Параллелепипед – это частный случай призмы, у которой основание и грани представляют собой параллелограмм.
Различают несколько разновидностей этой геометрической фигуры – прямой / прямоугольный параллелепипед, наклонный параллелепипед.
Высота параллелепипеда – это отрезок, который соединяет плоскости верхнего основания и нижнего основания параллелепипеда.
Высота перпендикулярна плоскости нижнего основания.
Для того, чтобы найти высоту параллелепипеда, можно воспользоваться традиционной формулой:
H = V / S.
H – высота параллелепипеда, V – объём параллелепипеда, S – площадь основания.
При этом объём параллелепипеда вычисляется по формуле: S = a * b * c, где a,b и c – это длины 3 измерений.
Что касается площади основания, то здесь может быть несколько случаев.
Если основание представляет собой параллелограмм, то S = a * b * sin(ab) – произведение 2 сторон на синус угла между ними.
Если мы имеем дело с прямоугольным параллелепипедом, то S = a * b – произведение 2 сторон.
Пример:
Боковое ребро наклонного параллелепипеда равно 10 см. Стороны основания равны 4 и 6 см, а угол между ними равен 30 градусов. Нужно найти высоту параллелепипеда.
1) V = 4 * 6 * 10 = 240 см3.
2) S = 4 * 6 * sin30° = 24 * 0,5 = 12 см.
3) H = V / S = 240 / 12 = 20 см.
Значит, высота параллелепипеда будет равна 20 см.
_
В случае с прямоугольным параллелепипедом всё немного проще.
Здесь высота будет совпадать с длиной грани (ребром) данной фигуры. Поэтому для нахождения высоты достаточно вычислить, чему равно боковое ребро.
Тоня
Знаток
(279)
15 лет назад
Это шутка?Какая формула может быть у высоты?
Вот объем параллелепипеда такой: длину умножить на ширину и на высоту.
Отсюда,зная площадь,можно и высоту найти
Егор ГаанУченик (104)
5 лет назад
Объём прямоугольного параллепипеда 48 высота 8 надо найти площадь помогите пж
Aннушка
Гуру
(4523)
15 лет назад
ну да. согласная. вот формула
Объем прямого цилиндра равен произведению площади его основания на высоту.
Следствие 1. Объем прямоугольного параллелепипеда равен произведению трех его измерений, т.е. имеет место формула , V=a*b*c где a,b , c- –ребра параллелепипеда.
если высота а – то a= V/ (b*c) например v=a*b*c 24=2*3*4 2= 24/12
/ – знак разделить
Evgeniy Maklakov
Мастер
(1368)
15 лет назад
Она обсалютно прова >>>
Aннушка
Добавить в друзья
ну да. согласная. вот формула
Объем прямого цилиндра равен произведению площади его основания на высоту.
Следствие 1. Объем прямоугольного параллелепипеда равен произведению трех его измерений, т.е. имеет место формула , V=a*b*c где a,b , c- –ребра параллелепипеда.
Как найти высоту, если известна длина и ширина
В основании многих геометрических фигур лежат прямоугольники и квадраты. Наиболее распространен среди них параллелепипед. Также к ним относятся куб, пирамида и усеченная пирамида. Все эти четыре фигуры имеют параметр, называемый высотой.
Инструкция
Начертите простейшую изометрическую фигуру, называемую прямоугольным параллелепипедом. Она получила свое название по той причине, что ее гранями являются прямоугольники. Основание данного параллелепипеда также является прямоугольником, имеющим ширину a и длину b.
Объем прямоугольного параллелепипеда равен произведению площади основания на высоту: V = S*h. Поскольку в основании параллелепипеда лежит прямоугольник, площадь этого основания равна S=a*b, где a – длина, b – ширина. Отсюда, объем равен V=a*b*h, где h – высота (причем, h = c, где c – ребро параллелепипеда). Если в задаче требуется найти высоту параллелепипеда, преобразуйте последнюю формулу следующим образом: h=V/a*b.
Существуют прямоугольные параллелепипеды, в основаниях которых лежат квадраты. Все его грани представляют собой прямоугольники, из которых квадратами являются два. Это означает, что его объем равен V=h*a^2, где h – высота параллелепипеда, a – длина квадрата, равная ширине. Соответственно, высоту данной фигуры найдите следующим образом: h=V/a^2.
У куба квадратами с одинаковыми параметрами являются все шесть граней. Формула для вычисления его объема выглядит так: V=a^3. Вычислять любую из его сторон, если известна другая, не требуется, поскольку все они равны между собой.
Все вышеперечисленные способы предполагают вычисление высоты через объем параллелепипеда. Однако существует и другой способ, позволяющий вычислить высоту при заданной ширине и длине. Им пользуются в том случае, если в условии задачи вместо объема приведена площадь. Площадь параллелепипеда равна S=2*a^2*b^2*c^2. Отсюда, c (высота параллелепипеда) равна с=sqrt(s/(2*a^2*b^2)).
Существуют и другие задачи по вычислению высоты при заданных длине и ширине. В некоторых из них фигурируют пирамиды. Если в задаче дан угол при плоскости основания пирамиды, а также ее длина и ширина, найдите высоту, используя теорему Пифагора и свойства углов.
Для того, чтобы найти высоту пирамиды, сначала определите диагональ основания. Из чертежа можно сделать вывод, что диагональ равна d=√a^2+b^2. Поскольку высота падает в центр основания, половину диагонали найдите следующим образом: d/2=√a^2+b^2/2. Высоту найдите, используя свойства тангенса: tgα=h/√a^2+b^2/2. Отсюда следует, что высота равна h=√a^2+b^2/2*tgα.
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Как найти высоту параллелипипеда зная длину и ширину при неизвестном обьёме
Найди верный ответ на вопрос ✅ «Как найти высоту параллелипипеда зная длину и ширину при неизвестном обьёме …» по предмету 📙 Математика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Искать другие ответы
Главная » Математика » Как найти высоту параллелипипеда зная длину и ширину при неизвестном обьёме
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 мая 2022 года; проверки требуют 4 правки.
Параллелепи́пед (др.-греч. παραλληλ-επίπεδον[1] от др.-греч. παρ-άλληλος — «параллельный» и др.-греч. ἐπί-πεδον — «плоскость») — четырёхугольная призма, все грани которой являются параллелограммами.
Типы параллелепипеда[править | править код]
Прямоугольный параллелепипед
Различается несколько типов параллелепипедов:
- Наклонный — боковые грани не перпендикулярны основанию.
- Прямой — боковые грани перпендикулярны основанию.
- Прямоугольный — все грани являются прямоугольниками.
- Ромбоэдр — все грани являются равными ромбами.
- Куб — все грани являются квадратами.
Основные элементы[править | править код]
Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.
Свойства[править | править код]
- Параллелепипед симметричен относительно середины его диагонали.
- Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
- Противолежащие грани параллелепипеда параллельны и равны.
- Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Основные формулы[править | править код]
Прямой параллелепипед[править | править код]
Площадь боковой поверхности
Sб=Ро*h, где Ро — периметр основания, h — высота
Площадь полной поверхности
Sп=Sб+2Sо, где Sо — площадь основания
Объём
V=Sо*h
Прямоугольный параллелепипед[править | править код]
Площадь боковой поверхности
Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда
Площадь полной поверхности
Sп=2(ab+bc+ac)
Объём
V=abc, где a, b, c — измерения прямоугольного параллелепипеда.
Куб[править | править код]
Площадь поверхности:
Объём: , где — ребро куба.
Произвольный параллелепипед[править | править код]
Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения[2]:215.
В математическом анализе[править | править код]
В математическом анализе под n-мерным прямоугольным параллелепипедом понимают множество точек вида
Сечение параллелепипеда плоскостью[править | править код]
В зависимости от расположения секущей плоскости и параллелепипеда сечение параллелепипеда может быть треугольником, четырехугольником, пятиугольником и шестиугольником.
Примечания[править | править код]
- ↑ Древнегреческо-русский словарь Дворецкого «παραλληλεπίπεδον»
- ↑ Гусятников П.Б., Резниченко С.В. Векторная алгебра в примерах и задачах. — М.: Высшая школа, 1985. — 232 с.
Ссылки[править | править код]
- Прямоугольный параллелепипед Архивная копия от 21 февраля 2020 на Wayback Machine