Как найти высоту квадрата вписанного в окружность

Квадрат вписанный в окружность

Обновлено 28.02.2022

Содержание

  1. Определение
  2. Формулы
  3. Радиус вписанной окружности в квадрат
  4. Радиус описанной окружности около квадрата
  5. Сторона квадрата
  6. Площадь квадрата
  7. Периметр квадрата
  8. Диагональ квадрата
  9. Свойства

Определение

Квадрат, вписанный в окружность — это квадрат, который находится
внутри окружности и соприкасается с ней углами.

На рисунке 1 изображена окружность, описанная около
квадрата
и окружность, вписанная в квадрат.
Квадрат вписанный в окружность

Формулы

Радиус вписанной окружности в квадрат

  1. Радиус вписанной окружности в квадрат, если известна сторона:

    [ r=frac{a}{2} ]

  2. Радиус вписанной окружности в квадрат, если известен периметр:

    [ r=frac{P}{8} ]

  3. Радиус вписанной окружности в квадрат, если известна площадь:

    [ r=frac{sqrt S}{2} ]

  4. Радиус вписанной окружности в квадрат, если известен радиус описанной окружности:

    [ r=frac{ R}{sqrt 2} ]

  5. Радиус вписанной окружности в квадрат, если известна диагональ:

    [ r=frac{ d}{2sqrt 2} ]

Радиус описанной окружности около квадрата

  1. Радиус описанной окружности около квадрата, если известна сторона:

    [ R=afrac{sqrt 2}{ 2} ]

  2. Радиус описанной окружности около квадрата, если известен периметр:

    [ R=frac{ P}{4 sqrt 2} ]

  3. Радиус описанной окружности около квадрата, если известна площадь:

    [ R=frac{sqrt 2S}{ 2} ]

  4. Радиус описанной окружности около квадрата, если известен радиус вписанной окружности:

    [ R= r sqrt2 ]

  5. Радиус описанной окружности около квадрата, если известна диагональ:

    [ R=frac{d}{2} ]

Сторона квадрата

  1. Сторона квадрата вписанного в окружность, если известна площадь:

    [ a=sqrt S ]

  2. Сторона квадрата вписанного в окружность, если известна диагональ:

    [ a=frac{ d}{sqrt 2} ]

  3. Сторона квадрата вписанного в окружность, если известен периметр:

    [ a=frac{ P}{4} ]

Площадь квадрата

  1. Площадь квадрата вписанного в окружность, если известна сторона:

    [ S=a^2 ]

  2. Площадь квадрата вписанного в окружность, если известен радиус вписанной окружности:

    [ S=4r^2 ]

  3. Площадь квадрата вписанного в окружность, если известен радиус описанной окружности:

    [ S=2R^2 ]

  4. Площадь квадрата вписанного в окружность, если известен периметр:

    [ S=frac{ P^2}{ 16} ]

  5. Площадь квадрата вписанного в окружность, если известна диагональ:

    [ S=frac{ d^2}{ 2} ]

Периметр квадрата

  1. Периметр квадрата вписанного в окружность, если известна сторона:

    [ P=4a ]

  2. Периметр квадрата вписанного в окружность, если известна площадь:

    [ P=4sqrt S ]

  3. Периметр квадрата вписанного в окружность, если известен радиус вписанной окружности:

    [ P=8r ]

  4. Периметр квадрата вписанного в окружность, если известен радиус описанной окружности:

    [ P=4Rsqrt 2 ]

  5. Периметр квадрата вписанного в окружность, если известна диагональ:

    [ P=2dsqrt 2 ]

Диагональ квадрата

  1. Диагональ квадрата вписанного в окружность, если известна сторона:

    [ d=asqrt 2 ]

  2. Диагональ квадрата вписанного в окружность, если известна площадь:

    [ d=sqrt 2S ]

  3. Диагональ квадрата вписанного в окружность, если известен периметр:

    [ d=frac{ P}{2 sqrt 2} ]

  4. Диагональ квадрата вписанного в окружность, если известен радиус вписанной окружности:

    [ d=2rsqrt 2 ]

  5. Диагональ квадрата вписанного в окружность, если известен радиус описанной окружности:

    [ d=2R ]

Свойства

  1. Все углы в квадрате прямые.
  2. Все стороны квадрата равны.
  3. Сумма всех углов квадрата 360°.
  4. Диагонали квадрата одновременно равны, пересекаются под прямым углом и являются биссектрисами углов.
  5. Точка пересечения диагоналей квадрата является центром вписанной и описанной окружности.
  6. Диагонали квадрата перпендикулярны, точкой пересечения делятся пополам.
  7. Квадрат обладает симметрией.

Квадрат. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.

Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):

Можно дать и другие определение квадрата.

Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.

Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).

Свойства квадрата

  • Длины всех сторон квадрата равны.
  • Все углы квадрата прямые.
  • Диагонали квадрата равны.
  • Диагонали пересекаются под прямым углом.
  • Диагонали квадрата являются биссектрисами углов.
  • Диагонали квадрата точкой пересечения делятся пополам.

Изложеннные свойства изображены на рисунках ниже:

Диагональ квадрата

Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.

На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.

Для вычисления длины диагонали воспользуемся теоремой Пифагора:

. (1)

Из равенства (1) найдем d:

. (2)

Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.

Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:

Ответ:

Окружность, вписанная в квадрат

Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):

Формула вычисления радиуса вписанной окружности через сторону квадрата

Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:

(3)

Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.

Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:

Ответ:

Формула вычисления сторон квадрата через радиус вписанной окружности

Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:

(4)

Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.

Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:

Ответ:

Окружность, описанная около квадрата

Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):

Формула радиуса окружности описанной вокруг квадрата

Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.

Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:

(5)

Из формулы (5) найдем R:

(6)

или, умножая числитель и знаменатель на , получим:

. (7)

Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.

Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:

Ответ:

Формула стороны квадрата через радиус описанной около квадрата окружности

Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.

Из формулы (1) выразим a через R:

. (8)

Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.

Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:

Ответ:

Периметр квадрата

Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.

Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:

(9)

где − сторона квадрата.

Пример 6. Сторона квадрата равен . Найти периметр квадрата.

Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:

Ответ:

Признаки квадрата

Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.

Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.

Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).

Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть

(10)

Так как AD и BC перпендикулярны, то

Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда

(12)

Эти реугольники также равнобедренные. Тогда

Из (13) следует, что

(14)

Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).

Квадрат вписанный в окружность

Определение

Квадрат, вписанный в окружность — это квадрат, который находится
внутри окружности и соприкасается с ней углами.

На рисунке 1 изображена окружность, описанная около
квадрата
и окружность, вписанная в квадрат.

Формулы

Радиус вписанной окружности в квадрат

  1. Радиус вписанной окружности в квадрат, если известна сторона:

Радиус вписанной окружности в квадрат, если известен периметр:

Радиус вписанной окружности в квадрат, если известна площадь:

Радиус вписанной окружности в квадрат, если известен радиус описанной окружности:

Радиус вписанной окружности в квадрат, если известна диагональ:

Радиус описанной окружности около квадрата

  1. Радиус описанной окружности около квадрата, если известна сторона:

Радиус описанной окружности около квадрата, если известен периметр:

Радиус описанной окружности около квадрата, если известнаплощадь:

Радиус описанной окружности около квадрата, если известен радиус вписанной окружности:

Радиус описанной окружности около квадрата, если известнадиагональ:

Сторона квадрата

  1. Сторона квадрата вписанного в окружность, если известнаплощадь:

Сторона квадрата вписанного в окружность, если известнадиагональ:

Сторона квадрата вписанного в окружность, если известен периметр:

Площадь квадрата

  1. Площадь квадрата вписанного в окружность, если известна сторона:

Площадь квадрата вписанного в окружность, если известен радиус вписанной окружности:

Площадь квадрата вписанного в окружность, если известен радиус описанной окружности:

Площадь квадрата вписанного в окружность, если известен периметр:

Площадь квадрата вписанного в окружность, если известна диагональ:

Периметр квадрата

  1. Периметр квадрата вписанного в окружность, если известна сторона:

Периметр квадрата вписанного в окружность, если известна площадь:

Периметр квадрата вписанного в окружность, если известенрадиус вписанной окружности:

Периметр квадрата вписанного в окружность, если известен радиус описанной окружности:

Периметр квадрата вписанного в окружность, если известна диагональ:

Диагональ квадрата

  1. Диагональ квадрата вписанного в окружность, если известна сторона:

Диагональ квадрата вписанного в окружность, если известна площадь:

Диагональ квадрата вписанного в окружность, если известен периметр:

Диагональ квадрата вписанного в окружность, если известен радиус вписанной окружности:

Диагональ квадрата вписанного в окружность, если известен радиус описанной окружности:

Формулы квадрата

Для расчёта всех основных параметров квадрата воспользуйтесь калькулятором.

Свойства квадрата

  1. Длины сторон квадрата равны.
  2. Все углы квадрата прямые, равны 90°.
  3. Противолежащие стороны квадрата параллельны друг другу.
  4. Сумма всех углов квадрата равна 360°.
  5. Величина угла между диагональю и стороной равна 45°.
  6. Диагонали квадрата — тождественны, перпендикулярны и разделяются точкой пересечения пополам.
  7. Каждая из диагоналей делит квадрат на два равнобедренных прямоугольных треугольника.
  8. Обе диагонали делят квадрат на 4 равнобедренных прямоугольных треугольника.
  9. Пересечение диагоналей является центром вписанной и описанной окружности.

Сторона квадрата

Где: AB – сторона квадрата
AC(BD) – диагональ квадрата
RВ – радиус вписанной окружности
RO – радиус описанной окружности
AA1 – линия выходящая из угла на середину стороны квадрата

Стороны квадрата через диагональ

Стороны квадрата через радиус вписанной окружности

Стороны квадрата через радиус описанной окружности

Стороны квадрата через площадь, S

Стороны квадрата через периметр, P

Стороны квадрата через линию выходящую из угла на середину стороны квадрата, AA1

Площадь квадрата

Где: AB – сторона квадрата
AC(BD) – диагональ квадрата

Площадь квадрата через сторону

Площадь квадрата через диагональ

Периметр квадрата

Где: AB – сторона квадрата

$$ P = 4 * AB $$

Диагональ квадрата

Где: AB – сторона квадрата
AC(BD) – диагональ квадрата
S – площадь квадрата
P – периметр квадрата

Диагональ квадрата через сторону

Диагональ квадрата через площадь

Диагональ квадрата через периметр

Вписанная окружность

Где: AB – сторона квадрата

Радиус вписанной окружности

Длина окружности, L

Площадь окружности, S

Описанная окружность

Где: AB – сторона квадрата
AC(BD) – диагональ квадрата

Радиус описанной окружности через сторону

Радиус описанной окружности через диагональ

[spoiler title=”источники:”]

http://colibrus.ru/kvadrat-vpisannyy-v-okruzhnost/

http://calc-online24.ru/formula/square

[/spoiler]

Квадрат — определение и свойства

Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.

Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.

Квадрат относится к правильным многоугольникам. У правильного многоугольника все стороны равны и все углы равны.

Перечислим свойства квадрата:

  1. Все углы квадрата — прямые, все стороны квадрата — равны.
    AB=BC=CD=AD;
    angle A= angle B=angle C=angle D=90^{circ }.

  2. Диагонали квадрата равны и пересекаются под прямым углом.
    AC=BD, AC perp BD.
  3. Диагонали квадрата делятся точкой пересечения пополам.
    AO=OC, BO=OD.
  4. Диагонали квадрата являются биссектрисами его углов (делят его углы пополам).
    angle BAC=angle DAC, angle ABD=angle CBD, angle BCA=angle DCA,
    angle CDB=angle ADB.
  5. Диагонали квадрата делят его на 4 равных прямоугольных равнобедренных треугольника:
    triangle AOB=triangle BOC=triangle COD=DOA.

Периметр квадрата P в 4 раза больше его стороны и равен: P=4a.

Площадь квадрата равна квадрату его стороны: S=a^2.

Теорема 1. Диагональ квадрата равна произведению его стороны на sqrt{2}, то есть
d=sqrt{2} cdot a.

Доказательство:

Рассмотрим квадрат ABCD. Проведем диагональ квадрата AC.

Треугольник АВС – прямоугольный с гипотенузой АС. Запишем для треугольника АВС теорему Пифагора:

AC^{2}=AB^{2}+BC^{2};

AC^{2}=a^{2}+a^{2}=2a^{2}, AC=asqrt{2}, что и требовалось доказать.

Теорема 2. Радиус вписанной в квадрат окружности равен половине его стороны:

displaystyle r=frac{1}{2}cdot a

Доказательство:

Пусть окружность с центром в точке О и радиусом r вписана в квадрат АВСD и касается его сторон в точках
P, M, N, K.

Тогда OP perp AB, ON perp CD, поскольку AB параллельно CD. Через точку О можно провести только одну прямую, перпендикулярную АВ, поэтому точки Р, О и N лежат на одной прямой. Значит, PN – диаметр окружности. Поскольку АРND – прямоугольник, то PN = AD, то есть

2r=a, r=a/2, что и требовалось доказать.

Теорема 3. Радиус описанной около квадрата окружности равен половине его диагонали:

R=frac{sqrt{2}}{2}cdot a.

Доказательство:

Диагонали квадрата АС и BD равны, пересекаются в точке О и делятся точкой пересечения пополам. Поэтому OA=OB=OC=OD, т.е. точки A, B, C и D лежат на одной окружности, радиус которой R = d/2 (d=AC=BD). Это и есть описанная около квадрата АВСD окружность.

По теореме 1:d=asqrt{2}.

Тогда R=afrac{sqrt{2}}{2}, что и требовалось доказать.

Заметим, что периметр квадрата тоже можно связать с радиусами вписанной и описанной окружностей:

P=4a=4sqrt{2}R=8r.

Четырехугольник является квадратом, если выполняется хотя бы одно из условий:

  1. Все стороны равны и среди внутренних углов есть прямой угол.
  2. Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.

Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.

Задача 1. Найдите сторону квадрата, диагональ которого равна sqrt{8}.

Решение:

Мы знаем, что d=sqrt{2} cdot a. Тогда a=genfrac{}{}{}{0}{displaystyle d}{displaystyle sqrt{2}}= 2.

Ответ: 2.

Задача 2. Найдите площадь квадрата, если его диагональ равна 1.

Первый способ решения:

Зная связь между стороной и диагональю квадрата (теорема 1), выразим сторону квадрата через его диагональ:

displaystyle d=sqrt{2}cdot a Rightarrow a=frac{d}{sqrt{2}}Rightarrow a=frac{1}{sqrt{2}}.

Тогда по формуле площади квадрата:

displaystyle S=a^{2}=left (frac{1}{sqrt{2}} right )^{2}=frac{1}{2}=0,5.

Второй способ решения:

Воспользуемся формулой для площади ромба:

displaystyle S=frac{1}{2}d_{1}d_{2}=frac{1}{2}d^{2}=0,5.

Ответ: 0,5

Задача 3. Найдите радиус окружности, описанной около квадрата со стороной, равной sqrt{8}.

Решение:

Рисунок к задаче 2

Радиус описанной окружности равен половине диагонали квадрата, поэтому

displaystyle R=frac{d}{2}=afrac{sqrt{2}}{2}=sqrt{8}cdot frac{sqrt{2}}{2}=2.

Ответ: 2.

Задача 4. Найдите сторону квадрата, описанного около окружности радиуса 4.

Решение:

Рисунок к задаче 3

Диаметр окружности равен стороне квадрата: a=2r=8.

Ответ: 8.

Задача 5. Радиус вписанной в квадрат окружности равен 14sqrt{2}. Найдите диагональ этого квадрата.

Решение:

Сторона квадрата в два раза больше радиуса вписанной окружности:

a=2r=28sqrt{2}.

Диагональ найдем, зная сторону квадрата:

d=asqrt{2}=28sqrt{2}cdot sqrt{2}=56.

Ответ: 56.

Задача 6. Радиус вписанной в квадрат окружности равен 11sqrt{2}. Найдите радиус окружности, описанной около этого квадрата.

Решение:

Радиус окружности, вписанной в квадрат, равен половине стороны квадрата, а радиус описанной окружности равен половине диагонали квадрата:

displaystyle r=frac{a}{2}; R=frac{d}{2}; d=asqrt{2}.

Поэтому R=rsqrt{2}=11sqrt{2}cdot sqrt{2}=22.

Ответ: 22.

Задача 7. Найдите периметр квадрата, если его площадь равна 9.

Решение:

Найдем сторону квадрата: a=sqrt{S}=sqrt{9}=3.

Периметр квадрата со стороной 3 равен: P=4a=12.

Ответ: 12.

Задача 8. Найдите площадь квадрата, в который вписан круг площадью 4pi .

Решение:

Площадь круга S_{kp}=pi r^{2}=4pi , откуда радиус круга равен 2.

Сторона квадрата в два раза больше радиуса вписанного круга и равна 4. Площадь квадрата равна 16.

Ответ: 16.

Задача 9. Найдите радиус окружности, вписанной в квадрат ABCD, считая стороны квадратных клеток равными sqrt{2}.

 

Решение:

Сторону квадрата найдем как диагональ другого квадрата со стороной 2 клеточки. Поскольку длина одной клеточки равна sqrt{2}., то сторона малого квадрата равна 2sqrt{2}. А сторона квадрата ABCD равна 2sqrt{2}cdot sqrt{2}=4.

Радиус вписанной окружности в два раза меньше стороны квадрата и равен 2.

Ответ: 2.

Задача 10. Найдите радиус r окружности, вписанной в четырехугольник ABCD. В ответе укажите r sqrt{10}.

Решение:

Считаем стороны клеток равными единице. Четырехугольник ABCD — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.

Найдем на чертеже прямоугольный треугольник. По теореме Пифагора найдем сторону, например, AB.

Она равна sqrt{10}. Тогда радиус вписанной окружности равен genfrac{}{}{}{0}{displaystyle sqrt{10}}{displaystyle 2}. В ответ запишем r sqrt{10}.

Ответ: 5.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Квадратu0026nbsp;u0026mdash; определение иu0026nbsp;свойства» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

При помощи нашего калькулятора вы легко сможете узнать длину стороны вписанного в круг квадрата.

Для того что бы найти длину стороны вписанного в круг квадрата, нам необходимо узнать длину ребра этого квадрата. Для этого нам необходимо разделить квадрат по диагонали на два равнобедренных треугольника, при этом основание у этих треугольников будет равно диаметру круга.

Следующим действиям мы должны определиться с известной нам величиной круга в которую вписан квадрат, а именно нам должна быть известна:

  1. либо площадь круга, обозначаемая буквой S,
  2. либо периметр круга, обозначаемый буквой P,
  3. либо радиус круга, обозначаемый буквой R,
  4. либо диаметр круга, обозначаемый буквой D.

Начнем по порядку, мы имеем равнобедренный прямоугольный треугольник и для того, что бы узнать длину его ребер нам необходимо воспользоваться теоремой Пифагора исходя из которой

c2 = 2a2,
Таким образом
a =

c2/2

Теперь для того что бы найти длину ребра треугольника (которое равно стороне нашего квадрата) нам необходимо узнать длину основания треугольника, которое равно диаметру круга

D = c

1. Если нам известна площадь круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

2. Если нам известна длина круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

D=P/π

3. Если нам известен радиус круга в который вписан квадрат то для нахождения диаметра нам необходимо воспользоваться следующей формулой:

D=2R

Соответственно если мы знаем диаметр круга который равен основанию треугольника полученного путем разделения квадрата на две части по диагонали,

c=D

мы можем узнать длину сторон квадрата используя теорему Пифагора

Квадрат. Формулы и свойства квадрата

Определение.

Квадрат – это четырехугольник у которого все четыре стороны и углы одинаковы.
Квадраты отличаются между собой только длиной стороны, но все четыре угла у них прямые, то есть по 90°.

Основные свойства квадрата

Квадратом также могут быть параллелограмм, ромб или прямоугольник если они имеют одинаковые длины диагоналей, сторон и одинаковые углы.

1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны:

AB = BC = CD = AD

2. Противоположные стороны квадрата параллельны:

AB||CD,   BC||AD

3. Все четыре угла квадрата прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

4. Сумма углов квадрата равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

5. Диагонали квадрата имеют одинаковой длины:

AC = BD

6. Каждая диагональ квадрата делит квадрат на две одинаковые симметричные фигуры

7. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам:

ACBD        AO = BO = CO = DO =  d
2

8. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности

9. Каждая диагональ делит угол квадрата пополам, то есть они являются биссектрисами углов квадрата:

ΔABC = ΔADC = ΔBAD = ΔBCD
∠ACB = ∠ACD = ∠BDC = ∠BDA = ∠CAB = ∠CAD = ∠DBC = ∠DBA = 45°

10. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные и прямоугольные:

ΔAOB = ΔBOC = ΔCOD = ΔDOA

Диагональ квадрата

Определение.

Диагональю квадрата называется любой отрезок, соединяющий две вершины противоположных углов квадрата.

Диагональ любого квадрата всегда больше его стороны в√2 раз.

Формулы определения длины диагонали квадрата

1. Формула диагонали квадрата через сторону квадрата:

d = a·√2

2. Формула диагонали квадрата через площадь квадрата:

d = √2S

3. Формула диагонали квадрата через периметр квадрата:

4. Формула диагонали квадрата через радиус описанной окружности:

d = 2R

5. Формула диагонали квадрата через диаметр описанной окружности:

d = Dо

6. Формула диагонали квадрата через радиус вписанной окружности:

d = 2r2

7. Формула диагонали квадрата через диаметр вписанной окружности:

d = Dв2

8. Формула диагонали квадрата через длину отрезка l:

Периметр квадрата

Определение.

Периметром квадрата называется сумма длин всех сторон квадрата.

Формулы определения длины периметра квадрата

1. Формула периметра квадрата через сторону квадрата:

P = 4a

2. Формула периметра квадрата через площадь квадрата:

P = 4√S

3. Формула периметра квадрата через диагональ квадрата:

P = 2d2

4. Формула периметра квадрата через радиус описанной окружности:

P = 4R√2

5. Формула периметра квадрата через диаметр описанной окружности:

P = 2Dо2

6. Формула периметра квадрата через радиус вписанной окружности:

P = 8r

7. Формула периметра квадрата через диаметр вписанной окружности:

P = 4Dв

8. Формула периметра квадрата через длину отрезка l:

Площадь квадрата

Определение.

Площадью квадрата называется пространство, ограниченное сторонами квадрата, то есть в пределах периметра квадрата.

Площадь квадрата больше площади любого четырехугольника с таким же периметром.

Формулы определения площади квадрата

1. Формула площади квадрата через сторону квадрата:

S = a2

2. Формула площади квадрата через периметр квадрата:

3. Формула площади квадрата через диагональ квадрата:

4. Формула площади квадрата через радиус описанной окружности:

S = 2R2

5. Формула площади квадрата через диаметр описанной окружности:

6. Формула площади квадрата через радиус вписанной окружности:

S = 4r2

7. Формула площади квадрата через диаметр вписанной окружности:

S = Dв2

8. Формула площади квадрата через длину отрезка l:

Окружность описанная вокруг квадрата

Определение.

Кругом описанным вокруг квадрата называется круг проходящий через четыре вершины квадрата и имеющий центр на пересечении диагоналей квадрата.

Радиус окружности описанной вокруг квадрата всегда больше радиуса вписанной окружности в√2 раз.

Радиус окружности описанной вокруг квадрата равен половине диагонали.

Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.

Формулы определения радиуса окружности описанной вокруг квадрата

1. Формула радиуса окружности описанной вокруг квадрата через сторону квадрата:

2. Формула радиуса окружности описанной вокруг квадрата через периметр квадрата:

3. Формула радиуса окружности описанной вокруг квадрата через площадь квадрата:

4. Формула радиуса круга описанного вокруг квадрата через диагональ квадрата:

5. Формула радиуса круга описанного вокруг квадрата через диаметр описанной окружности:

6. Формула радиуса круга описанного вокруг квадрата через радиус вписанной окружности:

R = r2

7. Формула радиуса круга описанного вокруг квадрата через диаметр вписанной окружности:

8. формула радиуса круга описанного вокруг квадрата через длину отрезка l:

Окружность вписанная в квадрата

Определение.

Кругом вписанным в квадрат называется круг, который примыкает к серединам сторон квадрата и имеет центр на пересечении диагоналей квадрата.

Радиус вписанной окружности равен половине стороны квадрата.

Площадь круга вписанного в квадрат меньше площади квадрата в 4/π раза.

Формулы определения радиуса круга вписанного в квадрат

1. Формула радиуса круга вписанного в квадрат через сторону квадрата:

2. Формула радиуса круга вписанного в квадрат через диагональ квадрата:

3. Формула радиуса круга вписанного в квадрат через периметр квадрата:

4. Формула радиуса круга вписанного в квадрат через площадь квадрата:

5. Формула радиуса круга вписанного в квадрат через радиус описанной окружности:

6. Формула радиуса круга вписанного в квадрат через диаметр, описанной окружности:

7 Формула радиуса круга вписанного в квадрат через диаметр вписанной окружности:

8. Формула радиуса круга вписанного в квадрат через длину отрезка l:

Добавить комментарий