два «священных треугольника», а отношение высоты к стороне квадратного основания составляет 2:3 (143,5 : 215,25 м). За долгое время эти размеры несколько уменьшились (136,4 : 210,5 м).

Числа треугольника: 3, 4, 5, их сумма 12, а также 7, сумма 3 и 4, — постоянно встречаются в природе и также почитались священными. Согласно религиозным представлениям, универсальная геометрия египетского треугольника олицетворяла Великую триаду богов: Исида и Осирис (два катета) и их сын Гор (гипотенуза). «Бытие и небытие сопоставляются с Исидой и Осирисом, а диагональ с Гором-Соколом» (егип. ḥr — «высота», «небо»)[3].

Историк и математик Ван дер Варден ставил факт использования египетского треугольника под сомнение, однако более поздние исследования его подтвердили[4].

Египетский треугольник применяли и в архитектуре средних веков[5]. Построение треугольника легло в основу средневекового принципа триангуляции (в отличие от квадратуры) при пропорционировании больших кафедральных соборов, причём не только планов и фасадов, но также трифолиев — «трилистников» и иных элементов декора, переплётов окон, резной готический мебели и орнамента типа масверк[6].

Примечания[править | править код]

  1. Платон. Менон // Платон. Собр. соч. в 4-х т. — Т.1. — М.: Мысль, 1990. — С. 594—595 (85 а-с)
  2. Плиний Старший. Естествознание. Об искусстве. — М.: Ладомир, 1994. С. 65 (XXXIV, 55—56)
  3. Шмелёв И. П. Третья сигнальная система // Золотое сечение: Три взгляда на природу гармонии. — М.: Стройиздат, 1990. — С. 242—243
  4. Ван дер Варден Б. Л. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Физматлит, 1959. — С. 13, подстрочное примечание
  5. Египетский треугольник // Юсупов Э. С. Словарь терминов архитектуры. — Л.: Изд-во: Ленинградская галерея, 1994. — С. 121. — ISBN 5-85825-004-1, 432
  6. Власов В. Г.. Готика, готический стиль // Власов В. Г. Новый энциклопедический словарь изобразительного искусства. В 10 т. — СПб.: Азбука-Классика. — Т. III, 2005. — С. 251—253

См. также[править | править код]

  • Пропорционирование
  • Теорема Пифагора
  • Формула Герона
  • Пифагорова тройка

Египетский треугольник – прямоугольный, со сторонами 3, 4 и 5. Эта фигура является простейшей из Героновых треугольников со сторонами равными целым числам, которая одна из первых получила широкое применение.

Почему же он так необычно называется?

Самый "правильный" треугольник
Самый “правильный” треугольник

Название он получил ещё в Древнем Египте, где активно применялся для построения прямых углов на местности. Это было важно для земледельцев, так как ежегодно разливы Нила размывали границы между полями и приходилось заново размечать их с помощью египетского треугольника. Этот способ не занимал много времени и был доступен всем, достаточно было на верёвке узлами отмерить 12 равных отрезков, а потом из нее сложить треугольник и угол, оказавшийся напротив стороны 5 (гипотенузы), являлся прямым.

Кроме того, этот треугольник применялся для разработки пропорциональных схем и чертежей, что позволяло правильно проецировать центр тяжести пирамид на середину опоры– это гарантировало надёжность строения.

Этот чудо-треугольник имеет ряд замечательных особенностей:

– радиус окружности, вписанной в него, равен единице;

– все стороны состоят из целых чисел;

– для создания можно использовать любые подходящие подручные средства, например, шнур или шест.

Если усерднее покопаться в истории появления этого треугольника, то можно обнаружить, что официально принято считать его создателем – Пифагора. Благодаря долгим измерениям и анализам построенных моделей, греческий математик смог описать все их геометрические свойства.

По просьбе древнегреческого философа и математика Фалеса, Пифагор отправился в Египет, чтобы изучить математические, архитектурные и астрономические наработки египтян. Путешествуя, он впервые увидел высокие и величественные пирамиды, которые поистине поражали своей монументальностью. Математические умения позволили Пифагору выявить закономерность в самой форме пирамиды Хеопса. Увиденное им, стало прообразом египетского треугольника и его знаменитой теоремы, что послужит универсальным инструментом для строительства сооружений с правильными во всех соотношениях углами.

Пирамида Хеопса. Фото canva.com
Пирамида Хеопса. Фото canva.com

Окунувшись немного в математику, приходит понимание, что свойства чудо-фигуры подчиняются аксиоме (истине) – в прямоугольном треугольнике сумма квадратов катетов равна сумме квадрата гипотенузы (теорема Пифагора),

Египетский треугольник. Что в нем такого особенного? История самой известной геометрической фигуры

Путем вычислений находим ответ – длина гипотенузы равна 5.

Если подставить по аналогии другие значения, например, a=2, b=3 или a=6, b=7, то гипотенуза уже не будет равна 4 или 8, в этом и есть уникальность египетского треугольника со сторонами 3, 4, 5.

Подводя итог сказанному, теперь понятно, как древним египтянам удавалось так точно и выверено строить одно из семи чудес света.

Онлайн калькуляторы

На нашем сайте собрано более 100 бесплатных онлайн калькуляторов по математике, геометрии и физике.

Справочник

Основные формулы, таблицы и теоремы для учащихся. Все что нужно, чтобы сделать домашнее задание!

Заказать решение

Не можете решить контрольную?!
Мы поможем! Более 20 000 авторов выполнят вашу работу от 100 руб!

Египетский треугольник

Египетский треугольник является простейшим (и первым известным) из Героновых треугольников – треугольников с целочисленными сторонами и площадями. Сумма указанных чисел (3+4+5=12) с древних времен использовалась как единица кратности при построении прямых углов с помощью веревки, размеченной узлами на 3/12 и 7/12 ее длины. Применялся в архитектуре средних веков для построения схем пропорциональности.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Добавить комментарий