Как найти высоту куба (Формула) и формула объём? Формула высоты куба и объёма,
Counter.
Знаток
(268),
на голосовании
7 лет назад
Голосование за лучший ответ
Алёнка
Мудрец
(15254)
7 лет назад
V=a^3, в кубе все стороны равны: и высота и ширина и глубина
Татьяна Шадрина
Гуру
(3292)
7 лет назад
У куба высотой является любое ребро
Похожие вопросы
Содержание
- – Как найти объем по площади и высоте?
- – Как вычислить объем куба?
- – Как найти площадь грани куба?
- – Как найти объём куба с ребром?
- – Как найти объем зная площадь поверхности?
- – Как найти объем через площадь физика?
- – Как вычислить объем прямоугольника?
- – Как найти объем прямоугольного параллелепипеда формула 5 класс?
- – Где находится грань кубика?
- – Чему равны стороны куба?
- – Как найти объем куба если известна сторона?
- – Как найти площадь куба если известна длина ребра?
Как найти объем по площади и высоте?
площадь (S) — это произведение длинны и ширины (S= l*b), а объем – произведение длины, ширины и высоты. Подставьте в формулу вычисления объема вместо l*b площадь. Вы получите выражение V=S*h. Пример: Площадь одной из сторон параллелепипеда — 36 см², высота – 10 см.
Как вычислить объем куба?
Куб – это геометрическая фигура, которая представляет собой правильный многогранник, где каждая его грань является квадратом. Объем куба можно вычислить, зная только значение длины его ребра. Так как все его ребра между собой равны. Говоря проще объем куба приравнивается кубу длины его ребра.
Как найти площадь грани куба?
Площадь поверхности куба через сторону
Формула для нахождения площади поверхности куба через его сторону: S = 6 a 2 {S = 6 a^2} S=6a2, где a — сторона куба.
Как найти объём куба с ребром?
Объем = длина*ширина*высота. Ребро куба – это и есть его сторона, а все стороны в кубе равны. Следовательно, V= 1*1*1 = 1 кубический см.
Как найти объем зная площадь поверхности?
Выразите длину ребра через площадь поверхности (a = ³√V) и подставьте в формулу расчета объема: V = 6*(³√V)². Объем сферы (V) можно вычислить и по площади не полной поверхности, а лишь отдельного сегмента (s), высота которого (h) тоже известна.
Как найти объем через площадь физика?
По какой формуле можно найти объем?
- Зная массу и плотность V = m/ρ, где m – масса, а ρ – плотность
- Для геометрических фигур, например куб V = a^3 перемножить три стороны, а для цилиндра V = S*H площадь основания помножить на высоту
Как вычислить объем прямоугольника?
Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.
Как найти объем прямоугольного параллелепипеда формула 5 класс?
Решение: чтобы ответить на вопрос, нужно воспользоваться формулой для вычисления объёма прямоугольного параллелепипеда. V = а · b · c, где а – длина прямоугольного параллелепипеда. Ответ: объём увеличится в три раза.
Где находится грань кубика?
Глоссарий по теме: Куб – это многогранник, поверхность которого состоит из шести квадратов. Грани куба – это стороны куба, которые представляют собой квадрат. Ребра куба – это стороны граней куба.
Чему равны стороны куба?
Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.
Как найти объем куба если известна сторона?
Каждая сторона куба: длина, ширина и высота – равны между собой. Для вычисления объема куба необходимо длину его стороны возвести в третью степень. Найдите объем куба, если его сторона равна 2 см.
Как найти площадь куба если известна длина ребра?
Все ребра и грани куба равны. Площадь поверхности куба равна квадрату длины его грани умноженному на шесть. Формула для вычисления площади куба S = 6 a2 где S — площадь куба, a — длина грани куба.
Интересные материалы:
Чем подкормить морковь плохо растет?
Чем подкормить морковь во время роста?
Чем подкормить морковку для быстрого роста?
Чем подкормить огурцы чтобы они быстрее росли?
Чем подкормить огурцы чтобы пошли в рост?
Чем подкормить огурцы чтобы росли плоды?
Чем подкормить огурцы чтобы росли завязи?
Чем подкормить огурцы для роста плодов?
Чем подкормить огурцы для улучшения роста?
Чем подкормить огурцы в период роста?
Как узнать длину, ширину, высоту куба , если известен его объём.
Вы зашли на страницу вопроса Как узнать длину, ширину, высоту куба , если известен его объём?, который относится к
категории Математика. По уровню сложности вопрос соответствует учебной
программе для учащихся 5 – 9 классов. В этой же категории вы найдете ответ
и на другие, похожие вопросы по теме, найти который можно с помощью
автоматической системы «умный поиск». Интересную информацию можно найти в
комментариях-ответах пользователей, с которыми есть обратная связь для
обсуждения темы. Если предложенные варианты ответов не удовлетворяют,
создайте свой вариант запроса в верхней строке.
Нахождение объема куба: формула и задачи
В данной публикации мы рассмотрим, как можно найти объем куба и разберем примеры решения задач для закрепления материала.
- Формула вычисления объема куба
- Примеры задач
Формула вычисления объема куба
1. Через длину ребра
Объем (V) куба равняется произведению его длины на ширину на высоту. Т.к. данные величины у куба равны, следовательно, его объем равен кубу любого ребра.
V = a ⋅ a ⋅ a = a 3
2. Через длину диагонали грани
Как мы знаем, грани куба равны между собой и являются квадратом, сторона которого может быть найдена через длину диагонали по формуле: a=d/√ 2 .
Следовательно, вычислить объем куба можно так:
Примеры задач
Задание 1
Вычислите объем куба, если его ребро равняется 5 см.
Решение:
Подставляем в формулу заданное значение и получаем:
V = 5 см ⋅ 5 см ⋅ 5 см = 125 см 3 .
Задание 2
Известно, что объем куба равен 512 см 3 . Найдите длину его ребра.
Решение:
Пусть ребро куба – это a. Выведем его длину из формулы расчета объема:
Задание 3
Длина диагонали грани куба составляет 12 см. Найдите объем фигуры.
Решение:
Применим формулу, в которой используется диагональ грани:
Как вычислить объем куба
wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 82 человек(а).
Количество просмотров этой статьи: 562 175.
Куб — трехмерная геометрическая фигура, у которой все ребра равны (длина равна ширине и равна высоте). У куба шесть квадратных граней, которые пересекаются под прямым углом и стороны которых равны. Вычислить объем куба легко — нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 , где s — длина одного (любого) ребра куба.
Объемы фигур. Объем куба.
Куб — трехмерная геометрическая фигура, у которой все ребра равны (длина равна ширине и равна высоте).
У куба шесть квадратных граней, которые пересекаются под прямым углом и стороны которых равны.
Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна
ширине и равна высоте, то объем куба равен s 3 ,
где s – длина одного (любого) ребра куба.
Воспользуйтесь онлайн калькулятором для расчета объема куба: объем куба, онлайн расчет.
Для расчета объемов других тел воспользуйтесь этим калькулятором: калькулятор объемов фигур.
Метод 1 из 3: Возведение в куб ребра куба
- Найдите длину одного ребра куба. Как правило, длина ребра куба дана в условии задачи. Если вы
вычисляете объем реального объекта кубической формы, измерьте его ребро линейкой или рулеткой.
Рассмотрим пример. Ребро куба равно 5 см. Найдите объем куба.
Возведите в куб длину ребра куба. Другими словами, умножьте длину ребра куба саму на себя три раза.
Если s — длина ребра куба, то
и, таким образом, вы вычислите объем куба.
Этот процесс аналогичен процессу нахождения площади основания куба (равна произведению длины на
ширину квадрата в основании) и последующему умножению площади основания на высоту куба (то есть,
другими словами, вы умножаете длину на ширину и на высоту). Так как в кубе длина ребра равна ширине и
равна высоте, то это процесс можно заменить возведением ребра куба в третью степень.
В нашем примере объем куба равен:
- К ответу припишите единицы измерения объема. Так как объем – это количественная
характеристика пространства, занимаемого телом, то единицами измерения объема являются кубические
В нашем примере размер ребра куба давался в сантиметрах, поэтому объем будет измеряться в кубических
сантиметрах (или в см 3 ). Итак, объем куба равен 125 см 3 .
Если размер ребра куба дается в других единицах, то и объем куба измеряется в соответствующих
Например, если ребро куба равно 5 м (а не 5 см), то его объем равен 125 м 3 .
Метод 2 из 3: Вычисление объема по площади поверхности
- В некоторых задачах длина ребра куба не дана, но даны другие величины, с помощью которых вы
можете найти ребро куба и его объем. Например, если вам дана площадь поверхности куба, то разделите
ее на 6, из полученного значения извлеките квадратный корень и вы найдете длину ребра куба. Затем
возведите длину ребра куба в третью степень и вычислите объем куба.
Площадь поверхности куба равна 6s 2 ,
где s – длина ребра куба (то есть вы находите площадь одной грани куба, а затем умножаете ее на 6, так
как у куба 6 равных граней).
Рассмотрим пример. Площадь поверхности куба равна 50 см 2 . Найдите объем куба.
- Разделите площадь поверхности куба на 6 (так как у куба 6 равных граней, вы получите площадь
одной грани куба). В свою очередь площадь одной грани куба равна s 2 , где s – длина ребра куба.
В нашем примере: 50/6 = 8,33 см 2 (не забывайте, что площадь измеряется в квадратных единицах — см 2 ,
- Так как площадь одной грани куба равна s 2 , то извлеките квадратный корень из значения площади
одной грани и получите длину ребра куба.
В нашем примере, √8,33 = 2,89 см.
- Возведите в куб полученное значение, чтобы найти объем куба.
В нашем примере: 2,89 * 2,89 * 2,89 = 2,893 = 24,14 см 3 . К ответу не забудьте приписать кубические
Метод 3 из 3: Вычисление объема по диагонали
- Разделите диагональ одной из граней куба на √2, чтобы найти длину ребра куба. Таким образом,
если в задаче дана диагональ грани (любой) куба, то вы можете найти длину ребра куба, разделив
Рассмотрим пример. Диагональ грани куба равна 7 см. Найдите объем куба. В этом случае длина ребра куба
равна 7/√2 = 4,96 см. Объем куба равен 4,963 = 122,36 см 3 .
Запомните: d 2 = 2s 2 ,
где d — диагональ грани куба, s – ребро куба. Эта формула вытекает из теоремы Пифагора, согласно
которой квадрат гипотенузы (в нашем случае диагональ грани куба) прямоугольного треугольника равен
сумме квадратов катетов (в нашем случае ребер), то есть:
d 2 = s 2 + s 2 = 2s 2 .
- Разделите диагональ куба на √3, чтобы найти длину ребра куба. Таким образом, если в задаче
дана диагональ куба, то вы можете найти длину ребра куба, разделив диагональ на √3.
Диагональ куба — отрезок, соединяющий две вершины, симметричные относительно центра куба, равный
(где D — диагональ куба, s – ребро куба).
Эта формула вытекает из теоремы Пифагора, согласно которой квадрат гипотенузы (в нашем случае
диагональ куба) прямоугольного треугольника равен сумме квадратов катетов (в нашем случае один катет –
это ребро, а второй катет – это диагональ грани куба, равная 2s 2 ), то есть
D 2 = s 2 + 2s 2 = 3s 2 .
Рассмотрим пример. Диагональ куба равна 10 м. Найдите объем куба.
Настяха
8 сентября, 15:22
-
Северьян
8 сентября, 16:14
0
Объём куба равен сторона в кубе. (в кубе длина=ширине=высоте)
поэтому если объём равен 27, то сторона (а значит и высота в том числе) равна 3 м
- Комментировать
- Жалоба
- Ссылка
Найди верный ответ на вопрос ✅ «Как найти высоту куба, зная только объём 27 м3 …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Новые вопросы по математике
Главная » Математика » Как найти высоту куба, зная только объём 27 м3