Как найти высоту если известен тангенс угла

Как найти высоту треугольника, если известны две стороны и тангенс угла между ними?



Ученик

(198),
закрыт



11 лет назад

Булат 1

Оракул

(54366)


11 лет назад

У треугольника три высоты.
Две из них в данном случае определяются достаточно просто, из определения тангенса и теоремы Пифагора: тангенс угла = высота / (вторая сторона^2 – высота^2)

Вероятно, справа – ты

Оракул

(69070)


11 лет назад

из тангенса можно однозначно найти синус и косинус
из теоремы косинусов найти третью сторону, из теоремы синусов – площадь треугольника
зная площадь треугольника и основание, элементарно находится высота

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)

Высота прямоугольного треугольника, проведенная к гипотенузе

Как и в любом треугольнике прямоугольный треугольник имеет три высоты. Две из них совпадают с катетами, а вот третья высота, проведенная к гипотенузе, постоянно будоражит наши умы.

Поэтому представляю вашему вниманию основные формулы для ее нахождения.

Начну с самой важной.

1. Высота, проведенная к гипотенузе равна корню квадратному из произведения проекций катетов на эту гипотенузу.

2. Высоту, проведенную к гипотенузе, можно найти, разделив удвоенную площадь прямоугольного треугольника на гипотенузу.

Такая формула получается из классический формулы нахождения площади треугольника: половина произведения основания на высоту, проведенную к этому основанию.

3. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.

Эта формула получится из второй если заменить площадь на половину произведения катетов.

Т.к. АВ – гипотенуза, то ее можно выразить через катеты АС и ВС, используя теорему Пифагора. Тогда формула примет другой вид:

4. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на диаметр описанной вокруг треугольника окружности (или на удвоенный радиус).

Так получается потому, что центр описанной окружности лежит в середине гипотенузы, значит, гипотенуза равна 2R или d.

5. Высоту, проведенную к гипотенузе, можно найти, используя геометрические определения синуса, тангенса и котангенса.

Надеюсь, что данная статья оказалась полезной!)

Готовься к экзамену вместе с нами! Заходи на нашу страницу в ВК.

На простой вопрос «Как найти высоту трапеции?» существует несколько ответов, и все потому, что могут быть даны разные исходные величины. Поэтому и формулы будут различаться.

Эти формулы можно запомнить, но они несложно выводятся. Нужно только применять ранее изученные теоремы.

Принятые в формулах обозначения

Во всех приведенных ниже математических записях верны такие прочтения букв.

произвольная трапеция равнобедренная трапеция название
а а нижнее основание
в в верхнее основание
с, d с боковые стороны
н н высота
m m средняя линия
d1, d2 d1 диагонали
s s площадь
α, β α углы при нижнем основании
γ, δ γ, δ углы на пересечении диагоналей

В исходных данных: все стороны

Для того чтобы найти высоту трапеции в общем случае потребуется воспользоваться такой формулой:

н = √(с2 – (((а – в)2 + с2 – d2)/(2(а – в)))2). Номер 1.

Не самая короткая, но и встречается в задачах достаточно редко. Обычно можно воспользоваться другими данными.

Формула, которая подскажет, как найти высоту равнобедренной трапеции в той же ситуации, гораздо короче:

н = √(с2 – (а – в)2/4). Номер 2.

как найти высоту трапеции

В задаче даны: боковые стороны и углы при нижнем основании

Принимают, что угол α прилежит к боковой стороне с обозначением «с», соответственно угол β к стороне d. Тогда формула для того, как найти высоту трапеции, в общем виде будет такой:

н = с * sin α= d * sin β. Номер 3.

Если фигура равнобедренная, то можно воспользоваться таким вариантом:

н = с * sin α= ((а – в) / 2) * tg α. Номер 4.

Известны: диагонали и углы между ними

Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:

н = (d1* d2 * sin γ) / (а + в) или н = (d1* d2 * sin δ) / (а + в). Номер 5.

Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:

н = (d12 * sin γ) / (а + в) или н = (d12 * sin δ) / (а + в). Номер 6.

Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:

н = (d1* d2 * sin γ) / 2m или н = (d1* d2 * sin δ) / 2m. Номер 5а.

н = (d12 * sin γ) / 2m или н = (d12 * sin δ) / 2m. Номер 6а.

найти высоту трапеции

Среди известных величин: площадь с основаниями или средней линией

Это, пожалуй, самые короткие и простые формулы того, как найти высоту трапеции. Для произвольной фигуры она будет такой:

н = 2S / (а + в). Номер 7.

Она же, но с известной средней линией:

н = S / m. Номер 7а.

Как ни странно, но для равнобедренной трапеции формулы будут выглядеть так же.

как найти высоту равнобедренной трапеции

Задачи

№1. На определение углов при нижнем основании трапеции.

Условие. Дана равнобедренная трапеция, боковая сторона которой 5 см. Ее основания равны 6 и 12 см. Требуется найти синус острого угла.

Решение. Для удобства следует ввести обозначение. Пусть левая нижняя вершина будет А, все остальные по часовой стрелке: В, С, Д. Таким образом, нижнее основание будет обозначено АД, верхнее — ВС.

Нужно провести высоты из вершин В и С. Точки, которые укажут концы высот будут обозначены Н1 и Н2, соответственно. Поскольку в фигуре ВСН1Н2 все углы прямые, то она является прямоугольником. Это означает, что отрезок Н1Н2 равен 6 см.

Теперь нужно рассмотреть два треугольника. Они равны, так как являются прямоугольными с одинаковыми гипотенузами и вертикальными катетами. Отсюда следует, что и меньшие катеты у них равны. Поэтому их можно определить как частное от разности. Последняя получится от вычитания из нижнего основания верхнего. Делиться оно будет на 2. То есть 12 – 6 нужно поделить на 2. АН1 = Н2Д = 3 (см).

Теперь из теоремы Пифагора нужно найти высоту трапеции. Она необходима для нахождения синуса угла. ВН1 = √(52 – 32) = 4 (см).

Воспользовавшись знанием о том, как находится синус острого угла в треугольнике с прямым углом, можно записать такое выражение: sin α= ВН1 / АВ = 0,8.

Ответ. Искомый синус равен 0,8.

увеличение трапеции

№2. На нахождение высоты трапеции по известному тангенсу.

Условие. У равнобедренной трапеции нужно вычислить высоту. Известно, что ее основания равны 15 и 28 см. Дан тангенс острого угла: 11/13.

Решение. Обозначение вершин такое же, как в предыдущей задаче. Снова нужно провести две высоты из верхних углов. По аналогии с решением первой задачи нужно найти АН1 = Н2Д, которые определятся как разность 28 и 15, деленная на два. После подсчетов получается: 6,5 см.

Поскольку тангенс — это отношение двух катетов, то можно записать такое равенство: tg α= АН1 / ВН1. Причем это отношение равно 11/13 (по условию). Так как АН1 известен, то можно вычислить высоту: ВН1= (11 * 6,5) / 13. Простые расчеты дают результат в 5,5 см.

Ответ. Искомая высота равна 5,5 см.

№3. На вычисление высоты по известным диагоналям.

Условие. О трапеции известно, что ее диагонали равны 13 и 3 см. Нужно узнать ее высоту, если сумма оснований составляет 14 см.

Решение. Пусть обозначение фигуры будет таким же, как раньше. Предположим, что АС — меньшая диагональ. Из вершины С нужно провести искомую высоту и обозначить ее СН.

Теперь потребуется выполнить дополнительное построение. Из угла С нужно провести прямую, параллельную большей диагонали и найти точку ее пересечения с продолжением стороны АД. Это будет Д1. Получилась новая трапеция, внутри которой начерчен треугольник АСД1. Он-то и нужен для дальнейшего решения задачи.

Искомая высота окажется еще и ей же в треугольнике. Поэтому можно воспользоваться формулами, изученными в другой теме. Высота треугольника определяется как произведение числа 2 и площади, деленное на сторону, к которой она проведена. А сторона оказывается равна сумме оснований исходной трапеции. Это исходит из правила, по которому выполнено дополнительное построение.

В рассматриваемом треугольнике все стороны известны. Для удобства введем обозначения х = 3 см, у = 13 см, z = 14 см.

Теперь можно сосчитать площадь, воспользовавшись теоремой Герона. Полупериметр будет равен р = (х + у + z)/ 2 = (3 + 13 + 14) / 2 = 15 (см). Тогда формула для площади после подстановки значений будет выглядеть так: S = √(15 * (15 – 3) * (15 – 13) * (15 – 14)) = 6 √10 (см2).

Теперь нужно сосчитать высоту: н = (2 * 6 √10) / 14 = 6√10 / 7 (см).

Ответ. Высота равна 6√10 / 7 см.

трапеция и окружности

№4. Для поиска высоты по сторонам.

Условие. Дана трапеция, три стороны которой равны 10 см, а четвертая 24 см. Нужно узнать ее высоту.

Решение. Поскольку фигура равнобедренная, то потребуется формула под номером 2. В нее нужно просто подставить все значения и сосчитать. Это будет выглядеть так:

н = √(102 – (10 – 24)2/4) = √51 (см).

Ответ. н = √51 см.

Высота равнобедренного треугольника, которая лежит под прямым углом к основанию, создает внутри еще два одинаковых прямоугольных треугольника, являясь катетом в каждом из них. Второй катет такого треугольника представляет собой половину основания, так как эта высота является одновременно медианой и биссектрисой, а гипотенузой будет боковая сторона равнобедренного треугольника. Соответственно, зная высоту и угол α при основании, через прямоугольный треугольник можно узнать стороны равнобедренного треугольника. (рис.88.2)
a=h/sin⁡α
b=2h/tan⁡α

Поскольку сумма всех углов в треугольнике равна 180 градусам, следовательно, угол при вершине будет равен разности 180 градусов и двух углов при основании.
β=180°-2α

Периметр равнобедренного треугольника через высоту и угол α равен сумме двух отношений высоты к синусу угла и двух отношений высоты к тангенсу. Площадь, в свою очередь, преобразовывается в квадрат высоты, деленный на тангенс.
P=2a+b=2h/sin⁡α +2h/tan⁡α
S=hb/2=h^2/tan⁡α

Чтобы найти высоту, опущенную на боковую сторону равнобедренного треугольника (любую, так как они одинаковы), можно воспользоваться готовой формулой через стороны треугольника, заменив их на тригонометрические отношения и упростив выражение. Аналогично вычисляются медианы и биссектрисы через высоту.
m_a=√(a^2+2b^2 )/2=√((h/sin⁡α )^2+2(2h/tan⁡α )^2 )/2=(h√(1/cos⁡α +8))/(2 tan⁡α )
h_a=(b√((4a^2-b^2)))/2a=(b√((4(h/sin⁡α )^2-(2h/tan⁡α )^2)))/(2 h/sin⁡α )=b sin^2⁡α
l_a=(b√(a(2a+b) ))/(a+b)=(2h/tan⁡α √(h/sin⁡α (2 h/sin⁡α +2h/tan⁡α )))/(h/sin⁡α +2h/tan⁡α )=(2h√(2+2/cos⁡α ))/(tan⁡α+2 sin⁡α )

Чтобы вычислить среднюю линию, необходимо разделить на два ту сторону треугольника, которая ей параллельна. Поскольку ни одна из сторон не известна, то средняя линия, параллельная основанию, равна высоте, деленной на тангенс угла α, а средняя линия, параллельная боковой стороне равна высоте, деленной на два синуса угла α. (рис.88.5)
M_b=b/2=h/tan⁡α
M_a=a/2=h/(2 sin⁡α )

Чтобы вычислить радиус вписанной в равнобедренный треугольник окружности, нужно подставить вместо сторон a и b в формулу отношения высоты и тангенса или синуса соответственно, а затем упростить выражение (рис.88.6)
r=b/2 √((a-2b)/(a+2b))=h/tan⁡α √((h/sin⁡α -2 2h/tan⁡α )/(h/sin⁡α +2 2h/tan⁡α ))=h/tan⁡α √((1-4 cos⁡α)/(1+4 cos⁡α ))

Радиус окружности, описанной вокруг равнобедренного треугольника также зависит от обеих сторон – основания и боковой стороны, поэтому его формула видоизменяется аналогично радиусу вписанной окружности. (рис.88.7)
R=a^2/√(4a^2-b^2 )=(h/sin⁡α )^2/√(4(h/sin⁡α )^2-(2h/tan⁡α )^2 )=h/(2 sin^2⁡α )

Добавить комментарий