Параллелепипед – это частный случай призмы, у которой основание и грани представляют собой параллелограмм.
Различают несколько разновидностей этой геометрической фигуры – прямой / прямоугольный параллелепипед, наклонный параллелепипед.
Высота параллелепипеда – это отрезок, который соединяет плоскости верхнего основания и нижнего основания параллелепипеда.
Высота перпендикулярна плоскости нижнего основания.
Для того, чтобы найти высоту параллелепипеда, можно воспользоваться традиционной формулой:
H = V / S.
H – высота параллелепипеда, V – объём параллелепипеда, S – площадь основания.
При этом объём параллелепипеда вычисляется по формуле: S = a * b * c, где a,b и c – это длины 3 измерений.
Что касается площади основания, то здесь может быть несколько случаев.
Если основание представляет собой параллелограмм, то S = a * b * sin(ab) – произведение 2 сторон на синус угла между ними.
Если мы имеем дело с прямоугольным параллелепипедом, то S = a * b – произведение 2 сторон.
Пример:
Боковое ребро наклонного параллелепипеда равно 10 см. Стороны основания равны 4 и 6 см, а угол между ними равен 30 градусов. Нужно найти высоту параллелепипеда.
1) V = 4 * 6 * 10 = 240 см3.
2) S = 4 * 6 * sin30° = 24 * 0,5 = 12 см.
3) H = V / S = 240 / 12 = 20 см.
Значит, высота параллелепипеда будет равна 20 см.
_
В случае с прямоугольным параллелепипедом всё немного проще.
Здесь высота будет совпадать с длиной грани (ребром) данной фигуры. Поэтому для нахождения высоты достаточно вычислить, чему равно боковое ребро.
Представление о том, что такое прямоугольный параллелепипед, все имеют еще с детства, когда играли в кубики, держали в руках такие предметы, как коробка из-под сока или из- под конфет, видели аквариум такой формы. В жизни мы постоянно сталкиваемся с предметами, которые представляют собой прямоугольный параллелепипед (рисунок 1).
Рисунок 1
Определение
Прямоугольный параллелепипед – это шестигранник, у которого все грани являются прямоугольниками. Грань – плоская поверхность предмета, составляющая угол с другой такой же поверхностью. Основания параллелепипеда – это его верхняя и нижняя грани.
Так, на рисунке 2 показан прямоугольный параллелепипед ABCDEFGH. Он имеет 6 граней, основаниями являются грани ABCD и EFGH.
У параллелепипеда есть вершины, их 8. Они обозначены заглавными латинскими буквами. Также у прямоугольного параллелепипеда есть 12 ребер – это стороны граней: AB, BC, CD, AD, EF, FG, HG, EH, AE, BF, CG, HD.
Рисунок 2
Противоположные (не имеющие общих вершин) грани прямоугольного параллелепипеда равны.
Длина, ширина, высота
Прямоугольный параллелепипед имеет три измерения – длину (а), ширину (b) и высоту (c) – рисунок 3. Зная эти измерения, можно найти не только площадь каждой грани, но и площадь всей поверхности прямоугольного параллелепипеда.
Рисунок 3
Так как каждая грань параллелепипеда – это прямоугольник, то для нахождения площади любой грани надо умножить длину и ширину этих граней, т.е S=ab, S=bc, S=ac.
Для нахождения площади поверхности прямоугольного параллелепипеда надо сложить площади всех граней, то есть S поверхности = ab+bc+ac+ab+bc+ac. Так как противоположные грани равны, то их площади тоже равны, значит S поверхности = 2ab+2bc+2ac. Это действие можно записать короче, вынося 2 за скобки, как общий множитель, то есть S поверхности = 2(ab+bc+ac). Таким образом, нахождение площади поверхности становится более быстрым.
Куб
Прямоугольный параллелепипед, у которого все измерения равны, называется кубом. Поверхность куба состоит из шести равных квадратов (рисунок 4).
Рисунок 4
Для нахождения площади одной грани достаточно найти площадь квадрата по формуле S=a2. Тогда для нахождения площади поверхности куба надо эту площадь умножить на 6, так как шесть равных граней у куба: S=6a2
Объем прямоугольного параллелепипеда
Рисунок 5
С понятием объема люди встречаются в повседневной жизни ежедневно. Мы наливаем воду в чайник, в ванну, другие жидкости в разные ёмкости – это всё измеряется в определенных единицах и является объемом. Наши шкафы, холодильники и другие подобные предметы – имеют объемы, так как мы их заполняем определенными вещами. На рисунке 5 показаны предметы, которые мы используем и которые имеют определенный объем.
Рассмотрим объемные геометрические фигуры. Так, например, прямоугольный параллелепипед. Рассмотрим рисунок 6, где показано, что параллелепипед состоит из нескольких одинаковых кубиков. Значит, объем данного параллелепипеда равен сумме объемов его кубиков.
Рисунок 6
За единицу измерения объема выбирают куб, ребро которого равно единичному отрезку. Такой куб называют единичным.
Объем куба с ребром 1 мм называют кубическим миллиметром и записывают 1 мм3; с ребром 1 см – кубическим сантиметром (см3) и так далее. Измерить объем фигуры – значит подсчитать, сколько единичных кубов в ней помещается. Если объем маленького кубика на рисунке 3 принять за единицу, то объем нашего прямоугольного параллелепипеда будет равен 15 кубическим единицам.
Формула объема прямоугольного параллелепипеда
Чтобы найти объем прямоугольного параллелепипеда, надо перемножить три его измерения – длину, ширину и высоту. То есть V=abc (рисунок 4). Зная, что произведение длины и ширины – это есть площадь основания, получим, что V=(ab)h=Sh, где h – высота прямоугольного параллелепипеда. Таким образом, мы получили еще одну формулу для нахождения объема параллелепипеда.
Рисунок 7
Объем куба
Поскольку у куба все ребра равны (рисунок 7), то его объем вычисляется по формуле:
V=a3
Рисунок 8
Пирамида
Рисунок 9
Прямоугольный параллелепипед является одним из видов многогранников. Также одним из видов многогранника является пирамида, образ которой также известен нам из жизни – из истории и других источников (рисунок 9).
Поверхность пирамиды состоит из боковых граней – треугольников, которые имеют общую вершину, а в её основании могут быть различные многоугольники – треугольник, четырехугольник, пятиугольник и т.д. (рисунок 10).
Рисунок 10
Таким образом, пирамиды можно классифицировать по количеству сторон основания (треугольная, четырехугольная, пятиугольная и т.д.). Если пирамида треугольная (рисунок 11), то её основанием может служить любая грань.
Рисунок 11
Даниил Романович | Просмотров: 920
Как найти высоту параллелипипеда зная длину и ширину при неизвестном обьёме
Найди верный ответ на вопрос ✅ «Как найти высоту параллелипипеда зная длину и ширину при неизвестном обьёме …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Главная » Математика » Как найти высоту параллелипипеда зная длину и ширину при неизвестном обьёме
Геометрические фигуры. Прямоугольный параллелепипед.
Прямоугольный параллелепипед — прямой параллелепипед с прямоугольником в основании. У прямоугольного параллелепипеда каждая из шести граней является прямоугольником.
Примерами прямоугольного параллелепипеда являются спортивный зал, коробок спичек или системный блок компьютера.
Формулы прямоугольного параллелепипеда.
Прямоугольный параллелепипед с одинаковыми измерениями является кубом. Все 6 граней куба являются равными квадратами.
Обозначим длину ребра куба как n, тогда площадь 1-ой грани:
Площадь поверхности куба:
У прямоугольного параллелепипеда есть еще одно измерение – объем параллелепипеда (обозначается как V).
Прямоугольники, которые составляют поверхность параллелепипеда, являются гранями параллелепипеда.
Прямоугольный параллелепипед определяют 3-мя измерениями:
Высота (обозначают как h) равняется длине ребра № 1.
Длина (обозначают как m) равняется длине ребра № 2.
Ширина (обозначают как n) равняется длине ребра № 3.
Площадь всей поверхности параллелепипеда обозначают как S:
В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений.
Прямоугольный параллелепипед
Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.
На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.
Свойства прямоугольного параллелепипеда:
- В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
- Противоположные грани попарно равны и параллельны.
- Все двугранные углы прямоугольного параллелепипеда – прямые.
- Диагонали прямоугольного параллелепипеда равны.
- Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
- Любая грань прямоугольного параллелепипеда может быть принята за основание.
- Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
- Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).
Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.
Чтобы были понятны формулы, введем обозначения:
$с$ — высота(она же боковое ребро);
$P_$ — периметр основания;
$S_$ — площадь основания;
$S_$ — площадь боковой поверхности;
$S_$ — площадь полной поверхности;
$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.
$S_=P_·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.
Дополнительные сведения, которые пригодятся для решения задач:
$а$ — длина стороны.
$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.
Пирамида
Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.
Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.
Объем любой пирамиды равен трети произведения основания и высоты.
В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.
В основании лежит треугольник.
- $S=/$, где $h_a$ — высота, проведенная к стороне $а$.
- $S=/$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
- Формула Герона $S=√
$, где $р$ — это полупериметр $p=/$.
- $S=p·r$, где $r$ — радиус вписанной окружности.
- $S=/$, где $R$ — радиус описанной окружности.
- Для прямоугольного треугольника $S=/$, где $а$ и $b$ — катеты прямоугольного треугольника.
- Для равностороннего треугольника $S=/$, где $а$ — длина стороны.
В основании лежит четырехугольник.
- Прямоугольник.
$S=a·b$, где $а$ и $b$ — смежные стороны. - Ромб.
$S=/$, где $d_1$ и $d_2$ — диагонали ромба.
$S=a^2·sinα$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами. - Трапеция.
$S=/$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции. - Квадрат.
$S=a^2$, где $а$ — сторона квадрата.
Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.
Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.
Объем пирамиды, в основании которой лежит прямоугольник
Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.
В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.
Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).
В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.
Измерения прямоугольного параллелепипеда и его свойства
Что такое прямоугольный параллелепипед — определение
Параллелепипед — это призма с шестью гранями, в основании которой лежит параллелограмм.
Согласно другому определению, это многогранник, состоящий из шести сторон-параллелограммов.
В математике в целом, и в геометрии в частности, выделяют несколько основных видов параллелепипеда:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
- прямоугольный;
- прямой — параллелепипед, у которого 4 боковые грани являются прямоугольниками;
- наклонный — боковые грани объемной фигуры не перпендикулярны основаниям;
- ромбоэдр — шестигранная призма, грани которой — это ромбы;
- куб — состоит из квадратных граней.
Прямоугольный параллелепипед — это шестигранная призма, каждая из сторон которой в общем случае является прямоугольником. Также это — многогранник, в основании которого лежит прямоугольник, а боковые грани перпендикулярны основанию.
Прямоугольных параллелепипедов в окружающем человека мире множество: комната, закрытая книга, системный блок компьютера, закрытая коробка для подарка, спичечный коробок и т. д.
Прямоугольный параллелепипед, как и любой другой, состоит из:
- основания;
- граней — противоположных, т. е. не имеющих общего ребра, и смежных — тех, которые имеют общее ребро;
- ребер — отрезков, соединяющих соседние вершины объемной шестигранной фигуры;
- диагоналей — отрезков, соединяющих противоположные вершины;
- диагоналей граней;
- высоты — отрезка, соединяющего верхнее и нижнее основания шестигранной призмы.
В некоторых базовых задачах просят найти количество составляющих элементов шестигранной призмы. Эти числа можно запомнить: объемная фигура состоит из 8 вершин, 12 ребер и 6 граней.
Измерениями прямоугольного параллелепипеда называют его длину, ширину и высоту.
Свойства параллелепипеда, какими обладают противолежащие грани
Вне зависимости от вида параллелепипеда, все они обладают 4 свойствами:
- Противолежащие грани равны друг другу и попарно параллельны.
- Все 4 диагонали шестигранника пересекаются в одной точке, которой делятся пополам. Любой отрезок, проходящий через середину диагонали, и концы которого принадлежат поверхности, также делится пополам.
- Фигура симметрична относительно середины диагонали.
- Квадрат длины диагонали равен сумме квадратов трех измерений.
Прямоугольный параллелепипед обладает всеми этими свойствами и несколькими специфичными, свойственными только ему.
- Все стороны — прямоугольники.
- Все углы, состоящие из двух граней, равны 90°.
- Любую сторону можно принять за основание.
- Если все ребра равны и перпендикулярны, то такой шестигранник считается кубом.
Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда
Объем прямоугольного параллелепипеда равен длине, умноженной на ширину и высоту.
где V — объем, a — длина, b — ширина, h — высота.
Площадь боковой поверхности равна сумме площадей боковых граней.
Площадь полной поверхности равна сумме площадей боковых граней и оснований.
Как найти диагональ и ширину прямоугольного параллелепипеда
В соответствии с одним из основных свойств параллелепипеда, квадрат длины диагонали равен сумме квадратов трех измерений. Запишем в виде формулы:
Следовательно, длина диагонали равна квадратному корню из суммы трех измерений фигуры:
Длина, ширина и высота, как правило, вычисляются через формулу объема:
Существует и второй вариант, как возможно найти одно из измерений. Если известно смежное ему измерение и диагональ общей стороны шестигранника, то можно вычислить вторую сторону через теорему Пифагора или по свойствам диагонали.
Как найти высоту, если известна длина и ширина
В основании многих геометрических фигур лежат прямоугольники и квадраты. Наиболее распространен среди них параллелепипед. Также к ним относятся куб, пирамида и усеченная пирамида. Все эти четыре фигуры имеют параметр, называемый высотой.
Инструкция
Начертите простейшую изометрическую фигуру, называемую прямоугольным параллелепипедом. Она получила свое название по той причине, что ее гранями являются прямоугольники. Основание данного параллелепипеда также является прямоугольником, имеющим ширину a и длину b.
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту: V = S*h. Поскольку в основании параллелепипеда лежит прямоугольник, площадь этого основания равна S=a*b, где a – длина, b – ширина. Отсюда, объем равен V=a*b*h, где h – высота (причем, h = c, где c – ребро параллелепипеда). Если в задаче требуется найти высоту параллелепипеда, преобразуйте последнюю формулу следующим образом: h=V/a*b.
Существуют прямоугольные параллелепипеды, в основаниях которых лежат квадраты. Все его грани представляют собой прямоугольники, из которых квадратами являются два. Это означает, что его объем равен V=h*a^2, где h – высота параллелепипеда, a – длина квадрата, равная ширине. Соответственно, высоту данной фигуры найдите следующим образом: h=V/a^2.
У куба квадратами с одинаковыми параметрами являются все шесть граней. Формула для вычисления его объема выглядит так: V=a^3. Вычислять любую из его сторон, если известна другая, не требуется, поскольку все они равны между собой.
Все вышеперечисленные способы предполагают вычисление высоты через объем параллелепипеда. Однако существует и другой способ, позволяющий вычислить высоту при заданной ширине и длине. Им пользуются в том случае, если в условии задачи вместо объема приведена площадь. Площадь параллелепипеда равна S=2*a^2*b^2*c^2. Отсюда, c (высота параллелепипеда) равна с=sqrt(s/(2*a^2*b^2)).
Существуют и другие задачи по вычислению высоты при заданных длине и ширине. В некоторых из них фигурируют пирамиды. Если в задаче дан угол при плоскости основания пирамиды, а также ее длина и ширина, найдите высоту, используя теорему Пифагора и свойства углов.
Для того, чтобы найти высоту пирамиды, сначала определите диагональ основания. Из чертежа можно сделать вывод, что диагональ равна d=√a^2+b^2. Поскольку высота падает в центр основания, половину диагонали найдите следующим образом: d/2=√a^2+b^2/2. Высоту найдите, используя свойства тангенса: tgα=h/√a^2+b^2/2. Отсюда следует, что высота равна h=√a^2+b^2/2*tgα.
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.