Как найти высоту параллелограмма через диагонали

Четырёхугольник, у которого стороны, находящиеся напротив друг друга параллельны и равны друг другу,
называется параллелограммом. Отрезок перпендикулярной прямой, проходящей от любой точки прямой, на
которой лежит одна из сторон параллелограмма через прямую, на которой расположена противоположная
сторона данной фигуры, является высотой параллелограмма. Высот параллелограмма можно провести
бесконечное множество через разные точки, но они неизменно будут перпендикулярны двум сторонам
фигуры.

  • Высота параллелограмма через площадь и основание
  • Высота параллелограмма через боковую сторону и острый угол
    при основании
  • Высота параллелограмма через длину отрезка, образованного
    на основании и боковую сторону
  • Высота параллелограмма через длину отрезка, образованного
    на основании и диагональ

Через площадь и основание

Высота параллелограмма равна отношению площади к основанию.

h = S / a

где h – длина высоты параллелограмма, S – площадь, a – длина основания.

Цифр после
запятой:

Результат в:

Пример. На рисунке представлены пара абсолютно одинаковых параллелограммов. На левом
обозначена длина стороны (основания) в 6 единиц и проходящие через нее в разных точках высоты в 4
единицы.Рисунок 1На
правом обозначена длина стороны (основания) в 5 единиц и проходящие через нее в разных точках высоты
в 4,8 единиц. Площадь параллелограмма можно вычислить умножением длины высоты на длину той стороны
(основания), которой эта высота перпендикулярна. Результат умножения будет одинаков для любой 2 двух
пар высота-основание. В рассматриваемом случае: 4 × 6 = 24; 4,8 × 5 = 24.
Можно визуально убедиться в этом, если разрезать фигуру и переставив части так, как показано на
рисунке.

Исходя из полученного, путем обратного подсчета можно вывести правило для определения высоты из
заданной площади и основания. В приведенном примере расчет будет выглядеть следующим образом: 24 / 6 = 4; 24 / 5 = 4,8.

Через длину отрезка, образованного на основании и диагональ

Вычисление высоты параллелограмма при известных длине отрезка образованного на основании и диагонали
производится также с использованием теоремы Пифагора. Высота в этом случае будет равна квадратному
корню из разницы диагонали и отрезка на основании.

h = √(d² — A2²)

где d — диагональ, A2 — отрезок образованный на основании.

Цифр после
запятой:

Результат в:

Пример. Пусть боковая сторона равна 47 см, отрезок образованный на основании равен
34 см, тогда получим h = √(b² — A1²) = √(47² — 34²) = 32,4 см.

Через боковую сторону и острый угол при основании

Если от тупого угла параллелограмма провести к основанию высоту, то образуется прямоугольный
треугольник, как показано на рисунке ниже. Если нам известна величина острого угла и длина боковой
стороны, то можно вычислить высоту через формулу синуса, который определяется как отношение катета к
гипотенузе. Роль катета здесь играет высота, а боковая сторона является гипотенузой. Соответственно
высота здесь будет равна произведению длины боковой стороны на синус острого угла.

h = b * sinα

где b — боковая сторона, sin α — острый угол при основании.

Рисунок 2

Цифр после
запятой:

Результат в:

Если известна величина тупого угла параллелограмма, то величину острого можно получить, отняв
величину тупого угла от 180 градусов.

Пример. Пусть боковая сторона b равна 115 см, острый угол при основании α равен 65º,
тогда получим h = b * sinα = 115 * sin 65 = 104 см.

Через длину отрезка, образованного на основании и боковую сторону

Вычисление высоты параллелограмма при известных длине отрезка образованного на основании и боковой
стороне производится с использованием теоремы Пифагора. Высота будет равна квадратному корню из
разницы квадратов боковой стороны и диагонали.

h = √(b² — A1²)

где b — боковая сторона, A1 — отрезок образованный на основании.

Цифр после
запятой:

Результат в:

Пример. Пусть боковая сторона равна 39 см, отрезок образованный на основании равен
16 см, тогда получим h = √(b² — A1²) = √(39² — 16²) = 35,6 см.

Пирамида определяется как трехмерная структура – многогранник, в основе которой лежит многоугольник.
В основании пирамиды находится многоугольник. Углы многоугольника соединены линиями – боковыми
ребрами с одной точкой, которая в пирамиде именуется как вершина. Треугольники, образованные парами
соседних боковых ребер и стороной основания называются боковыми гранями.

В основании правильной пирамиды лежит правильный многоугольник (тот у которого все стороны равны
между собой). У правильной пирамиды длина боковых ребер одинаковая. Соответственно правильная
пирамида образована боковыми гранями, являющимися равными равнобедренными треугольниками,
соединенными с основанием.

Апофемами в пирамиде называют отрезки прямых, проведенных от вершины перпендикулярно к основаниям.
Также, одновременно апофемы являются высотами треугольников – боковых граней.

Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на
апофему грани.

Установлено, что умение вычислять длину апофемы, было востребовано с древнейших времен для
строительства сооружений. Предположительно, перед возведением подобных сооружений предварительные
размеры могли быть отрегулированы древними инженерами с помощью натянутых шнуров. Расшифровка
древнеегипетских иероглифов дает перевод значения понятия землемера как «натяжителя веревок».

Умение вычислять высоту параллелограммов, было востребовано с древнейших времен для проверки
правильности измерений земельных участков. Множество древних народов тысячи лет назад воздвигали
пирамиды и курганы для различных целей. Современные измерения позволяют утверждать, что некоторые их
них точно ориентированы – как по сторонам света, так и в трехмерном измерении по созвездиям.
Вероятно, часть из этих сооружений использовалась для определения орбиты Земли относительно звезд.
Эти сведения использовались для определения времени начала различных сельскохозяйственных работ. От
этого зависела урожайность, а значит вопрос выживания народов. Таким образом, вычисление апофемы
позволяло точно ориентировать пирамиду в пространстве и спасало жизни людей.

Как найти высоту параллелограмма

Как определить высоту параллелограмма, зная некоторые из его остальных параметров? Таких, как площадь, длины диагоналей и сторон, величины углов.

параллелограмм

Вам понадобится

  • калькулятор

Инструкция

В задачах по геометрии, точнее по планиметрии и тригонометрии, иногда требуется найти высоту параллелограмма, исходя из заданных значений сторон, углов, диагоналей и т.п.

Чтобы найти высоту параллелограмма, зная его площадь и длину основания, необходимо воспользоваться правилом определения площади параллелограмма. Площадь параллелограмма, как известно, равняется произведению высоты на длину основания:

S=a*h, где:

S – площадь параллелограмма,

а – длина основания параллелограмма,

h – длина опущенной на сторону а высоты, (или на ее продолжение).

Отсюда получаем, что высота параллелограмма будет равняться площади, разделенной на длину основания:

h=S/a

Например,

дано: площадь параллелограмма равняется 50 кв.см., основание – 10 см.;

найти: высоту параллелограмма.

h=50/10=5 (см).

Так как высота параллелограмма, часть основания и прилежащая к основанию сторона образуют прямоугольный треугольник, то для нахождения высоты параллелограмма можно использовать некоторые соотношения сторон и углов прямоугольных треугольников.

Если известны прилежащая к высоте h (DE) сторона параллелограмма d (AD) и противоположный высоте угол A (BAD), то расчета высоты параллелограмма нужно умножить длину прилежащей стороны на синус противоположного угла:

h=d*sinA,

например, если d=10 см, а угол А=30 градусов, то

H=10*sin(30º)=10*1/2=5 (см).

Если в условиях задачи заданы длина прилежащей к высоте h (DE) стороне параллелограмма d (AD) и длина отсекаемой высотой части основания (АЕ), то высоту параллелограмма можно найти воспользовавшись теоремой Пифагора:

|AE|^2+|ED|^2=|AD|^2, откуда определяем:

h=|ED|=√(|AD|^2-|AE|^2),

т.е. высота параллелограмма равняется корню квадратному из разности квадратов длины прилежащей стороны и отсекаемой высотой части основания.

Например, если длина прилегающей стороны равняется 5 см., а длина отсекаемой части основания равна 3 см, то длина высоты будет:

h=√(5^2-3^2)=4 (см).

Если известны длина прилежащей к высоте диагональ (DВ) параллелограмма и длина отсекаемой высотой части основания (ВЕ), то высоту параллелограмма можно также найти воспользовавшись теоремой Пифагора:

|ВE|^2+|ED|^2=|ВD|^2, откуда определяем:

h=|ED|=√(|ВD|^2-|ВE|^2),

т.е. высота параллелограмма равняется корню квадратному из разности квадратов длины прилежащей диагонали и отсекаемой высотой (и диагональю) части основания.

Например, если длина прилегающей стороны равняется 5 см., а длина отсекаемой части основания равна 4 см, то длина высоты будет:

h=√(5^2-4^2)=3 (см).

Видео по теме

Источники:

  • что такое высота параллелограмма

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Примечание. Это часть урока с задачами по геометрии (раздел параллелограмм). Если Вам необходимо решить задачу по геометрии, которой здесь нет – пишите об этом в форуме. 

См. также:
Свойства и площадь параллелограмма.

Обозначения в формулах эквивалентны обозначениям на рисунках, а именно:

а – стороны, параллелограмма, параллельные друг другу

b – боковые стороны параллелограмма

h – высота параллелограмма

d – диагональ параллелограмма

S – площадь параллелограмма

α – острый угол при основании параллелограмма

Высота параллелограмма равна соотношению площади к основанию (Формула 1)

Высота параллелограмма равна произведению боковой стороны на синус угла при основании (Формула 2)

Соотношение оснований параллелограмма равно обратно пропорциональному соотношению высот, опущенных на соответствующие стороны (Формула 3)

Высоты параллелограмма, опущенные из одной вершины, образуют угол, равный углу параллелограмма при соседней вершине (Рисунок 2)

Высота параллелограмма равна, корню из разности квадрата боковой стороны и квадрата длины отрезка, образующего прямоугольный треугольник, другими сторонами которого являются боковая сторона и высота (Формула 4)

Высота параллелограмма равна корню из разности квадрата диагонали, из которой опущена высота и квадрата длины отрезка между точкой, из которой проведена диагональ и точкой пересечения высоты и основания (Формула 5)

Позначення у формулах еквівалентні позначенням на малюнках, а саме:

а – сторони, паралелограма, паралельні один одному

b – бічні сторони паралелограма

h – висота паралелограма

d – дiагональ паралелограма

S – площа паралелограма

α – гострий кут при основі паралелограма

Висота паралелограма дорівнює співвідношенню площі до підстави (Формула 1)  

Висота паралелограма дорівнює твору бічної сторони на синус кута при його основі (Формула 2)  

Співвідношення підстав паралелограма дорівнює обернено пропорційному співвідношенню висот, опущених на відповідні сторони (Формула 3)

Висоти паралелограма, опущені з однієї вершини, утворюють кут, рівний куту паралелограма при сусідній вершині (Малюнок 2)

Висота паралелограма рівна, корню з різниці квадрата бічної сторони і квадрата довжини відрізка, створюючого прямокутний трикутник, іншими сторонами якого є бічна сторона і висота (Формула 4)

Висота паралелограма дорівнює корню з різниці квадрата діагоналі, з якої опущена висота і квадрата довжини відрізка між точкою, з якої проведена діагональ і точкою пересічення висоти і основання (Формула 5)

Решение.

Параллелограмм

  Поскольку, по условию задачи,  AE=ED,  то треугольники ABE и DBE равны между собой (по первому признаку равенства треугольников: равны две стороны и угол между ними, AE=ED и  BE – общая сторона, а BE образует с AD  угол 90 градусов). Таким образом, угол ADB равен 30 градусам. Соответственно, угол DBC также равен 30 градусам как внутренние накрест лежащие при параллельных прямых BC и AD.

Из прямоугольного треугольника  ABE определим, что угол ABE равен 180 – 90 – 30 = 60 градусов. Откуда (из равенства треугольников ABE и DBE) угол EBD также равен 60 градусов. Таким образом, диагональ образует со вторым основанием угол ABD = 60 + 60 = 120 градусов. BDC = ABD = 120 градусов как внутренние накрест лежащие.

Найдем длину диагонали.

BE / BD = cos ∠EBD

BE / BD = cos 60

Подставим значение косинуса 60 градусов и получим:

BE / BD = 1/2

По условию задачи BE = 5 см, откуда

5 / BD = 1/2

BD = 10

Ответ: длина диагонали параллелограмма равна 10 см, углы, которые образует диагональ с основаниями равны 30 и 120 градусов.


Высота – перпендикуляр исходящий из вершины угла на противоположенную сторону

Высота параллелограммаa, b – стороны параллелограмма

Hb высота на сторону b

Ha – высота на сторону a

αβ – углы параллелограмма

Формулы длины высоты параллелограмма, через сторону и угол, ( Hb, Ha):

Формула высоты параллелограмма

Формула высоты параллелограмма

Острый угол пересечения высот, равен острому углу параллелограмма.

Тупой угол пересечения высот, равен тупому углу параллелограмма.



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства биссектрисы параллелограмма

Биссектриса по определению делит угол пополам

Биссектриса отсекает равнобедренный треугольник   (в данном случае треугольники ABF и DKC)

Биссектрисы смежных углов, пересекаются под прямым углом (90°)

Биссектрисы противоположных углов, равны и параллельны

Биссектриса параллелограммаAF – биссектриса из острого угла

DK – биссектриса из тупого угла

α – острый угол

β тупой угол

a – меньшая сторона

b – большая сторона

Так как треугольники ABF и DKC, равнобедренные, следовательно справедливы тождества:

Свойства биссектрисы параллелограмма

Свойства биссектрисы параллелограмма


Длина биссектрисы параллелограмма

Биссектриса параллелограмма

L – биссектриса параллелограмма

ab – стороны

α, β – углы

Формулы длины биссектрисы через сторону и углы, (L):

Формулы биссектрисы параллелограмма

Формулы биссектрисы параллелограмма



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства углов между диагоналями параллелограмма:

1. Противоположные углы равны

2. Косинус тупого угла, всегда имеет отрицательное значение:  cos β <0

Формулы параллелограмма

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α – острый угол между диагоналями

β тупой угол между диагоналями

Формулы косинуса острого и тупого углов между диагоналями, через стороны и диагонали (по теореме косинусов):

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формулы углов между диагоналями параллелограмма

Формула синуса острого и тупого углов через площадь (S) и диагонали:

Формулы углов между диагоналями параллелограмма

Формулы соотношения острого и тупого углов между диагоналями:

Формулы углов параллелограмма

Для определения величины угла в градусах или радианах, используем функции arccos и arcsin



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства углов параллелограмма:

1. Противоположные углы равны

2. Косинус тупого угла, всегда имеет отрицательное значение:  cos β <0

Формулы параллелограмма

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α – острый угол

β тупой угол

Формулы косинуса острого и тупого углов через стороны и диагонали (по теореме косинусов):

Формулы углов параллелограмма

Формулы углов параллелограмма

Формула синуса острого и тупого углов через площадь (S) и стороны:

Формулы углов параллелограмма

Формулы соотношения острого и тупого углов:

Формулы углов параллелограмма

Для определения величины угла в градусах или радианах, используем функции arccos или arcsin



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

1. Длина диагонали параллелограмма через стороны, известную диагональ и угол.

Формулы параллелограмма

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

αβ – углы параллелограмма

Формулы диагонали через стороны и углы параллелограмма (по теореме косинусов), (D, d):

Формулы параллелограмма

Формулы параллелограмма

Формулы параллелограмма

Формулы параллелограмма

Формулы диагонали через стороны и известную диагональ (по формуле- сумма квадратов диагоналей), (Dd):

Формулы параллелограмма

Формулы параллелограмма

2. Длина диагонали параллелограмма через площадь, известную диагональ и угол.

Формулы параллелограмма

D большая диагональ

d меньшая диагональ

α β – углы между диагоналями

S – площадь параллелограмма

Формулы диагонали через площадь, известную диагональ и угол между диагоналями, (Dd):

Формулы параллелограмма

Формулы параллелограмма



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии


Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

1. Формулы длины сторон через диагонали и угол между ними.

Формулы длины сторон через диагонали и угол между ними

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α, β углы между диагоналями

Формулы сторон параллелограмма через диагонали и угол между ними (по теореме косинусов), (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

Длина стороны параллелограмма

Длина стороны параллелограмма

Формулы сторон параллелограмма через диагонали и сторону, (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

Формулы сторон параллелограмма , (a, b):

Длина стороны параллелограмма

Длина стороны параллелограмма

2. Формулы длины сторон параллелограмма через высоту.

Длина стороны параллелограмма через высоту

a, b – стороны параллелограмма

Hb высота на сторону b

Ha – высота на сторону a

α β – углы параллелограмма

Формулы сторон параллелограмма через высоту, (a, b):

Длина стороны параллелограмма через высоту

Длина стороны параллелограмма через высоту

3. Дополнительные, интересные формулы параллелограмма:

Параллелограмм

a, b – стороны параллелограмма

D большая диагональ

d меньшая диагональ

α – острый угол между диагоналями

Формула суммы квадратов диагоналей:

Формула суммы квадратов диагоналей

Формула разности квадратов сторон:

Формула разности квадратов сторон параллелограмма



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии

Добавить комментарий