Как найти высоту прямоугольной пирамиды
Пирамида – это многогранник, в основании которого лежит многоугольник, а остальные грани – треугольники, сходящиеся в общей вершине. Решение задач с пирамидами во многом зависит от вида пирамиды. У прямоугольной пирамиды одно из боковых ребер перпендикулярно основанию, это ребро и есть высота пирамиды.
Инструкция
Определите вид пирамиды по ее основанию. Если в основании лежит треугольник, то это треугольная прямоугольная пирамида. Если четырехугольник — четырёхугольная и так далее. В классических задачах встречаются пирамиды, основание которой либо квадрат, либо равносторонние/равнобедренные/прямоугольные треугольники.
Если в основании пирамиды лежит квадрат, найдите высоту (она же — ребро пирамиды) через прямоугольный треугольник. Помните — в стереометрии на рисунках квадрат выглядит как параллелограмм. Например, дана прямоугольная пирамида SABCD с вершиной S, которая проецируется в вершину квадрата B. Ребро SB перпендикулярно плоскости основания. Рёбра SA и SC равны между собой и перпендикулярны сторонам AD и DC соответственно.
Если в задаче даны рёбра AB и SA, найдите высоту SB из прямоугольного ΔSAB по теореме Пифагора. Для этого из квадрата SA вычтите квадрат AB. Извлеките корень. Высота SB найдена.
Если не дана сторона квадрата AB, а, например, диагональ, то помните формулу: d=a·√2. Также выражайте сторону квадрата из формул площади, периметра, вписанных и описанных радиусов, если это дано в условии.
Если в задаче дано ребро AB и ∠SAB, используйте тангенс: tg∠SAB=SB/AB. Выразите из формулы высоту, подставьте числовые значения, тем самым найдя SB.
Если дан объём и сторона основания, найдите высоту, выразив её из формулы: V=⅓·S·h. S — площадь основания, то есть AB2; h — высота пирамиды, т. е. SB.
Если в основании пирамиды SABC (S проецируется в В, как в п.2, т. е. SB – высота) лежит треугольник и указаны данные для площади (сторона у равностороннего треугольника, сторона и основание или сторона и углы у равнобедренного, катеты у прямоугольного), находите высоту из формулы объёма: V=⅓·S·h. Вместо S подставьте формулу площади треугольника в зависимости его вида, затем выразите h.
Если дана апофема SK грани CSA и сторона основания AB, найдите SB из прямоугольного треугольника SKB. Из квадрата SK вычтите квадрат KB, получите SB в квадрате. Извлеките корень и получите высоту.
Если дана апофема SK и угол между SK и KB (∠SKB), используйте функцию синуса. Отношение высоты SB к гипотенузе SK равно sin∠SKB. Выразите высоту и подставьте числовые значения.
Источники:
- Пирамиды
- Правильная пирамида
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Numbers and math are pertinent to the understanding of our world. Some people consider math as a nuisance, while others love the challenge of working with numbers. Knowledge of algebra, a branch of mathematics, will enable you to compute the height of a rectangular-based pyramid. Given the formula for the volume of a rectangular-based pyramid, you can extrapolate that formula to find the height.
Write the formula for the volume of a rectangular-based pyramid. Volume (V) is equal to one third of the base area multiplied by the height (H). Base area is equal to length (L) multiplied by width (W). Therefore, V = 1/3 x (LxWxH).
Extract the formula for the height of a rectangular-based pyramid using your knowledge of algebra. H = V / (L x W) / 3. For instance, V = 60 cubic cm, L = 4 cm and W = 6 cm.
Replace the formula with the given numbers. H = 60 cubic cm / (4 cm x 6 cm) / 3. H = 60 cubic cm / (24 cm squared / 3). H = 60 cubic cm / 8 cm squared. H = 7.5 cm. The height of a rectangular-based pyramid with volume of 60 cubic cm, length of 4 cm and width of 6 cm is 7.5 cm.
Check you answer by completing the formula with the values. V = 1/3 x (L x W x H). 60 cm3 = 1/3 x (4 cm x 6 cm x 7.5 cm). 60 cubic cm = 1/3 x 180 cubic cm. 60 cubic cm = 60 cubic cm and the formula balances out.
Числа и математика имеют отношение к пониманию нашего мира. Некоторые люди считают математику неприятностью, в то время как другим нравится работать с числами. Знание алгебры, ветви математики, позволит вам вычислить высоту прямоугольной пирамиды. Учитывая формулу для объема прямоугольной пирамиды, вы можете экстраполировать эту формулу, чтобы найти высоту.
Напишите формулу для объема прямоугольной пирамиды. Объем (V) равен одной трети базовой площади, умноженной на высоту (H). Базовая площадь равна длине (L), умноженной на ширину (W). Следовательно, V = 1/3 x (LxWxH).
Извлеките формулу для высоты прямоугольной пирамиды, используя ваши знания алгебры. H = V / (Д х Ш) / 3. Например, V = 60 куб. См, L = 4 см и W = 6 см.
Замените формулу указанными числами. H = 60 куб. См / (4 см х 6 см) / 3. H = 60 куб. См / (24 см в квадрате / 3). H = 60 куб. См / 8 см в квадрате. H = 7, 5 см Высота прямоугольной пирамиды объемом 60 куб. См, длиной 4 см и шириной 6 см составляет 7, 5 см.
Проверьте свой ответ, заполнив формулу значениями. V = 1/3 х (Д х Ш х В). 60 см3 = 1/3 х (4 см х 6 см х 7, 5 см). 60 куб. См = 1/3 х 180 куб. 60 куб. См = 60 куб. См, и формула уравновешивается.
Пирамида – это многогранник, в основании которого лежит многоугольник, а остальные грани – треугольники, сходящиеся в общей вершине. Решение задач с пирамидами во многом зависит от вида пирамиды. У прямоугольной пирамиды одно из боковых ребер перпендикулярно основанию, это ребро и есть высота пирамиды.
Определите вид по ее основанию. Если в основании лежит треугольник, то это треугольная прямоугольная пирамида. Если четырехугольник — четырёхугольная и так далее. В классических задачах встречаются пирамиды, основание которой либо квадрат, либо равносторонние/равнобедренные/прямоугольные треугольники.
Если в основании пирамиды лежит квадрат, найдите высоту (она же — ребро пирамиды) через прямоугольный треугольник. Помните — в стереометрии на рисунках квадратвыглядит как параллелограмм. Например, дана прямоугольная пирамида SABCD с вершиной S, которая проецируется в вершину квадрата B. Ребро SB перпендикулярно плоскости основания. Рёбра SA и SC равны между собой и перпендикулярны сторонам AD и DC соответственно.
Если в задаче даны рёбра AB и SA, найдите высоту SB из прямоугольного ΔSAB по теореме Пифагора. Для этого из квадрата SA вычтите квадрат AB. Извлеките корень. Высота SB найдена.
Если не дана сторона квадрата AB, а, например, диагональ, то помните формулу: d=a·√2. Также выражайте сторону квадрата из формул площади, периметра, вписанных и описанных радиусов, если это дано в условии.
Если в задаче дано ребро AB и ∠SAB, используйте тангенс: tg∠SAB=SB/AB. Выразите из формулы высоту, подставьте числовые значения, тем самым найдя SB.
Если дан объём и сторона основания, найдите высоту, выразив её из формулы: V=⅓·S·h. S — площадь основания, то есть AB2; h — высота пирамиды, т. е. SB.
Если в основании пирамиды SABC (S проецируется в В, как в п.2, т. е. SB – высота) лежит треугольник и указаны данные для площади (сторона у равностороннего треугольника, сторона и основание или сторона и углы у равнобедренного, катеты у прямоугольного), находите высоту из формулы объёма: V=⅓·S·h. Вместо S подставьте формулу площади треугольника в зависимости его вида, затем выразите h.
Если дана апофема SK грани CSA и сторона основания AB, найдите SB из прямоугольного треугольника SKB. Из квадрата SK вычтите квадрат KB, получите SB в квадрате. Извлеките корень и получите высоту.
Если дана апофема SK и угол между SK и KB (∠SKB), используйте функцию синуса. Отношение высоты SB к гипотенузе SK равно sin∠SKB. Выразите высоту и подставьте числовые значения.
Достаточно знать длину бокового ребра пирамиды, количество сторон многоугольника, лежащего в основании пирамиды, а также длину стороны основания (сторону многоугольника).
В основании правильной пирамиды всегда лежит правильный многоугольник. Любой правильный многоугольник можно вписать в окружность.
Есть такая формула:
a — длина стороны n-угольника (для правильного многоугольника).
L – длина окружности, описывающей этот многоугольник.
n – это количество сторон этого многоугольника
Если выразить эту формулу наоборот, то можно по стороне многоугольника найти длину окружности.
L=a*π/sin(180/n)
Зная длину окружности, можно найти радиус этой окружности:
L=2πR
R=L/(2π)
Подставляя L из первой формулы, получаем:
R = L/(2π) = a*π/(2π*sin(180/n)) = a/(2sin(180/n))
Теперь если приглядитесь к рисунку, то увидите, что радиус описанной окружности является также и катетом в прямоугольном треугольнике (игреком “y” на левой картинке).
А вертикальное ребро пирамиды это гипотенуза этого прямоугольного треугольника.
А искомая нам высота это второй катет этого прямоугольного треугольника.
По теореме Пифагора:
X²=Y²+h²
h²=X²-Y²
h=√(X²-Y²)
X нам известен – это длина боковой стороны пирамиды.
Y тоже известен – это расстояние от одного из углов основания пирамиды до центра пирамиды, и это же радиус описанной вокруг этого многоугольника окружности.
Y=R, а R равен: R=a/(2sin(180/n))
Итак подведём итог:
h=√(X²-Y²) = √(X²-R²) = √(X²-(a/(2sin(180/n)))²)
X – размер боковой стороны (ребра) пирамиды.
n – количество сторон многоугольника в основании.
a – размер стороны этого многоугольника в основании.
Более удобно эту формулу я отразил на рисунке.